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Abstract: Problem statement: Change detection is the process of identifyingedéhce of the state of
an object or phenomena by observing it at diffetené. Essentially, it involves the ability to quiiy
temporal effects using multi-temporal data setfrimation about change is necessary for evaluating
land cover and the management of natural resoufggstoach: A neural network model based on
both spectral and textural analysis is develop€thange detection system in this study is presented
using modified version of back-propagation-trainiatgorithm with dynamic learning rate and
momentum. Through proposed model, the two imageléffarent dates are fed into the input layer of
neural network, in addition with Variance, Skewnesal Eculedian for each image that represent
different texture measure. This leads to bettesraisnation processResults. The results showed that
the trained network with texture measures achie3% higher accuracy than that without textural
parameters.Conclusion: Adding textural parameters of satellite imagesodlgh training phase
increases the efficiently of change detection pgsecaso, it provides adequate information about the
type of changes. It also found, when using dynamamentum and learning rate, time and effort
needed to select their appropriate value is reduced
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INTRODUCTION e Change Mask Development (CMD)
e Categorical Change Extraction (CCE)
Change detection in imagery is quite useful
ge”e“'?‘”y (Radkeet al., 2.005)’ but it has.par'ucular In CMD changed and non-changed areas are
value in the remote sensing context. The aim ohgha )
detection is to find pixels in pairs of co-registr separateq b_y pre;et threshold accordlng to thetrgpec
images that correspond to real changes on the drouncharacteristic of images. There are mainly two CMD
Differences those are due to variations in thetechniques: image difference and image ratio (Singh
environment (illumination and atmospheric distarjio 1989).
or the sensor (focus and calibration) are genemafly In image difference the two spatially registered
less interest. These less interesting difference®#ien  images of time t1, t2 are subtracted pixel by pitel
pervasive, with the effect visible over the whateage. produce further image, which represents the change
The more interesting changes, on the other harel, abetween two images. In image ratio the two images
often anomalous and involve only a few pixels ie th from different dates are divided by each otherthi
image. Schaum and Stocker (1997) and Clifton (2003)ythyt is around zero in image difference (or ome i
have argued that the interesting changes_, are t?jnage ratio) then the pixel represents non-charmged,
anomalous changes and (Theiler and Perklns,.ZOO herwise the pixel represents change. Howevergthe
Hwanget al., 2008) proposed a framework that built on . : . .
are major problems associated with these technigsies

the machine learning formalism for anomaly detexttio h f ch K directly f h
but recast the problem in terms of binary clasatfon: The types of changes are unknown directly fromehes

pervasive differences versus anomalous changes. techniques and need to be identified by furthetepat

Based on the function of the current techniquesfecognition system (Singh, 1989), beside therenis
change detection is classified into two broadprevious information about the value of the thrégho

categories: (Fung and LeDrew, 1998).
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In CCE explicit categorical changes are detected Output =X wj X;
directly based on spectral gray level of the datsere , . .
are mainly three CCE techniques. _ The neuron Wlt.h the largest output is the winner.
This neuron has a final output of 1 and all othewmons
Change vector analysis (Lambin and Strahler, in the layer have an output of zero, leading that

2004): In change vector analysis a vector derived fromPifferent inpv} patterns end up fires different nem
each image pixel, with coordinates corresponding td!€Uron. So it's usually used for clustering theuinp
pixel's brightness values in the spectral compoment ata.

(RGB). If the pixel undergoes a change from 1-t2 aSupervised learning: In this mode (Windrow and

vector .describing a change can b? . defined b3f_ehr, 1990; Hush and Horne, 2003) the actual ousput
subtracting the two vectors. The decision that th neural network is compared to the desired output

change has occurred is made if t.h_e magnitude of th reviously defined). The network then adjusts its
change vector exceeds pre-specified threshold val eights, which are usually randomly set to begithyi

and the direction of the change vector contains th%o that the next iteration will produce a closertaha

mfol;Tnanrr]l abr?Ut the type Of_chan_gfes_ Ag_am ﬂ;fhm between the desired and actual output. The learning
problem that there Is no previous Information atiet process tries to minimize the current errors of all

value of the threshold. processing elements.

