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Abstract: Problem statement: Pricing is one of the fundamental management decisions required by a 
truckload carrier. Traditional pricing based on an average all relevant costs including fixed and 
variable costs is not capable of providing adequate margins that prevent losses during operation 
uncertainties inherent in truckload operation including demand variability and variation in service 
times. Approach: This study utilizes Conditional Value at Risk (CVaR) as a measure of risk with 
significant advantage over Value at Risk (VaR), to full truckload pricing when conditions are 
unpredictable. It criterion focuses on the tail of the loss distribution and provides a measure of the 
expected loss exceeding Value-at-Risk. Therefore, it was applied to control the maximum loss or the 
minimum gain within a specified tolerance level to enable more flexible full truckload pricing. A 
simulation model is developed to capture the stochastic patterns inherent in the operation of full 
truckload network. Results: Price per trip from 95% CVaR is less than traditional pricing for delivery 
over short distances while extremely higher for delivery over long distances. We apply traditional 
prices back to the truckload operation and network imitated in the simulation model and find that even 
the traditional prices are set to include a certain percentage of profit over the average cost there is still a 
large chance that the carrier will be subjected to a loss. Conclusion: The numerical analysis for this 
study demonstrates a pricing method for transportation carriers who are risk averse. Transportation 
carriers in this group dislike risk and will stay away from high risk. 
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INTRODUCTION 

 
 Today truck transportation is the dominant mode of 
freight transportation in Thailand. Several studies have 
revealed that over 80% of domestic freight movement 
by weight is currently served by trucks and that truck 
transportation demand continues to rise dramatically in 
conjunction with the nation’s high economic growth. 
Truckload service plays a major role in Thailand 
because a large proportion of freight moved in Thailand 
lends itself to truckload movements, such as bulk 
agriculture products and construction materials. In 
Thailand, the truckload carrier market is highly 
competitive due to the ease of market entry resulting 
from the intrinsic simplicity of Truckload operation 
which provides point-to-point trucking services 
compared to Less-Than-Truckload (LTL) operation 
which requires a network of local terminals for 
consolidation and break-bulking activities. 
 Given the extremely competitive nature of the 
market, pricing is a key driver of business success. 

Specifying the “right” price offering to potential 
customers is a challenging task which can affect the 
long-term survival of the carriers, as over-pricing will 
turn potential customers away while under-pricing will 
result in eventual financial losses. Moreover, pricing 
trucking services is certainly a difficult task if one 
considers the various uncertainties that may possibly 
affect the complexities and the cost of trucking 
operation. These uncertainties include not only those 
internal to the carrier operation such as the availability 
of trucks, but also those that lie outside the direct 
control of carriers such as gasoline price, customer 
demand and road accidents. 
 Among all external uncertainties encountered in 
daily truckload operation, variability in demand is 
possibly the most important factor because it can 
simultaneously affect both the revenue and the cost of a 
trucking operation. Higher-than-expected demand may 
be favorable in the first instance because it means greater 
revenue but the unexpected demand will have severely 
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adverse effects on the operation and the additional cost of 
mobilizing resources to serve this unforeseen demand 
may be greater than the revenue earned. 
 The second most significant source of uncertainties 
in truckload operation is the time required to complete 
the delivery, because this will affect the use of available 
trucks. As truckload movements usually involve 
intercity long-haul movement, the transit time is 
relatively constant, but the time associated with the 
waiting at the customers’ premises and the 
loading/unloading of vehicles may vary greatly among 
different shipments due to changing customer 
requirements. Customer demand and service time are 
the two factors of uncertainties which will be 
considered in this study. 
 Uncertainty gives rise to risk, the potential of loss 
(Suri and Soni, 2006). The literature describes various 
risk various risk measures which can be used to 
evaluate a system’s riskiness. Over the past few years, 
the financial engineering field’s financial managers 
have increasingly used Value at Risk (VaR). VaR is 
defined as the expected loss arising from an adverse 
market movement with specified probability over a 
period of time (Tapiero, 2005; Saleh et al., 2009). It 
answers the question of how much one can lose with 
x% probability over a period of time. It suffers; 
however, from being unstable and difficult to work with 
numerically when losses are not “normally” distributed. 
In fact, it is often the case because loss distributions 
tend to exhibit “fat tails”. A very serious shortcoming 
of VaR, in addition, is that it provides no handle on the 
extent of losses that might be suffered beyond the 
amount indicated by this measure. An alternative 
measure that does quantify the losses that might be 
encountered in the tail of the loss distribution is 
conditional value at risk, or CVaR. It was first 
introduced by Rockafellar and Uryasev (2000), Uryasev 
(2000) as an extension to Value at Risk. Hence, in order 
to control the risk of highest loss, we apply a CVaR 
constraint to estimate full truckload pricing in this 
article. Full truckload pricing is considered with the 
probability of an acceptable loss which is less than the 
expected target under a specified confidence level of 
CVaR. Although CVaR has not become a standard in 
the finance industry, CVaR is likely to play a major role 
as it currently does in insurance industry (Embrechts et 
al., 1997). CVaR has been proofed as a more consistent 
measure of risk since it is sub-sdditive and convex 
(Artzner et al., 1999). The CVaR concept is particularly 
relevant for the truckload industry because as the 
market is extremely competitive the carriers are price-
takers rather than price-setters. 
 By definition with respect to a specified probability 
level α, the α-VαR of a portfolio is the lowest amount 
β such that, with probability α, the loss will not exceed 

