American J. of Engineering and Applied Science3)4429-434, 2011

ISSN 1941-7020

© 2014 W.A. Murtadat al., This open access article is distributed underemative Commons Attribution
(CC-BY) 3.0 license

Design and Implementation of an Efficient Software Communications
Architecture Core Framework for a Digital Signal Processor s Platform

"Wael A. Murtada?Mohamed M. Zahra,
*Magdi Fikri,Mohamed I. Yousef antBalwa El-Ramly
1Department of Satellite Communications and Groutadi&hs,
Space Sciences and Strategic Studies Division,
National Authority for Remote Sensing and Space8s, Cairo, Egypt
’Department of Communications and Electronics Ereging,
Faculty of Engineering, Al-Azhar University, Caifegypt

Abstract: Problem statement: The Software Communications Architecture (SCA) wlaseloped

to improve software reuse and interoperability oft®are Defined Radios (SDR). There had been
performance concerns since its conception. Arguahly majority of the problems and inefficiencies
associated with the SCA can be attributed to tearaption of modular distributed platforms relying o
General Purpose Processors (GPPs) to perform ghalsiprocessing.Approach: Significant
improvements in cost and power consumption carbkered by utilizing specialized and more efficient
platforms. Digital Signal Processors (DSPs) presech a platform and have been widely used in the
communications industry. Improvements in developneals and middleware technology opened the
possibility of fully integrating DSPs into the SCAhis approach takes advantage of the exceptional
power, cost and performance characteristics of DBRite still enjoying the flexibility and portality of

the SCA.Results: This study presents the design and implementafiam GCA Core Framework (CF)
for a TI TMS320C6416 DSP. The framework is deplogaca C6416 Device Cycle Accurate Simulator
and Tl C6416 Development board. The SCA CF is implged by leveraging OSSIE, an open-source
implementation of the SCA, to support the DSP ptatf OIS’s ORBExpress DSP and DSP/BIOS are
used as the middleware and operating system, tasggc A sample waveform was developed to
demonstrate the framework’s functionality. Benchinaesults for the framework and sample
applications are provide@onclusion: Benchmark results show that, using OIS ORBExpre38 DRB
middleware has an impact for decreasing the Softvidemory Footprint and increasing the System
Performance compared with PrismTech's e*ORB middtew

Key words: Software Communications Architecture (SCA), Sofeva@refined Radio (SDR), digital
signal processors, Embedded Object Request BrQkdeB)

INTRODUCTION in the assumption of a modular and distributedfofet
based on General Purpose Processor (GPP) to perform
The Software Communications Architecture (SCA)all signal processing. In order to overcome these
was developed by the Joint Tactical Radio Systenproblems, it is necessary to make better use of
(JTRS) program of the US Department of Defense tspecialized hardware optimized for signal processin
standardize the development of Software Defineddrad Digital Signal Processors (DSPs) are specialized
(SDR) technology. The SCA was developed to enhancmicroprocessors designed specifically for real-time
system flexibility and interoperability, while recing digital signal processing. However, DSPs have been
development and deployment costs. Earlyrelegated as secondary elements in the SCA, raguri
implementations of SCA SDRs have struggled to meetlardware Abstraction Layer (HAL) for connectivity.
performance, cost, size and power requirementOngoing improvements in development tools and
Arguably, many of the these problems have thegiori middleware technology allow the implementation of
Corresponding Author: Wael A. Murtada, Department of Satellite Commurniaz and Ground Stations,

Space Sciences and Strategic Studies DivisiompmddtAuthority for Remote Sensing and Space Segnc
Cairo, Egypt