In change detection of digital images, the input
image is not classified into different clusters but
changed and non-changed area need to be sepamndted a
the types of changes may need to be identifiedhig
study supervised training algorithm is used using
modified Backpropagation training algorithm.

Post classification comparison: Classification is the
process of sorting pixels into a finite number of
individual classes, or categories of data, basesioome
similarity measure(Deng et al., 2008). If a pixel
satisfied a certain set of criteria, the pixel $signed to
the class that corresponds to those criteria. plusess

IS als(_) rgferred to as image segmentation. _In poséack-propagation neural networks: Artificial neural
classification comparison technique, the two images,anvorks are large networks of individual procegsin
with different date are classified separately ahd t elements that are interconnected. Figure 1 reptesen
comparison is made between two classified images. three-layer feed forward neural network, they are
designed to perform a specific pattern recognitask

by specifying their architecture (Windrow and Lehr,
1990) (the input layer, the output layer, the hidde
layers, the number of processing elements in eagdr |
and the weight of each connection). The formulatbn
&he input and output layer is determined from the
definition of the problem and the way you wantabve
this problem, the hidden layers learn to provide a
representation for the input-output pattern. Rugrihre
network consists of two phases forward and backward
Ofpasses.

Direct multi-date classification: In direct multi-date
classification technique (Warnet al., 2009), the two
images with different dates are combined togetber t
produce one single image, the classification is enaal
the output combined image. However, there ar
problems associated with these techniques nantady; t
accuracy of these techniques is critically depehde
upon the accuracy of the classification process.

Artificial neural network: A neural network is a
computational structure inspired by the study
biological neural processing. There are many dsffer
types of neural networks; from relatively simplevery
complex, just as there are many theories on how th
biological neural works. Based on the learning
algorithm used, a neural network is classified itvio
main categories:

Forward pass. The output at each neuron is calculated
gs well as the error at the output units.

Unsupervised learning: In this mode the competitive
learning (winner-take-all) strategy (Pargsial., 2004) is
used; the network consists of two layers: an ingyer

and an output layer. The inputs are fed into eairan Inputlayer]  Hidden layer | " Output layer
in the input layer and each neuron determinesutpub
according to a weighted sum formula: Fig. 1: A general three-layer backpropagation oekw
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Backward pass. The output unit error is used to update The speed of learning process is governed be the
the weights on the output units. Then the errothat learning rate value. Some researchers include$do t
hidden node is calculated (by back-propagating théraining rule to a term, momentum, which includes a
error at the output units through the hidden layarsl  proportion of the last weight change. The new fdemu
the weights on the hidden nodes will be changedgusi of weight update with momentum:

these values.

For each data pair to be learned a forward pags an Aw;(n)=ng;q +pAw (n-1)
backward pass is performed. This will be repeatest o
and over again until the error is low enough orgive MATERIALSAND METHODS
up. Backpropagation is derived by minimize the eato _ o ) )
the output units over all input patterns (deltayurhe ~ While the use of spatial information, for instance
weights that minimize the error at the output upigsr ~ Via Markov random field models (Bruzzone and Prieto
the entire input patterns are to be calculatedémsids.  2000), can improve change detection performanee, th
Let: approach here will be to concentrate on the spectra
information in the pixels. Many authors reportedttim
o = 1 many cases spectral information is not enough to
K14 gnek discriminate between different types of changesn(Va
Oort, 2007). Through this work we use derived teadtu
where, net =" w, Q : information side by side with the spectral inforinat
i to improve the accuracy of change detection namely:
o=-_1 * Mean Euclidean distance: Iron and Petersen
e e™ (1981):
Ok = Be the output of neuron k in output layer 3
O, = Be the output of neuron in hidden layer j Z{Z(xcA —xm)z}
wy = Be the weight associated with the connection  Mean Euclidean Distance 2
between neuron j and k n-1
E gives the error at the output units at outpyeda Where:
over all the input patterns: Xij» = DN value for spectral bardl and pixel (i,j) of a
multispectral image
_1 _n \ Xa = DN value for spectral band of a window’s
: Zp:[zk:(tpk %) j center pixel
n = Number of pixels in a window
Where:
t.« = The target value of the output unit k for paitp -  Variance:
o« = The actual output value of the output layer Unit
for pattern —M)?2
P P Variance = M
The weight update in the output layer equals: n-1
Nk Ok Where:
Where: x; = DN value of pixel (i,j)

