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Abstract: Smart structures are characterized by a synergistic integration of 

active materials into a passive structure connected by a control system to 

enable an automatic adaptation to changing environmental conditions. 

Piezoelectric materials are widely used as distributed sensors and actuators in 

smart structures, where especially hybrid composites - a combination of 

fiber-reinforced and piezoelectric laminae - are very powerful smart 

material systems. First, a brief review of the developed shell type finite 

element for smart composite structures is presented. It is a degenerated 

shell element based on the Reissner-Mindlin kinematical assumptions for 

modeling thin and moderately thick structures made of multilayered 

material including piezoelectric active layers polarized in the thickness 

direction. The main focus of the paper is put on the test examples originally 

proposed by other authors. The finite element results were compared with 

the reference solutions obtained by Ritz type approximations. The 

considered test cases investigate the effects of shell shallowness, 

bending/twisting coupling and the influence of the piezoelectric layer 

thickness on the deformation of the laminated structure. 
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Introduction  

A synergic integration of structures, multi-functional 

materials based sensors and actuators and control 

electronics has redefined the concept of structures from a 

conventional passive elastic system to an active controllable 

system with inherent self-sensing, diagnosis, control and 

actuation capabilities. Such integration enables the structure 

to respond in real time or nearly real time to external stimuli 

to compensate for undesired behavior or to produce a 

desired response through the change of the structure's 

stiffness, inertial properties, damping properties or 

configuration. A new name emerged: Active or “smart” 

structures. The paper considers an important and growing 

group of active structures, whose areas of application 

become more diverse each day. Those are hybrid composite 

thin-walled structures with piezoelectric material based 

active components and fiber-reinforced composite 

laminates as a passive material. 

The potential benefits the active structures offer over 

the classical “passive” structures attracted many 

researchers from various fields to this new 

multidisciplinary field. The development and design of 

active structures requires reliable, accurate and 

numerically efficient tools for their modeling and 

simulation. At the present stadium of development the 

Finite Element Method (FEM) as a predominant one is 

almost inevitably addressed on this matter. The body of 

literature considering the finite element approach to 

modeling active structures is quite large and an 

interested reader is referred to surveys such as the one 

from Benjeddou (2000). This paper presents a part of the 

authors’ contribution to modeling and simulation of the 

behavior of the considered structures. It gives a brief 

description of the developed shell element (Marinkovic, 

2007) that has been already tested for passive linear 

cases (Marinkovic et al., 2012) as well as for passive and 

active geometrically linear and nonlinear cases 

(Marinkovic et al., 2013; 2008). The developed element 

has been recently implemented in commercially 

available FEM program ABAQUS in order to facilitate 

its application (Nestorovic et al., 2013; 2014).   

Formulation of a Shell Element for 

Piezoelectric Composite Laminates 

The finite element modeling of a generally shaped 

thin-walled active structure requires the application of a 
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shell type finite element. Among different approaches to 

finite element modeling of shell type structures the 

degenerated shell approach is the most promising one. 

The degenerated shell element was first developed by 

Ahmad et al. (1970) from a 3D solid element by a 

degeneration process, which directly reduced the 3D 

field approach to a 2D one in terms of mid-surface nodal 

variables. The most significant advantages achieved in 

this manner are that the element is not based on the 

classical shell theories and is applicable over a wide 

range of thickness and curvatures. The developed 

element, referred to as 9-node active composite shell 

(ACShell9) represents the extension to modeling active 

multi-layered structures made of fiber-reinforced 

composites and including active piezoelectric layers 

polarized in the thickness direction. 

The Element Geometry and Mechanical Field 

Due to the complexity of the degenerate shell element 

several coordinate systems are needed to describe the 

element geometry, displacement field and strain field. 

Besides the global (x, y, z) and the natural (r, s, t) 

coordinate system, it is necessary to introduce a local 

coordinate system (x’, y’, z’), Fig. 1b. The local coordinate 

system is defined so as to have one of its axes (say z’-axis) 

perpendicular to the mid-surface, while the other two 

axes form the tangential plane. The kind of non-

isotropy exhibited by the fiber-reinforced composite 

laminates requires introduction of a structure reference 

direction (defined by the user), with respect to which 

the fiber orientation in the layers is given. In this case it 

is reasonable to fix the orientation of the local in-plane 

axes with respect to the structure reference direction. 

The simplest way is overlapping one of the axes (say 

x’-axis) with it (Fig. 1a). 