429

Am. J. Engg. & Applied Sci., 4 (3): 429-434, 2011

SCA systems using only DSPs. By following this The DSP/BIOS is a scalable real-time multitasking
approach the flexibility and reusability brought thye operating system designed specifically for the TRIE3
SCA are complimented by the cost and powerfamily of DSPs Texas Instruments. It is developed a
efficiency of DSPs. If taken to a logical extertist maintained by Texas Instruments. The DSP/BIOS is
approach could eliminate the need for a GPP omicert built in modules which allows developers to redtloe
SDR implementations. In this study we present thdootprint to a minimum by only integrating the fesds
design and development of an SCA implementation fothat are strictly necessary for operation. It sufgo
a homogeneous TI C6416 DSP platform Texagpreemptive multithreaded operations thanks to & rea
Instruments. time scheduler and provides memory management
modules for low overhead dynamic memory allocation.
System architecture: The goal of this study is to study The DSP/BIOS is not &ortable Operating System
the repercussions of implementing the SCA in arinterface (POSIX) compliant, as required by the SCA
optimized DSP platform. Therefore, we aim toforcing a slight deviation from the specificatiorihe
minimize, or eliminate, the use of GPPs for thisC6000 family of processors does not include a mgmor
implementation. We leveraged the existingManagement unit Texas instruments.
implementation of MPRG’s Open Source SCA __ The ORBused in this project is OIS's ORBExpress
Implementation: Embedded (OSSIE) (ADMIN, 2011), DSP C++ version for DSP. It is a very optimized and
by porting it to the C64 platform. The system modular_ |mplementat|c_Jn of minimum-CORBA as
implements the SCA version 2.2 (Potter, 2010) in-C+ Standardized by the Object Management Group (OMG).

Our development environment is Tl Code Compose?rogxivir& (I):?a%exvl\g/:)?is (g_?FP) Sxﬁﬁ;%rtsaﬁgf\,SEffggﬂe
Studio running on a Windows PC. Most of the P

development is done using the Device Accuratetr"JmSport plug-ins Objective Interface Systems.

simulator of the C6000. The final target platforsna

C6416 board from Texas Instruments. MATERIALSAND METHODS

. Platform: The target platform for this project is the TI
Softwarearchltecturedenjents: The ge”er?" software C6416 development board from Texas Instrument
sFructure can be seen in Fig. 1, showing the_thre%exas Instruments. This high performance board
different components of the SCA Operational .. ins T| TMS320C6416T DSP. The system runs at

Cosonnert 06) e e Famavor (€9 OSSO o
' Mbytes of internal . Only DSP d f
OSSIE as the CF, ORBExpress DSP from Objectivg ytes of internal memory. Only are used for

. ignal processing and framework functionality. $&ng
Interface S)_/stems (OIS) as middleware and DSI?/BIO | C6416 DSP is a server and client node.
as Real-Time OS. All of them are available

commercially or as open source. Services (€.9., L0gzeq)_time implementation: The bulk of this project
Event a_nd Naming _Serwces) are not considered in O%onsists of porting the existing version of OSS¢E t
current implementation. the C64 platform. The original OSSIE runs on an
x86 platform running Linux as OS with omniORB as
middleware.

b LB As with any other software project, development
tools play a very important role. We use Code
Composer Studio (CCS), an integrated development
environment for TI DSPs, with version 6.0.8 of@sde
Generation Tools. This particular version lacks the
Standard Template Library (STL) and has limited

DSPBIOS —SH API support for C++ exceptions. The STL provides tetgpla

classes such as Vector, widely used in the original
OSSIE. In the absence of exception support, we use

m‘ CORBA Environment variables coupled with a set of
macros, distributed as part of ORBExpress DSP, for

error handling purpose. These characteristics iegbos

Fig. 1: Software structure significant changes in the original OSSIE sourageco
430

OSSIE for DSP
SCA Core Framewoik

Am. J. Engg. & Applied Sci., 4 (3): 429-434, 2011

Host node (domain) Remote node (device) propose this approach to stress our implementatiwh
DomainManager DeviceManager evaluate the degree of flexibility delivered by it.
_ | FilaMgr | application Device 5 Proposed XM L_ domain_profile p_arsing strategy: The _
g | g SCA specification requires parsing of the XML Domai
% | ApplicationFactory LoadableDevice “ Profile at runtime to obtain deployment and
: : configuration information (Potter, 2010). For exdeip
ResourceFactory Executabledevice the ApplicationFactory interface must read a Sofeva
Assembly Descriptor (SAD) file in order to know wha
Fig. 2: Processing node deployment scheme components are included in a given waveform