n = Number of pixels in a window

O = o (1-9) (t-0
<= O (1-09 (09 M = Mean of the moving window, where:

n = Learning rate, small positive constant

The weight update equal in the hidden layer equals > x;
to: M=="—
nﬁjOi.
e Skewness.
Where:
5,=0,(1-9 )Zk:ax W Z‘(Xu - M)?"
& = (1-0) o(t-0) (n-1)(v)*"*
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Where: Learning phase: In this stage of network, the network
Xj = DN value of pixel (i,j) weights are randomly generated between (-1, 1)}lzend

n = Number of pixels in a window training process will try to adjust the weightstkat the

M = Mean of the moving window actual output come out closer to the expected outpu
V = Variance (Hush and Horne, 1993). The procedures of the ilegrn

phase are summarized as follows:
The algorithm is designed to accept any number of

digital images (eights images in our case, the twd. One of the patterns to be learned will be put @n th
original images plus variance, Euclidean and Skesne input units

for each image Fig. 2). The output of neural nekwor 2. Values of the output of hidden layers units and
represents changed image where changed and non- output layer units are calculated

changed areas are assigned to different codes, moBe The errors on the output layer units are calculated
over different types of changes and non-changes art The modified learning rule algorithm (Werntges,
included and assigned another codes. 1993) will adjust the weights leading to the output

units

Network input (problem definition): The two satellite
images with different dates plus variance, Euclidea
and Skewness for both images are fed into the mktwo
and it is expected that network will be able to
differentiate between changed and no changed areas.
The input data to the network consist of eight B&y-
level images representing Ismailia governorate. The
structure of data input to the network is to reac o
pixel from one image and the corresponding one from
another image at a time. The pixels of the wholages

are processed sequentially on a pixel-by-pixel dasi
The all images are spatially registered and scalete
range of 0-1. The whole process consists of three
phases. Firstly learning phase, in which samples of
changed and non-changed area is fed into neural
network. Secondly, execution phase, in which the tw
satellite images with different dates and auxiliary
textural images are entered to the neural network f
classification process. Finally, change extractir,
which the values of output neurons for each input
vector are assigned to different codes accordinigsto
rank. These phases are explained in Fig. 3.

Variance

Image 1

Output - . —
changed © ()
image . . .
Fig. 3: The input images to the neural network (a)

Satellite image for Ismailia governorate

acquired 2007 (b) Mean Euclidean Distance of
g

Image 2

(c) the Skewness image (d) variance image. (e)
Satellite image for Ismailia governorate
acquired 2000 (f) Mean Euclidean distance of
Fig. 2: Block diagram of change detection system (9) the Skewness image (h) variance image
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5. The errors on the hidden units are calculated

6. The weights leading into the hidden layers Wwél
adjusted

7. Steps from 1-6 are repeated for all the input
patterns

8. Steps from 1-7 are repeated until the actugdudut
is closer to desired output

Dynamic learning rate optimization: Since the
backpropagation error curve (Werntges, 1993) uguall
consists of a large amount of flat regions as wasll
extremely steep regions. So there is a great diffic
about how to choose an appropriate value of legrnin
rate and momentum. Several authors have tried to
characterize the error curves of backpropagation
networks (Hush and Horne, 2003; Werntges, 1993). It
has been found when the error curve is far from the
form of quadratic bowl, as is the case of lineaave
filter (Chenet al., 1991). They usually consist of a large
amount of flat regions as well as long and narrow
extremely steep regions. Such as, the back-proipagat
algorithm with a fixed learning rate would be low
efficient (Hush and Horne, 2003). This because the
learning rate need to be selected with high vatue t
increase the convergence time, on the other haad th
learning rate has to be kept small to prevent over-
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adjustment of the weights that may occur in thererr
curve regions with extreme steepness (Werntges3)199
This study considers straightforward modificatioh o
learning rule by dynamically adjust the learninteras
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follows: (©