Using the full biquadratic Lagrange shape functions 

Ni (Marinkovic, 2007), the coordinates of a mid-surface 

point are given by Equation 1: 
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With xi, yi and zi denoting the global coordinates of 

the nine nodes. The thickness of the shell is assumed to 

be in the direction normal to the mid-surface. Denoting 

the unity vectors of the local coordinate system with 

respect to the global coordinate system by 
aie
�

, where a 

stands for x’, y’ or z’ depending on the axis and i denotes 

the node, the 3D shell geometry may be regenerated 

from its mid-surface in the following way Equation 2: 
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where, hi denotes the shell thickness at node i and the 

natural thickness coordinate takes values:  -1<t<+1. 

The degeneration process is based on the assumption 

that the thickness direction line of the shell remains straight 

after deformation but not necessarily perpendicular to the 

mid-surface (the Mindlin kinematical assumption). 

Therefore, the displacement of any point within the volume 

of the shell is given as a superposition of the corresponding 

mid-surface point displacement and a linear function of the 

rotations about the local x’- and y’-axis through the mid-

surface point, θx’ and θy’ Equation 3: 
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The rotations are in the local coordinate system and 

upon transformation to the global c.s. one gets: 
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where, [T’] is the modified form of the transformation 

matrix relating the local and the global coordinate system, 

[T] and is given in the form [ ] x yT e e′ ′′  =  
� �

. 

Due to the directionally dependent material 

properties, it is of crucial importance to develop the 

strain field in the local coordinate system. This allows 

direct application of the composite laminates constitutive 

matrix, the so-called ABD matrix. The advantage of 

having the strain field with respect to the local 

coordinate system is also obvious when the piezoelectric 

coupling within the thickness-polarized piezopatch 

operating on the “e31-effect” is considered. 

 

 
 

Fig. 1. Element geometry 
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The interpolations are performed in the natural c.s. 

Hence, the displacement derivatives with respect to the 

natural coordinates are directly obtained from Equation 

4. The transformation of derivatives from the natural to 

the global coordinate system is achieved by means of 

Jacobian inverse Equation 5: 
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where, for example, u,x = ∂u/∂x. The global derivatives 

are afterwards transformed to the local derivatives by 

means of the transformation matrix [ ] x y zT e e e′ ′ ′ =  
� � �

: 
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It is quite common within a 2D formulation to give 

the strain field in the form that makes a distinction 

between the in-plane components and the out-of-plane 

strain components Equation 7: 
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After determining the partial derivatives in the local 

coordinate system (Equation 6), the strain field is given 

in the following form (more details about the procedure 

in (Marinkovic, 2007) Equation 8: 
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where, {ε’mf} is the membrane-flexural (in-plane) strain 

field, {ε’s} comprises the transverse shear strains, [Bmf] 

and [Bs] are the corresponding strain-displacement 

matrices further suitably represented in terms of the B-

matrices having “m”, “f” and “s” in the subscript 

depending whether they contribute to the definition of 

the membrane, flexural or shear strains, respectively, 

those having “T” are related to the nodal translations and 

with “R” are related to the nodal rotations and finally, 

“0” denotes constant terms while “1” denotes linear 

terms with respect to the natural thickness coordinate t. 

The vector {d} comprises nodal displacements 

(translations and rotations). 

Piezoelectric Layers 

The constitutive equations of the piezoelectric 

material depend on the choice of the independent 

variables. Within the FE analysis it is suitable to choose 

the mechanical strain and the electric field, so that: 
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where, {σ} is the mechanical stress in vector (Voigt) 

notation, {D} is the electric displacement vector, [C
E
] 

is the piezoelectric material Hook’s matrix at constant 

electric field E, [d
ε
] is the dielectric permittivity 

matrix at ε constant and [e] is the piezoelectric 

coupling matrix. 

This paper considers piezoceramic elements with 

electrodes on the top and bottom surfaces and poled in 

the thickness direction, where the in-plane strains are 

coupled with the perpendicularly applied electric field 

through the piezoelectric “e31-effect”. The typical 

approximations yield a linear distribution of the electric 

field and a constant electric field through the piezolayers 

thickness. They are adopted here, thus Equation 10: 

 

k
k

k

E E
z h

φ∂ ∆Φ
= − ⇒ = −

′∂
 (10) 

 

where, ϕ is the electric potential, ∆Φk is the difference of 

the electric potentials between the electrodes of the k
th

 

layer and hk is the thickness of the piezolayer. The 

approximation in the Equation 9 defines a diagonal 

electric field-electric potential matrix [Bφ] with typical 

term 1/hk on the main diagonal. The diagonal form of the 

matrix [Bφ] results from the fact that the difference of the 

electric potentials of a layer affects only the electric field 

within the very same layer. 