application and their connections. Parsing an Xl f

is a complicated task for a DSP and there are ramtym
tools available to perform this. In order to faete
development, reduce memory requirements and speed
execution, we developed a two-step parsing scheme
designed to facilitate Domain Profile parsing by th
DSP. In this scheme, an offline translation of XL

files into a simplified proposed format is perfomne
The proposed simplified format only keeps the most
important information from the profile files anases it

in a simple text file. The information kept inclwall

the data required for successful deployment and

An important aspect in the development of thisconfiguration of waveforms and components: UUIDs,

project is the lack of a Memory Management Unijtdescriptors locations, connections. , .
(MMU) in the C64 (v). The MMU is responsible for The information discarded represents information

handling memory access requests. It takes care &0ot indispensable for waveform deployment and
vitual memory management, paging, memoryOPeration: descriptions, headers, authors. Evengtino

protection and bus arbitration. Its job is to takeces the discardeql information is important and therefor
of dispersed physical memory and present themeo thMust be provided when developing an SCA component,
requesting process as a contiguous block. In pg)rtinthe main framework functlonallty does not re_qutr&)r _
OSSIE to the MMUless C64 platform, all memory Proper operation. A gr_aphlcal representation o_fs thi
management is the responsibility of the developer@PProach is shown in Fig. 3. It can be argued tiiat
Certain OS functions, such as spawning a copy ef th@Pproach is not SCA compliant. However, having this
running process i.e. child process from certaimmg tWo-step parsing strategy does not affect the desig
parent process, are not supported. Another impbrtarfycle of traditional SCA waveforms and only adde on
area in the development is the porting of all schetle extra step at mstallahon time. The savings |net|and__
tasks to the preemptive, multithreaded DSP/BIOS: Thcomplexity, along with the uncompromised portapilit
main difference from a traditional fair-share OStiat ~ Of the resulting waveforms justify this decision.eW
the active task with the highest priority will be implemented the XML translator in VB6 under
scheduled for execution; no matter how many othefVindows XP; it uses Microsoft MSXML library to
tasks are waiting, or for how long. This charastai Parse XML qomaln prof|l_e. The translator parses an
allows deterministic execution, crucial in real4im SCA compliant XML file, gathers the required
systems, but makes the developer Comp|ete|);nform§1t|on and writes the translated flle with cb4
responsible for task scheduling and priority assignt. ~ €xtension, preserving file names and directorycstmne
The functionality of the Core Framework is split @ in (Gonzalezt al., 2007a). These simplified. c64
between Host and Remote nodes. The Host nod@es.are then parsed at real time by the framework
includes an instance of DomainManager, while aunning on the C64 platform.
remote node includes an instance of DeviceManager
and other Devices. Figure 2 shows the CF interfacekile system: Our hardware platform does not have
allocated to each node. There are other possibleng-term storage capability Texas Instruments
strategies, for example having a node hosting botfherefore, only a partial file system is implemehte
DomainManager and DeviceManager, while the rest ofhis project. The host computer's hard drive ard fi
the nodes in the platforms only host Devices. Wesystem are used by the framework. This is
431

