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Abstract: Problem statement: The Software Communications Architecture (SCA) was developed 
to improve software reuse and interoperability in Software Defined Radios (SDR). There had been 
performance concerns since its conception. Arguably, the majority of the problems and inefficiencies 
associated with the SCA can be attributed to the assumption of modular distributed platforms relying on 
General Purpose Processors (GPPs) to perform all signal processing. Approach: Significant 
improvements in cost and power consumption can be obtained by utilizing specialized and more efficient 
platforms. Digital Signal Processors (DSPs) present such a platform and have been widely used in the 
communications industry. Improvements in development tools and middleware technology opened the 
possibility of fully integrating DSPs into the SCA. This approach takes advantage of the exceptional 
power, cost and performance characteristics of DSPs, while still enjoying the flexibility and portability of 
the SCA. Results: This study presents the design and implementation of an SCA Core Framework (CF) 
for a TI TMS320C6416 DSP. The framework is deployed on a C6416 Device Cycle Accurate Simulator 
and TI C6416 Development board. The SCA CF is implemented by leveraging OSSIE, an open-source 
implementation of the SCA, to support the DSP platform. OIS’s ORBExpress DSP and DSP/BIOS are 
used as the middleware and operating system, respectively. A sample waveform was developed to 
demonstrate the framework’s functionality. Benchmark results for the framework and sample 
applications are provided. Conclusion: Benchmark results show that, using OIS ORBExpress DSP ORB 
middleware has an impact for decreasing the Software Memory Footprint and increasing the System 
Performance compared with PrismTech's e*ORB middleware.  
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INTRODUCTION 
 
 The Software Communications Architecture (SCA) 
was developed by the Joint Tactical Radio System 
(JTRS) program of the US Department of Defense to 
standardize the development of Software Defined Radio 
(SDR) technology. The SCA was developed to enhance 
system flexibility and interoperability, while reducing 
development and deployment costs. Early 
implementations of SCA SDRs have struggled to meet 
performance, cost, size and power requirements. 
Arguably, many of the these problems have their origin 

in the assumption of a modular and distributed platform 
based on General Purpose Processor (GPP) to perform 
all signal processing. In order to overcome these 
problems, it is necessary to make better use of 
specialized hardware optimized for signal processing. 
Digital Signal Processors (DSPs) are specialized 
microprocessors designed specifically for real-time 
digital signal processing. However, DSPs have been 
relegated as secondary elements in the SCA, requiring a 
Hardware Abstraction Layer (HAL) for connectivity. 
Ongoing improvements in development tools and 
middleware technology allow the implementation of 
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SCA systems using only DSPs. By following this 
approach the flexibility and reusability brought by the 
SCA are complimented by the cost and power 
efficiency of DSPs. If taken to a logical extent, this 
approach could eliminate the need for a GPP on certain 
SDR implementations. In this study we present the 
design and development of an SCA implementation for 
a homogeneous TI C6416 DSP platform Texas 
Instruments. 
 
System architecture: The goal of this study is to study 
the repercussions of implementing the SCA in an 
optimized DSP platform. Therefore, we aim to 
minimize, or eliminate, the use of GPPs for this 
implementation. We leveraged the existing 
implementation of MPRG’s Open Source SCA 
Implementation: Embedded (OSSIE) (ADMIN, 2011), 
by porting it to the C64 platform. The system 
implements the SCA version 2.2 (Potter, 2010) in C++. 
Our development environment is TI Code Composer 
Studio running on a Windows PC. Most of the 
development is done using the Device Accurate 
simulator of the C6000. The final target platform is a 
C6416 board from Texas Instruments. 
 
Software architecture elements: The general software 
structure can be seen in Fig. 1, showing the three 
different components of the SCA Operational 
Environment (OE): the Core Framework (CF), ORB 
middleware and operating system. In this study we used 
OSSIE as the CF, ORBExpress DSP from Objective 
Interface Systems (OIS) as middleware and DSP/BIOS 
as Real-Time OS. All of them are available 
commercially or as open source. Services (e.g., Log, 
Event and Naming Services) are not considered in our 
current implementation.  
 