β, whereas the α- CVαR is the conditional expectation of 
losses above that amount β. CVaR measures the 
conditional expected loss exceeding VaR and accounts 
for the risks beyond the VaR value. The CVaR measure 
is able to quantify dangers beyond the VaR value. To 
avoid the undesirable characteristics of VaR, Conditional 
Value-at-Risk (CVaR) will be applied as an alternative 
measure of risk, with more attractive properties.  
 The α- CVαR values for the loss random variable 
associated with xand any specified probability level α 
will be denoted byφα (x), which are given by: 
 

1

f (x ,y) (x )

(x) (1 ) f (x, y)p(y)dy
α

−
α

≥β

ϕ = − α ∫  (1) 

 
 In the Eq. 1, the probability that f (x, y)≥βα(xc) is 
therefore equal to 1-α. Therefore, φα (x) comes out as 
the conditional expectation of the loss associated with x 
relative to that loss being βα(x) or greater. It can be 
ensured that the α-VαR is never more than the α-CVαR, 
that means CVaR will naturally give low VaR as well. 
 

MATERIALS AND METHODS 
 
 The objective of this research is to develop a 
methodology for determining reasonable service prices 
to offer to a new customer. The proposed methodology 
has two basic components, namely the full truckload 
simulation model and the full truckload pricing model, 
as illustrated in Fig. 1. 
 
Full truckload simulation model: When a new 
customer contacts a truckload carrier for service, the 
customer will have a relatively firm idea on the total 
volume of freight to be served but will not know 
exactly how the demand will vary from day-to-day. 
Moreover, the times required for a truck to wait at the 
customer site and to complete loading/unloading may 
experience daily fluctuation. The truckload simulation 
model is developed in a spreadsheet program using 
Visual Basic to capture these uncertainties in demand 
and service times. With the assumption that the carrier 
presently provides service to certain prior customers, 
the simulation model can be used to analyze the 
impacts of new customers’ service requests on the daily 
operation rendered to both new and existing customers. 
The simulation outputs show daily operating costs and 
provide a number of performance measures. 
 In the developed simulation model the carrier has a 
fixed truck fleet and current customers will have 
priority over new customers. In other words, available 
trucks will be first assigned to serve existing customers’  
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Fig. 1: Research framework 
 
demand and the remaining trucks in the fleet will then 
be assigned to serve the new customer in everyday 
operation. If there are not enough trucks, the carrier will 
have to request additional trucks from other sub-
contract companies at a relatively high cost. In serving 
a shipment the designated truck will process through 
the following stages: moving to the shipment origin, 
waiting for loading, loading, moving to the destination, 
waiting for unloading, unloading, moving on to the next 
assignment (if any). 
 