o| ML e C64 |8
9| Translaror &

| DCD. c64
| DMD. c64 -

SAD xml
DCD.xml
DMD_xml {4

Setup and mstallation time

Fig. 3: Proposed XML domain profile parsing strateg

Am. J. Engg. & Applied Sci., 4 (3): 429-434, 2011

accomplished by CCS 1/O utilities. To implement the The main goal for these applications is to vetiify
file system interfaces we relied on IO functionsnfr operation of the framework and to corroborate the
the TI run-time support library. However, the aaces feasibility of deploying SCA compliant waveformston
allowed by this library is limited primarily in tevs of the C64 platform. The first application includeseth
directory manipulation. Therefore, functionalitycbuas simple components: BPSK Modulator, AWGN Channel
mkdir, rmdir, mount and unmount is not implemented. and Demodulator as in Fig. 4. The BPSK modulator
generates a random stream of 1's and -1's. Tharstig
Softwar e component deployment: The SCA specifies passed to the Channel component which adds Gaussian
two equivalent mechanisms to launch softwarenoise to the In-Phase and Quadrature componettte of
components (Potter, 2010). One is usingstream. The Demodulator only displays the consietia
ResourceFactory and the other using ExecutableBevicdiagram of the signal. The second waveform incluales
The ExecutableDevice interface typically represent$2PSK modulator and demodulator instead of BPSK
processors with a multithreaded operating systennodulator and demodulator. Figure 5 shows a graphic
capable of launching software components.representation of the second waveform. Both wawesor
ExecutableDevice has access to the OS directives iere successfully deployed on a single chip
schedule the component. ResourceFactory perforens ti¢onfiguration using the ResourceFactory interface t
exact same functionality and is used as a locdltmo 'aunch the components.
deploy components without a DeviceManager. In this
project we use the ResourceFactory interface téoglep RESULTS
components in the host node and an ExecutableDevice .
for remote nodes. The implementation of these We present general profiling results for our

interfaces uses DSP/BIOS static task schedulerryEve'mplementat'on' The _framework capabilities are
.) : : demonstrated by switching back and forth betweem tw
time a new component instance is required, a nel ta

. waveforms. Code Composer Studio (CCS) is used to
is created and scheduled. The ResourceFactory a’l‘fmrol the execution, display information and erro

ExecutableDevice implementations are in charge Opessages and enter selection values. Keep in maid t

managing the new task’s priority. Because of thekla from the framework perspective there is no diffeeen

of an MMU and long-term storage capability, it is between deploying these simple waveforms and

necessary to have all the tasks loaded in programeploying more sophisticated ones.

memory before they can be scheduled. This mechanism

is proposed due to real time nature of the system. Profiling: Profiling was performed on the framework
and application using two different metrics: memory

Sample application: In order to demonstrate the footprint and cycle count as in (Gonzaktal., 2007a).

framework functionality, two sample applicationgar The former represents the extra memory space

developed. These applications are intended fopecessary to support the SCA framework. The latter

demonstration purposes and nothing else. No extensi FéPresents the amount of overhead imposed by the
signal processing is performed. framework in terms of processing power. All results

were obtained from a single-chip configuration. flisa
all framework and waveform components were
collocated within the same processor; they do not

P ‘ e include a transport layer. No optimizations were
—> — ‘.__Qﬁ performed in either the framework or the waveform
,| ’ A components. All performance tests were carried out

using the C6416 Device Cycle Accurate Simulator and
the Code Composer Studio profiler. It is very intpat

to emphasize that these results represent initial
measurements and are subject to further investigati
validation and optimization.

BPSK Modulator Channel Demodulator

Fig. 4: Sample BPSK application waveform

QPSK Modulator Channel Demodulator

D | ; &' & DISCUSSION

AR E—
. |) 1 4™

L Memory footprint: Memory allocation results are
obtained from the .MAP file generated by CCS Code
Generation Tools. This file contains a mapping bf a

Fig. 5: Sample QPSK application waveform sections allocated in memory. It includes program

432

Am. J. Engg. & Applied Sci., 4 (3): 429-434, 2011

memory and data memory. All dynamic memory This approach opens the door for potentially large
allocation requests are served from a memory pool dmprovements depending on how much of the IDL
heap, which is also included in the .MAP file. All interfaces are being used Objective Interface &yste
profiling results are presented in 8-bit memory dvor This is a well understood approach, although ihas
Note that the C6416 DSP has 16M bytes of externaimplemented in this project. Another important
memory (SDRAM) besides the 1M Bytes of internalqualifier for these results is the absence of Devic
memory (IRAM). The total memory used by the systenrelated interfaces. No DeviceManager or Device
is shown in Table 1. It represents a little lesntthi% of interfaces were implemented. The methods in
the available memory in the platform. These resultDomainManager relative to Device and service
correspond to the single-chip implementation ofhbot registration and un-registration are not implemerite
BPSK and QPSK, sample waveforms. The footprint ighis project version as well. The memory requiremen
directly related to the application’s functionaland the results for the application include both BPSK and
number of components. Table 2 shows the memor®PSK components, along with Channel, Demodulator,
breakdown by major components. The .SDRAM$heafResource Factory, Assembly Controller and the user
field represents the total heap available to sdywmmic interface. The main waveform components have a very
memory allocation requests from the applicatione Th similar footprint as expected. However, the
footprint contribution from support libraries (g.g. functionality of these components is extremely demp
Generic Runtime Library, Math Library) is considiére More complex waveforms will require more memory.
under the “Other” category. Figure 6 shows a piarth The results correspond to the ORB are from an
representation of the main components’ contributmn ORBEXxpress DSP libraries' memory footprint.

the total memory allocation.