 
 
Fig. 1: Software structure 

 The DSP/BIOS is a scalable real-time multitasking 
operating system designed specifically for the TMS320 
family of DSPs Texas Instruments. It is developed and 
maintained by Texas Instruments. The DSP/BIOS is 
built in modules which allows developers to reduce the 
footprint to a minimum by only integrating the features 
that are strictly necessary for operation. It supports 
preemptive multithreaded operations thanks to a real 
time scheduler and provides memory management 
modules for low overhead dynamic memory allocation. 
The DSP/BIOS is not a Portable Operating System 
Interface (POSIX) compliant, as required by the SCA, 
forcing a slight deviation from the specifications. The 
C6000 family of processors does not include a memory 
management unit Texas instruments. 
 The ORB used in this project is OIS's ORBExpress 
DSP C++ version for DSP. It is a very optimized and 
modular implementation of minimum-CORBA as 
standardized by the Object Management Group (OMG). 
However, ORBExpress DSP supports the Extensible 
Transport Framework (ETF) which allows custom 
transport plug-ins Objective Interface Systems. 
 

MATERIALS AND METHODS 
 
Platform: The target platform for this project is the TI 
C6416 development board from Texas Instrument 
Texas Instruments. This high performance board 
contains TI TMS320C6416T DSP. The system runs at 
720 MHz and has 16 Mbytes of SDRAM memory and 1 
Mbytes of internal memory. Only DSP are used for 
signal processing and framework functionality. Single 
TI C6416 DSP is a server and client node. 
 
Real-time implementation: The bulk of this project 
consists of porting the existing version of OSSIE to 
the C64 platform. The original OSSIE runs on an 
×86 platform running Linux as OS with omniORB as 
middleware. 
  As with any other software project, development 
tools play a very important role. We use Code 
Composer Studio (CCS), an integrated development 
environment for TI DSPs, with version 6.0.8 of its Code 
Generation Tools. This particular version lacks the 
Standard Template Library (STL) and has limited 
support for C++ exceptions. The STL provides template 
classes such as Vector, widely used in the original 
OSSIE. In the absence of exception support, we use 
CORBA Environment variables coupled with a set of 
macros, distributed as part of ORBExpress DSP, for 
error handling purpose. These characteristics imposed 
significant changes in the original OSSIE source code. 
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Fig. 2: Processing node deployment scheme 
 

 
 
Fig. 3: Proposed XML domain profile parsing strategy 
 
 An important aspect in the development of this 
project is the lack of a Memory Management Unit 
(MMU) in the C64 (v). The MMU is responsible for 
handling memory access requests. It takes care of 
virtual memory management, paging, memory 
protection and bus arbitration. Its job is to take pieces 
of dispersed physical memory and present them to the 
requesting process as a contiguous block. In porting 
OSSIE to the MMUless C64 platform, all memory 
management is the responsibility of the developer. 
Certain OS functions, such as spawning a copy of the 
running process i.e. child process from certain running 
parent process, are not supported. Another important 
area in the development is the porting of all schedulable 
tasks to the preemptive, multithreaded DSP/BIOS. The 
main difference from a traditional fair-share OS is that 
the active task with the highest priority will be 
scheduled for execution; no matter how many other 
tasks are waiting, or for how long. This characteristic 
allows deterministic execution, crucial in real-time 
systems, but makes the developer completely 
responsible for task scheduling and priority assignment. 
The functionality of the Core Framework is split 
between Host and Remote nodes. The Host node 
includes an instance of DomainManager, while a 
remote node includes an instance of DeviceManager 
and other Devices. Figure 2 shows the CF interfaces 
allocated to each node. There are other possible 
strategies, for example having a node hosting both 
DomainManager and DeviceManager, while the rest of 
the nodes in the platforms only host Devices. We 

propose this approach to stress our implementation and 
evaluate the degree of flexibility delivered by it.  
 
Proposed XML domain profile parsing strategy: The 
SCA specification requires parsing of the XML Domain 
Profile at runtime to obtain deployment and 
configuration information (Potter, 2010). For example, 
the ApplicationFactory interface must read a Software 
Assembly Descriptor (SAD) file in order to know what 
components are included in a given waveform 
application and their connections. Parsing an XML file 
is a complicated task for a DSP and there are not many 
tools available to perform this. In order to facilitate 
development, reduce memory requirements and speed 
execution, we developed a two-step parsing scheme 
designed to facilitate Domain Profile parsing by the 
DSP. In this scheme, an offline translation of the XML 
files into a simplified proposed format is performed. 
The proposed simplified format only keeps the most 
important information from the profile files and stores it 
in a simple text file. The information kept includes all 
the data required for successful deployment and 
configuration of waveforms and components: UUIDs, 
descriptors locations, connections. 
 The information discarded represents information 
not indispensable for waveform deployment and 
operation: descriptions, headers, authors. Even though 
the discarded information is important and therefore 
must be provided when developing an SCA component, 
the main framework functionality does not require it for 
proper operation. A graphical representation of this 
approach is shown in Fig. 3. It can be argued that this 
approach is not SCA compliant. However, having this 
two-step parsing strategy does not affect the design 
cycle of traditional SCA waveforms and only adds one 
extra step at installation time. The savings in time and 
complexity, along with the uncompromised portability 
of the resulting waveforms justify this decision. We 
implemented the XML translator in VB6 under 
windows XP; it uses Microsoft MSXML library to 
parse XML domain profile. The translator parses an 
SCA compliant XML file, gathers the required 
information and writes the translated file with a .c64 
extension, preserving file names and directory structure 
as in (Gonzalez et al., 2007a). These simplified. c64 
files are then parsed at real time by the framework 
running on the C64 platform. 
 