Full truckload pricing model: A full truckload pricing 
model is developed by applying the Value at Risk (VaR) 
risk optimization technique to determine the minimum 
service price offering by controlling the risk of earning 
less than the desired profit or losing more than an 
acceptable level due to uncertain factors. The profit 
model is simply equal to revenue earned that depends on 
demand minus a set operating cost and a total fixed cost. 
Let π (p, z) be the profit associated with the decision 
vector p, which represent transportation pricing in term 
of baht/km and the random vector z, which including 
two factors that are demand and operating time 
uncertainty. Thus for each p, the profit π(p, z) is a 
random variable having a distribution induced by z. 
Assume the underlying probability density function of 
random variables is denoted by Pr (π(p, z)). For the 
VaR profit is the value of the α -quantile of the total 
profit, e.g., at 95% confident level or a 5 % chance that 
earnings   would  yield  a  less   than   VaR. CVaR is 
the average of   5%   the   tail  of    profit    distribution. 

 
 
Fig. 2: Probability of loss area 
 
CVaR is seen to be more sensitive to samples with very 
long tail distribution loss from high operating cost 
compare to VaR. However, CVaR is more stable with 
changes in the α-value. This can be explained by the 
fact that CVaR is an average of the tail, whereas VaR is 
the quantile defining the tail. The quantile is likely to 
jump with a small sample, whereas the average will 
shrink this effect (Dehlendorff et al., 2010).  
 In this article, to minimize service prices for new 
customers we apply Conditional Value at Risk 
(CVaR) as a constraint at the value of α-quantile as 
illustrated in Fig. 2. 
 Then, the optimization problem can be described as 
follows. 
 
Objective min p subject to: 
 
CVaRa[Pr(π(p, z)≥] π0 p≥0 
 
List of notations: 
 
π (p, z) = Profit function with demand and operating 

time uncertainty 
π0 = Minimum acceptable gain (π0 = 0) 
α = Threshold probability value of the downside 

risk constraint 
P = Full truckload price per distance 
 

RESULTS 
 
Input Data: To illustrate how full truckload pricing 
operates, let us now consider a numerical example 
using a simulated dataset generated from historical data 
provided by a truckload carrier located in Bangkok, 
Thailand. As illustrated in Fig. 3, the first step 
generates the trucking demand requested by current 
and new customers and assumes that the demands 
follow normal distribution. In the model a single type 
of trucks (six-wheeled trucks) is used. The average 
daily demands  are specified as 10 and 9 shipments 
day−1  for  current and  new   customers    respectively.  
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Fig. 3: Process flow for full truckload simulation 
 
Table 1: Customer’s demand information 
   Average demand Std. (10% of Outsourcing cost 
 Destination Distance (km.)  (shipments day−1) Demand day−1)  (baht/trip) 
Current customer Nakhon Ratchasima 259 3 0.3 7.562 
 Khon Kaen 449 2 0.2 13.753 
 Surat Thani 644 2 0.2 18.835 
 Phitsanuklok 377 3 0.3 12.322 
New customer Phra Nakhon Si Ayutthaya 76 3 0.3 4.323 
 Chonburi 81 2 0.2 4.621 
 Udon Thani 564 2 0.2 16.038 
 Songkhla 950 2 0.2 26.123 
 Chiang Mai 696 2 0.2 19.868 
 
Table 2: The proportion of extra trucks needed to meet average 

demand day−1 
Total trucks Outsourced Trucks day−1 (%) 
22 46 
25 36 
30 24 
35 15 
40 8 
 
The destination probability or the probability that the 
shipment will be directed to a particular destination is 
specified based on historical data as illustrated in 
Table 1. In addition, we assume that the uploading and 
unloading are uniformly distributed while waiting 
times for uploading and unloading are exponentially 
distributed. The average line-haul speeds of laden and 
empty trucks are specified as 50 and 70 km h−1 
respectively. 
 