If the squared errors (over the entire training setFig. 4: (@) Output error pattern produced in dyr@ami
increase by more than some set percentagfter learning rate optimization; (b) Variation of
the weights update. Then the weights update is learning rate versus number of iterations; (c)
discarded and the learning rate is multiplied by Variation of momentum versus number of
some factorp, where 0¢<1l and the momentum iterations

coefficient is set to zero

If the squared errors decrease after the weightExecution phase: The eight input images are fed to the
update, then the weights update is accepted, th@etwork one pixel from one image and the
learning rate is multiplied by some factgrwhere ~ corresponding one from the other image at a tinteaan
n>1 and the momentum coefficient is returned toset of pre-calculated weights matrix, in trainirigape,
its 0rigina| value if it was previous|y set to zero is used to calculate the output values in forward

If the squared errors increase by less thahen  direction (Riedmiller and Braun, 2003).

the weights update is ac_C(_apted then, the Iearn'n@:hange extractor: In this part the values of output
rate and momentum coefficient are unchanged  orons for each input vector are compared to each
§=4%,p=0.7,n=1.05 were used in this study. other and the order of neuron with the highest @alu
Figure 4a shows the squared error, learning ratjith respect to other neurons represent the outiiss
value and momentum value versus number of cyclesor the given input vector.

As shown in Fig. 4, learning rate tends to increase RESULTS

when the output error decreases. When the output
error increases by more than 4% the learning sate i The previously change detection system is
reduced and the momentum is eliminated. Whenmplemented using two TM satellite images represgnt
the output error increases by less than 4% thésmaila governorate acquired at 2000 and 2007, EGYP
learning rate and momentum are kept constant  to quantify the areas of land cover/land use change
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Table 1: Sample of training file used in sateliiteages

First image Second image Expected output
0.396078 0.474510 0.482353 0.019608 0.000000 .239216 10000000000
0.396078 0.450980 0.494118 0.019608 0.000000 .239Q216 01000000000
0.019608 0.000000 0.239216 0.313725 0.196078 .239Q216 00100000000
1.00000 1.000000 0.019608 1.000000 1.000000 84610 00010000000
0.619608 0.600000 0.580392 1.000000 0.819608 .376a71 00001000000
0.160784 0.611765 0.137255 0.160784 0.635294 172649 00000100000

Table 2: Definition of output classes in changedgem

Cover changes Color Area (knf)
Class 1 Water to water (no-change) ] 33.00
Class 2 Vegetation to vegetation (no-change) ] 24.91
Class 3 Sapkha to saphead (no-change) e 2.000
Class 4 Soil to soil (no-change) I 19.60
Class 5 Coastal line erosion (changes) 1 7.870
Class 6 Sand to sapkhas (Changes) [ 2.700
Class 7 Sediment (changes) | E— 0.620
Class 8 New reclaimed areas (changes) .| 8.100
Class 9 Soil changes (changes) ] 1.956
Class 10 Soil changes (changes) I 7.540
Class 11 Soil changes (changes) I 2.670

with same spectral characteristics, since usingutak
information overcome the spurious effect on change
and non-change classes.

The validation was carried out by using ground
truth information provided by the NAR$St has been
shown the proposed system achieve accuracy of 87%.
On the other hand, using neural network systemowith
using of textural information achieve accuracy 2%

CONCLUSION

As learning parameters and momentum values,
have no rules for assigning specific values fors¢he
parameters since they depend mainly on the nature o

Figure 3 shows the input images to the changéhe problem and the shape of the error curve. Tie o
detection system. During the learning phase 0.22% ovay to find out their values is by experiments.this
the whole images are learned to the system usimayyi Study it was found that, when using dynamic
encoding. Table 1 shows a sample of the trainingnomentum and learning rate optimization will reduce
vectors used in training phase. the time and effort needed to select an appropvisitee

The network architecture is set to twenty four©f learning rate and momentum.
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