Due to space limitations, we do not break down théPerformance profilee CPU Cycle requirements are
memory footprint for each major component. Insteadgcollected for the most significant sections of the
we comment on some important aspects and state sorimeplementation. The sections profiled were domain
qualifiers for these results. In the break dowrttka initialization and waveform creation. The result® a
memory requirements for the Core Framework (CF)shown in Table 3. Domain initialization is not
we find that almost 70% of the total memory application dependant and includes the instantiatib
allocated for the CF comes from the C++ mapping oDomain Manager, ApplicationFactory and
the SCA CF IDL interfaces. ResourceFactory. Waveform creation represents the

It is important to note that the CF IDL descripgp execution of ApplicationFactory’s create (). It lindes
cf.idl file, contain all the interfaces definedtime SCA descriptor parsing, task scheduling and initialarat
CF, including some that are not used in single-and component connection. Keep in mind that
processor operation (e.g., Device, DeviceManader). waveform creation is waveform specific and these
is possible to optimize the C++ bindings of IDL results only apply to our test waveforms.
interfaces by adding more control to the IDL
compiler, enabling more selective code generation Other 10%
(e.qg., for specific interfaces generate client sbakby,

Core framework
(CF) 26%

or server skeletons only, or nothing).
.SDRAMSheap
Table 1: Total software memory allocation 26% \
Memory Type Size in bytes
Used Internal Memory (IRAM) 57,384
Used external memory (SDRAM) 1,185,110 T
Total used memory 1,242,494
Total available memory 135,266,303
Table 2: Memory breakdown and component contriloutio _ -
Allocated memory component Size in bytes sopticaion 14% ORB
Core Framework (CF) 327,748
Parsers 33,793 . i .
ORB 260,571 Fig. 6: Memory footprint summary
Application 169,028
Sub-Total 791,140 Table 3: Core framework tasks performance profile
.SDRAMS$heap 323,584 Task Cycles Time (ms) at 720 MHz
Other 127,770 Domain initialization 1,174,726 1.632
Total memory 1,242,494 Create application 5,474,664 7.604

433

Am. J. Engg. & Applied Sci., 4 (3): 429-434, 2011

CONCLUSION REFERENCES
. : . Gonzalez, C.R.A., F.M. Portelinha and J.H. Reed,
One OT the main concerqs of applying the SCAIs 2007a. Part 1: Design and implementation of an
the heavy mf_rastructur_e required to support itotder SCA core framework for a DSP platform. MMXI
to ease requirements in terms of performance, amst Military Embedded Systems. http://www.mil-
power consumption, we propose an implementation of embedded.com
the SCA Core Framework for a TI C6416 DSPGonzalez, C.R.A., F.M. Portelinha and J.H. Reed,
platform. This approach minimizes the total memory 2007b. Aguayo, G., R. Carlos, M. Francisco and H.
footprint of our complete implementation to abol® 1 Jeffrey, 2007b. Part 2: Design and implementation
MB, which represents 7.5% of the 16 MB available of an SCA core framework for a DSP platform.
. MMXI Military Embedded Systems.

mgmory in our DSP platform. Benchmarks §how that, http://www.mil-embedded.com
using OIS ORBExpress DSP ORB middlewarepotter, M., 2010JPEO JTRS Releases the Software
decreases Memory Footprint and increases Processing Communication Architecture (SCA) next draft
power compared with PrismTech's e*ORB middleware specification-press release. SCA.
(Gonzalezt al., 2007b). http://www.defenseprocurementnews.com

434