Data Analysis: With all necessary parameters 
specified, we apply the developed simulation model to 
analyze the resulting operation performance and costs. 
To serve current customers demand, the carrier is 
assumed to operate 22 six-wheeled trucks. We run 100 
simulations to imitate the real-life operation of 90 
working days, using the existing number of trucks (22 
six-wheeled trucks). This reveals that the existing 
number of trucks is not enough to serve both current 

and new customer demand. Simulation output shows that 
carriers need to outsource trucks from sub-contractors to 
meet about 46% of total daily demand. Requesting 
additional trucks from sub-contract companies is 
relatively expensive, so instead we increase the number 
of trucks and run the simulation again. The output 
performances of imitating real-life operation for 180 
working days are illustrated in Table 2. 
 In this case, the carrier is assumed to desire less 
than 10% of average daily demand to be outsourced. 
This requires investing in 18 additional trucks to 
adequately serve the demand of new customers. When 
total customer demand exceeds the capacity of these 
trucks, outsourcing will result in added expense. 
 Using these adjusted figures, another simulation of 
real-life operation over 180 working days is run. Specific 
performance measures derived by the simulation model 
and used as inputs to the pricing model include daily 
transportation cost, outsourcing cost and fixed cost. 
Requests for outsourced trucks in the simulation could 
fall into two scenarios of truck assignment: (1) our own 
trucks are given the first priority for short-distance 
deliveries while outsourced trucks are reserved for long 
distances and (2) our own trucks are given first priority 
for long-distance deliveries while outsourced trucks are 
reserved for short distances. 
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Table 3: Comparing full truckload pricing applying with 95% CVaR with traditional pricing per trip for the first scenario of truck assignment 
  Traditional pricing (baht/trip)    
 Average cost -------------------------------------------------------------------- Price with 95% 
Destination (baht/trip) 5% Profit 10% Profit 15% Profit CVaR (baht/trip) 
Phra Nakhon Si Ayutthaya 2.128 2.234 2.340 2.447 1.566 
Chonburi 2.193 2.302 2.412 2.522 1.669 
Udon Thani 9.613 10.093 10.574 11.055 11.624 
Songkhla 15.771 16.560 17.349 18.137 19.580 
Chiang Mai 11.899 12.494 13.089 13.684 14.345 
Probability of experiencing a loss 100% 100% 9.50% 5.00% 
 
Table 4: Comparing full truckload pricing applying with 95% CVaR with traditional pricing per trip for the second case of truck assignment 
 Traditional pricing (baht/trip) 
 ---------------------------------------------------------------------------------------------- CVaR (baht/trip) 
Destination 5% Profit 7% Profit 10% Profit 15% Profit Price with 95% 
Phra Nakhon Si Ayutthaya 2.234 2.277 2.340 2.447 1.463 
Chonburi 2.302 2.346 2.412 2.522 1.559 
Udon Thani 10.093 10.286 10.574 11.055 10.855 
Songkhla 16.560 16.875 17.349 18.137 18.285 
Chiang Mai 12.494 12.732 13.089 13.684 13.396 
Probability of experiencing a loss 94.40% 31.80% - - 5.00% 
 
 After running the simulation model, the pricing 
model was applied with 40 six-wheeled trucks to 
determine the minimum price offerings that would 
allow a downside risk constraint at 95% confident level 
or only a 5% chance that earnings would yield a less 
than acceptable loss. 
 The outputs from the pricing model in the first 
scenario of truck assignment reveal that the minimum 
pricing is 20.61 baht km−1. We then converted pricing 
per unit into full truckload pricing per trip. We 
compared pricing by controlling risk to achieve a loss 
with a traditional pricing method that is estimated by 
using cost-plus pricing method or estimated pricing 
from average cost plus percent of profit required. A 
comparison of the results is displayed in Table 3. 
 Price per trip from 95% CVaR is less than 
traditional pricing for delivery over short distances 
while extremely higher for delivery over long distances. 
The most important reason is that the short-distance 
routes are mostly served by existing trucks left from 
serving current customers so that the depreciated cost is 
already allocated to current customers. Also, comparing 
additional depreciation from new truck owned by the 
company is still less than outsourcing cost. Meanwhile, 
serving some long distance routes with outsourced 
trucks is highly expensive. Hence the variable costs for 
short distance routes are lower and pricing will 
consequently be lower. 
 We apply these traditional prices back to the 
truckload operation and network imitated in the 
simulation model and find that even the traditional 
prices are set to include a certain percentage of profit 
over the average cost there is still a large chance that 
the carrier will be subjected to a loss. For example, 