File system: Our hardware platform does not have 
long-term storage capability Texas Instruments 
Therefore, only a partial file system is implemented in 
this project. The host computer’s hard drive and file 
system are used by the framework. This is 
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accomplished by CCS I/O utilities. To implement the 
file system interfaces we relied on IO functions from 
the TI run-time support library. However, the access 
allowed by this library is limited primarily in terms of 
directory manipulation. Therefore, functionality such as 
mkdir, rmdir, mount and unmount is not implemented. 
 
Software component deployment: The SCA specifies 
two equivalent mechanisms to launch software 
components (Potter, 2010). One is using 
ResourceFactory and the other using ExecutableDevice. 
The ExecutableDevice interface typically represents 
processors with a multithreaded operating system 
capable of launching software components. 
ExecutableDevice has access to the OS directives to 
schedule the component. ResourceFactory performs the 
exact same functionality and is used as a local tool to 
deploy components without a DeviceManager. In this 
project we use the ResourceFactory interface to deploy 
components in the host node and an ExecutableDevice 
for remote nodes. The implementation of these 
interfaces uses DSP/BIOS static task scheduler. Every 
time a new component instance is required, a new task 
is created and scheduled. The ResourceFactory and 
ExecutableDevice implementations are in charge of 
managing the new task’s priority. Because of the lack 
of an MMU and long-term storage capability, it is 
necessary to have all the tasks loaded in program 
memory before they can be scheduled. This mechanism 
is proposed due to real time nature of the system. 
 
Sample application: In order to demonstrate the 
framework functionality, two sample applications are 
developed. These applications are intended for 
demonstration purposes and nothing else. No extensive 
signal processing is performed.  
 

 
 
Fig. 4: Sample BPSK application waveform 
 
 

 
 
Fig. 5: Sample QPSK application waveform 

 The main goal for these applications is to verify the 
operation of the framework and to corroborate the 
feasibility of deploying SCA compliant waveforms onto 
the C64 platform. The first application includes three 
simple components: BPSK Modulator, AWGN Channel 
and Demodulator as in Fig. 4. The BPSK modulator 
generates a random stream of 1’s and -1’s. The stream is 
passed to the Channel component which adds Gaussian 
noise to the In-Phase and Quadrature components of the 
stream. The Demodulator only displays the constellation 
diagram of the signal. The second waveform includes a 
QPSK modulator and demodulator instead of BPSK 
modulator and demodulator. Figure 5 shows a graphical 
representation of the second waveform. Both waveforms 
were successfully deployed on a single chip 
configuration using the ResourceFactory interface to 
launch the components. 
 

RESULTS 
 
 We present general profiling results for our 
implementation. The framework capabilities are 
demonstrated by switching back and forth between two 
waveforms. Code Composer Studio (CCS) is used to 
control the execution, display information and error 
messages and enter selection values. Keep in mind that 
from the framework perspective there is no difference 
between deploying these simple waveforms and 
deploying more sophisticated ones. 
 
Profiling: Profiling was performed on the framework 
and application using two different metrics: memory 
footprint and cycle count as in (Gonzalez et al., 2007a). 
The former represents the extra memory space 
necessary to support the SCA framework. The latter 
represents the amount of overhead imposed by the 
framework in terms of processing power. All results 
were obtained from a single-chip configuration. That is, 
all framework and waveform components were 
collocated within the same processor; they do not 
include a transport layer. No optimizations were 
performed in either the framework or the waveform 
components. All performance tests were carried out 
using the C6416 Device Cycle Accurate Simulator and 
the Code Composer Studio profiler. It is very important 
to emphasize that these results represent initial 
measurements and are subject to further investigation, 
validation and optimization. 
 