Finite Element Equations 

The finite element equations for dynamic cases 

involving a piezoelectric continuum are obtained using 

the variational approach (Marinkovic, 2007) and they are 

given in the following standard form: 
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where, the following matrices and vectors are introduced 

on the element level: The mass [M], (proportional 

Rayleigh) damping [C], mechanical stiffness [Kuu], 

piezoelectric stiffness [Kuφ]=[Kφu]
T
 and dielectric 

stiffness [Kφφ] matrices as well as vectors of external 

forces {Fext} and electric charges {Qext}. Although 

Equation 12 appears to be static (no obvious dynamic 

effects included), it should be noted that it is coupled to 

the Equation 11 that contains dynamic mechanical effects. 

The system of equations for a static case is obtained in a 

straightforward manner by excluding dynamic effects, i.e. 

inertia and damping, from Equation 11. 

Numerical Examples and Discussion 

In the following, three static examples will be 

considered. The examples are originally proposed by 

Kioua and Mirza (2000) and solved by using the 

conventional Ritz analysis based on the shallow-shell 

approximations. The finite element results also include 

those yielded by the Semi-Loof active shell element 

(Seeger et al., 2001). 

In all three cases the considered structures have 

dimensions a×b = 254×254 mm. They are made of 

hybrid composite laminates, the outer layers of which 

are made of PZT G1195 piezoceramic (thickness 0.254 

mm) and the internal layers are of T300/976 

graphite/epoxy (thickness 0.138 mm). The properties of 

the layers are given in Table 1. The sequence of the 

internal layers will differ from case to case and will be 

specified separately for each case. The piezoelectric 

constants that are not specified here are considered to 

be equal to zero. In all cases the piezoelectric excitation 

is achieved by supplying the same voltage to the 

oppositely polarized piezolayers, which results in 

bending moments uniformly distributed over the edges 

of the structure. Thus, only the actuator function of the 

piezolayers is considered and the dielectric constants 

are therefore not necessary for the calculation purposes 

and are not given in Table 1. 

Shape Control of an Active Plate 

A simply supported cross-ply plate, with the internal 

sequence of layers [0/90/0]S, is initially subjected to a 

uniformly distributed load of 200 N/m
2
. Then the 

gradually increasing voltage is supplied to the outer, 

active layers, with the aim of finding the voltage giving 

the shape that corresponds mostly to the initial 

undeformed shape. 

Table 1. Material properties of passive and active layers 

 PZT G1195 T300/976 

Material properties piezolayer graphite/epoxy 

Elastic properties 

Y11 (GPa) 63.0 150.0 

Y22 (GPa) 63.0 9.0 

v12 0.3 0.3 

G12 (GPa) 24.2 7.1 

Piezoelectric properties 

e31 (C/mm2) 2.286·10−5 0.0 

e32 (C/mm2) 2.286·10−5 0.0 

 

An 8×8 finite element mesh is applied and the 

normalized center line deflection is calculated for the 

same voltages as given in the paper by Kioua and Mirza 

(2000), i.e., 0 V (initial deformed shape under distributed 

load), 15 and 27 V. Figure 3 shows the results obtained 

with the ACShell9 element and the Semi-Loof element 

(solid lines, nearly congruent) and the results from Kioua 

and Mirza (dashed lines). According to the Ritz solution, 

the structure recovers the flat shape for the last applied 

voltage (Fig. 2, 27 V). However, the FEM results show 

that the structure subjected to the voltage of 27 V (and 

the uniform load) is not exactly flat, although very close 

to it. It should be noted that the act of the moments 

uniformly distributed over the plate edges (obtained by 

the actuation of the piezolayers) certainly cannot recover 

the original (unloaded) flat geometry. 

Clamped Cylindrical Shell 

A cantilevered cylindrical shell is considered in the 

second case (Fig. 3). Fiber-reinforced composite layers 

have the sequence [302/0]s. Obviously, the sequence is 

unbalanced resulting in coupling between bending and 

twisting. The same voltage of ϕ = 100 V is supplied to 

outer (piezo) layers. Since both bending and twisting of 

the shell are induced, the transverse deflection is 

observed at three characteristic points, two end-points 

and the mid-point of the free edge, denoted in Fig. 3 as 

1, 3 and 2, respectively. 