although the carrier adds up as high as 15% of profit to 
the average cost, he will still be facing a 9.50% 
probability of incurring a loss.  
 In the second scenario of truck assignment, own 
trucks are reserved for long-distance trips. As illustrated 
in Table 4, the minimum pricing in this case is 19.25 
baht km−1, which is less than pricing in the first case 
and the probabilities of loss are lower than those in the 
first scenario. It can be implied that the truck 
assignment rule highly affects cost and price.  
 Besides the truck assignment rule, other factors may 
strongly affect transportation cost and price. In this case, 
the simulation model can be further applied to consider 
the influence of the number of additional trucks to be 
purchased to serve a new customer. Applying the first 
truck assignment rule, we test the scenario by changing 
the number of additional trucks in the simulation model. 
The outputs indicate that at the beginning increasing the 
number of trucks leads to a lower cost and price. This 
logically follows from the fact that having more trucks of 
its own means that a company needs to outsource fewer 
trucks. However, we cannot increase the quantity of 
trucks infinitely each additional truck requires additional 
investment and a higher fixed cost. In this case, we can 
increase the size of the fleet by additional 24-25 six-
wheeled trucks. After that it will generate higher cost and 
price as displayed in Fig. 4. 
 This numerical analysis demonstrates a pricing 
method for transportation carriers who are risk averse. 
Transportation carriers in this group dislike risk and 
will stay away from high risk. Hence, pricing with 
95% of    CVaR   is    agreeable   to this kind of 
person. However,  if    they   stay   extremely risk 
averse,   pricing   will   be   very   high   as   a    result.  
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Table 5: Comparing full truckload pricing on different levels of risk by changing different confident level for the second case of truck assignment 
 Price with different confident level of CVaR (baht km−1) 
 -------------------------------------------------------------------------------------------------------------------------------- 
Additional number of trucks 80% CVaR 85% CVaR 90% CVaR 95% CVaR 
18 19.10 19.14 19.18 19.25 
20 18.38 18.39 18.41 18.43 
22 17.94 17.95 17.96 17.98 
24 17.91 17.92 17.93 17.94 
26 18.08 18.09 18.10 18.12 
28 18.40 18.40 18.41 18.42 
30 18.79 18.80 18.81 18.82 
 

 
 
Fig. 4: The relationship between full truckload pricing 

with 95% CVaR and amount of additional trucks 
 
This will eventually lead to loss of customers. Taking 
advantage of the Conditional Value at Risk (CVaR) risk 
measurement technique, we can estimate the full 
truckload pricing depending on different levels of risk 
by changing different confident levels as demonstrated 
in Table 5. Therefore, transportation carriers will have 
room to negotiate with their customers while 
considering what an acceptable probability of loss is. 
 

DISCUSSION 
 
 This study introduces a full truckload pricing 
model by applying a simulation model and the 
Conditional Value at Risk (VaR) technique to 
incorporate the effects of demand and service time 
uncertainties on truckload pricing. The developed 
methodology is tested using the actual operational data 
obtained from a truckload carrier operating in Bangkok, 
Thailand. A simulation model is developed to imitate 
the real-life daily operation of a full truckload network. 
The full truckload pricing proposed in this study is 
controlled by acceptable loss constraint. The simulation 
model can be used to determine the pricing at varying 
degrees of risk and can also be applied to investigate 
the effect of additional trucks on cost and price. To 
invest in new trucks, carriers need to trade off between 

the fixed cost of owning the trucks and the price of 
outsourcing. In addition, truck assignment rules that 
provide the appropriate assignment will simultaneously 
affect cost and price. 
 

CONCLUSION 
 
 The numerical analysis full truckload pricing 
method in this study is suitable for transportation 
carriers who are risk averse. Transportation carriers in 
this group dislike risk and will stay away from high 
risk. However, if they stay extremely risk averse, 
pricing will be very high as a result. This will 
eventually lead to loss of customers. Taking advantage of 
the Conditional Value at Risk (CVaR) risk measurement 
technique, we can estimate the full truckload pricing 
depending on different levels of risk by changing 
different confident levels as demonstrated in Table 5. 
Therefore, transportation carriers will have room to 
negotiate with their customers while considering what an 
acceptable probability of loss is. Further studies may be 
conducted to apply Conditional Value at Risk (CVaR) to 
truckload pricing as well as to take into account other 
factors of uncertainties such as transit time uncertainty 
and so on. Moreover, full truckload pricing depends on 
each lane and less than truckload pricing will be 
considered. 
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