DISCUSSION 
 
Memory footprint: Memory allocation results are 
obtained from the .MAP file generated by CCS Code 
Generation Tools. This file contains a mapping of all 
sections allocated in memory. It includes program 
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memory and data memory. All dynamic memory 
allocation requests are served from a memory pool or 
heap, which is also included in the .MAP file. All 
profiling results are presented in 8-bit memory word. 
Note that the C6416 DSP has 16M bytes of external 
memory (SDRAM) besides the 1M Bytes of internal 
memory (IRAM). The total memory used by the system 
is shown in Table 1. It represents a little less than 1% of 
the available memory in the platform. These results 
correspond to the single-chip implementation of both, 
BPSK and QPSK, sample waveforms. The footprint is 
directly related to the application’s functionality and the 
number of components. Table 2 shows the memory 
breakdown by major components. The .SDRAM$heap 
field represents the total heap available to serve dynamic 
memory allocation requests from the application. The 
footprint contribution from support libraries (e.g., 
Generic Runtime Library, Math Library) is considered 
under the “Other” category. Figure 6 shows a pie chart 
representation of the main components’ contribution to 
the total memory allocation. 
 Due to space limitations, we do not break down the 
memory footprint for each major component. Instead, 
we comment on some important aspects and state some 
qualifiers for these results. In the break down of the 
memory requirements for the Core Framework (CF) 
we find that almost 70% of the total memory 
allocated for the CF comes from the C++ mapping of 
the SCA CF IDL interfaces.  
 It is important to note that the CF IDL descriptions, 
cf.idl file, contain all the interfaces defined in the SCA 
CF, including some that are not used in single-
processor operation (e.g., Device, DeviceManager). It 
is possible to optimize the C++ bindings of IDL 
interfaces by adding more control to the IDL 
compiler, enabling more selective code generation 
(e.g., for specific interfaces generate client stub only, 
or server skeletons only, or nothing).  
 
Table 1: Total software memory allocation 
Memory Type Size in bytes 
Used Internal Memory (IRAM) 57,384 
Used external memory (SDRAM) 1,185,110 
Total used memory 1,242,494 
Total available memory 135,266,303 
 
Table 2: Memory breakdown and component contribution 
Allocated memory component Size in bytes 
Core Framework (CF) 327,748 
Parsers 33,793 
ORB 260,571 
Application 169,028 
Sub-Total 791,140 
.SDRAM$heap 323,584 
Other 127,770 
Total memory 1,242,494 

 This approach opens the door for potentially large 
improvements depending on how much of the IDL 
interfaces are being used Objective Interface Systems. 
This is a well understood approach, although it is not 
implemented in this project. Another important 
qualifier for these results is the absence of Device-
related interfaces. No DeviceManager or Device 
interfaces were implemented. The methods in 
DomainManager relative to Device and service 
registration and un-registration are not implemented in 
this project version as well. The memory requirement 
results for the application include both BPSK and 
QPSK components, along with Channel, Demodulator, 
Resource Factory, Assembly Controller and the user 
interface. The main waveform components have a very 
similar footprint as expected. However, the 
functionality of these components is extremely simple. 
More complex waveforms will require more memory. 
The results correspond to the ORB are from an 
ORBExpress DSP libraries' memory footprint. 
 
Performance profile: CPU Cycle requirements are 
collected for the most significant sections of the 
implementation. The sections profiled were domain 
initialization and waveform creation. The results are 
shown in Table 3. Domain initialization is not 
application dependant and includes the instantiation of 
Domain Manager, ApplicationFactory and 
ResourceFactory. Waveform creation represents the 
execution of ApplicationFactory’s create (). It includes 
descriptor parsing, task scheduling and initialization 
and component connection. Keep in mind that 
waveform creation is waveform specific and these 
results only apply to our test waveforms. 
 

 
 
Fig. 6: Memory footprint summary 
 
Table 3: Core framework tasks performance profile 
Task Cycles Time (ms) at 720 MHz 
Domain initialization 1,174,726 1.632 
Create application 5,474,664 7.604 
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CONCLUSION 
 
 One of the main concerns of applying the SCA is 
the heavy infrastructure required to support it. In order 
to ease requirements in terms of performance, cost and 
power consumption, we propose an implementation of 
the SCA Core Framework for a TI C6416 DSP 
platform. This approach minimizes the total memory 
footprint of our complete implementation to about 1.2 
MB, which represents 7.5% of the 16 MB available 
memory in our DSP platform. Benchmarks show that, 
using OIS ORBExpress DSP ORB middleware 
decreases Memory Footprint and increases Processing 
power compared with PrismTech's e*ORB middleware 
(Gonzalez et al., 2007b). 
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