The same mesh of 8×8 elements is used for the 

finite element results. The different radii R of the 

curvature are considered. As an indicator of bending 

deformation, the ratio (w2/b) is observed, while the 

ratio (w3-w1)/b is taken as an indicator of twisting. The 

comparison of the results is given in Fig. 4. A very high 

agreement of the results from the ACShell9 and the 

Semi-Loof element can be noted. The Ritz solution is 

also close to the FE results, especially for higher values 

of radius to span ratio, which is expectable. As this 

ratio takes lower values, the shell behavior becomes 

more complex and cannot be accurately enough 

described by relatively simple shape functions assumed 

within the presented Ritz solution. 
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Fig. 2. Shape control of the simply supported composite active plate 

 

 
 

Fig. 3. Clamped cylindrical active shell and electric excitation 

 

 
 

Fig. 4. Shape control of the simply supported composite active plate 
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Fig. 5. Effect of the piezoelectric layer thickness on the shell bending 
 

 
 

Fig. 6. Effect of the piezoelectric layer thickness on the shell twist 
 

 
 

Fig. 7. Effect of the piezoelectric layer thickness on the normalized shell deflection 
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The influence of the piezoelectric layer thickness on 

the resulting bending and twist of the shell under a 

uniform electric field of E = 400 Vmm
−1

 has also been 

investigated. The obtained results are summarized in 

Fig. 5 and 6. Both diagrams show that the shell 

curvature considerably reduces the efficiency of the 

piezoelectric actuation. They also reveal the existence 

of optimal piezolayers thickness with respect to the 

objective of achieving maximal deformation. 

Considering bending, the optimal thickness for 

maximal deflection decreases together with the 

curvature, i.e. as the shell tends to a flat structure. On 

the other hand, the optimal thickness for the twist is 

hardly affected by the shell curvature, but as the 

piezolayer thickness approaches the optimal values the 

induced twist becomes more affected by the shell 

curvature than at other values of the thickness. 

Simply Supported Active Spherical Shell 

A simply supported spherical shell is considered in 

the last example. The sequence of fiber-reinforced 

layers, [0/90/0]S, is now balanced. The excitation is 

achieved in exactly the same manner as in the previously 

considered cases (voltage of ϕ = 100 V, Fig. 7) and the 

transverse deflection of the structure’s mid-point is 

observed. The finite element results are obtained with the 

same 8×8 mesh and the results for different radii R are 

given in the Fig. 7. One may note that the Ritz solution 

yields higher values for displacements compared to the 

FEM solution. This is again a consequence of the 

deficiency of the approximation functions used by 

Kioua and Mirza (2000) for the Ritz solution. The Ritz 

solution was based on polynomials up to the second 

order, whereas some of the solutions analyzed above 

require the polynomials of at least fourth order. In those 

cases, the Ritz solution yields the best possible 

approximation of the actual deformation that can be 

formed with the applied approximation functions. How 

the approximation actually performs depends on the 

point of the structure where the result is evaluated. The 

above examples have demonstrated that the Ritz 

solution may underestimate but also overestimate the 

actual result. In the case of plate, the Ritz solution even 

yielded recovery of the initial, flat geometry, which is 

virtually impossible under the given loads-surface 

pressure and distributed edge bending moments 

induced through the piezoelectric effect. 

Conclusion 

In vibration and noise control as well as in shape 

control of adaptive structures, commercially available 

piezoelectric patches are very common active 

elements. They are used both as actuators and sensors. 

The actuator function was demonstrated in this paper. 

For the analysis and design process of smart structures 

with integrated piezoelectric patches, the finite 

element method provides an effective simulation 

approach. The paper presented the developed shell 

finite element that can be gainfully used for modeling 

and simulation of the behavior of thin-walled hybrid 

composite active structures. Application of the 

developed ACShell9 element was demonstrated on a 

several static examples, while the comparison with the 

already existing and tested Semi-Loof shell element 

has proven the accuracy offered by the ACShell9 

element. The results from the two elements are 

obviously in very high agreement. On the other side, 

discrepancies between the finite element and the Ritz 

solutions were noted. They are explained in the paper, 

thus confirming the well-known advantages of the 

finite element approach with respect to the 

conventional Ritz method. 
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