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Abstract: Problem statement: A cluster of small-sized Single-Gimbal Control Moment Gyros 
(SGCMGs) is proposed as an attitude control actuator for high-speed maneuver of small satellites. 
There exists a singularity problem what is peculiar to the CMG system. Approach: This study 
presented a simple singularity avoidance steering law using the Singular Value Decomposition (SVD) 
algorithm. Results: Capability of the present steering method in singularity avoidance was 
demonstrated with numerical simulations for fixed-star tracking control of a small satellite using four 
SGCMGs. Conclusion: The proposed steering law utilizes the singular value decomposition to obtain 
singular vectors and generates the command gimbal rate that keeps the command torque in the 
direction orthogonal to the singular direction with a maximum gain. 
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INTRODUCTION 

 
 Recently, many missions using small satellites have 
been engaged, because small satellites are easier and 
faster in development than large satellites and thereby, 
they can provide increased launch opportunities. In 
development of small satellites, one of the most severe 
constraints is limited power, mass, or capacity of various 
devices. In order to perform high-speed maneuver of 
small satellites, in this study, we develop an attitude 
control system using Control Moment Gyros (CMGs). 
Small-sized CMGs installed to a small satellite can 
provide enough torque, angular momentum and slew rate 
while not increasing in power, mass, or volume. 
 In the past, CMGs have been applied to attitude 
control of large-sized space structures such as the 
international space station. However, attitude control 
with CMGs is also effective to small satellites, 
especially for high speed or large angle maneuver. 
However, there exists a singularity problem what is 
peculiar to CMGs. To solve this problem, some 
singularity avoidance techniques have been developed 
in several papers (Bedrossian et al., 1990; Ford and 
Hall, 2000; Wie et al., 2001). The authors also proposed 
a simple singularity avoidance logic for a set of four 
SGCMGs using Singular Value Decomposition (SVD) 
(Tani et al., 2004; Okubo and Tani, 2005). 

 In this study, we consider a fixed-star tracking 
control of a spacecraft using four SGCMGs and 
propose a method to solve the singularity avoidance 
problem. 
 
Dynamics of spacecraft with CMGs: We briefly 
describe the mathematical model of a system of 
redundant CMGs applied to attitude control of a rigid 
spacecraft. The Euler’s equation of motion of a rigid 
spacecraft equipped with CMGs is described by: 
 
H H 0×+ ω =ɺ  (1) 
 
Where: 

3H ∈ℜ  = The total angular momentum vector in the 
body-fixed frame 

3ω∈ℜ  = The spacecraft angular velocity vector 
 
 The notation ×ω  denotes the skew-symmetric 
matrix defined by: 
 

z y

z x

y x

0

0

0

×

 −ω ω
 ω = ω −ω 
 −ω ω 

 (2) 

 
 The total angular momentum vector H can be 
expressed as follows: 
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H = Jω + h (3) 
 
Where: 

3 3J ×∈ℜ  = The inertia matrix of the spacecraft including 
CMGs 

3h∈ℜ  = The CMG angular momentum vector 
expressed in the body-fixed frame 

 
 Substituting Eq. 3 into Eq. 1, we obtain: 
 
(J h) (J h) 0×ω + + ω ω + =ɺɺ  (4) 
 
 Equation 4 can be divided into the following two 
equations if the internal torque generated by CMGs is 
denoted as 3τ∈ℜ : 
 
J J×ω + ω ω = τɺ  (5a) 
 
h h×+ ω = −τɺ  (5b) 
 
 Thus the dynamic equation of motion of a 
spacecraft equipped with CMGs consists of the 
dynamics of the spacecraft (Eq. 5a) and the dynamics of 
the CMGs (Eq. 5b). The desired CMG angular 
momentum rate for generating the spacecraft control 
torque is given by: 
 
h T h×≡ = −τ − ωɺ  (6) 
 
 The CMG angular momentum vector h h( )= δ  is a 

function of the gimbal angle vector nδ ∈ℜ , then the 
time derivative of the angular momentum is obtain as: 
 

h d
h G

dt

∂ δ= ≡ δ
∂δ

ɺ ɺ  (7) 

 
Where: 
G = G(δ) = The 3×n Jacobian matrix 
n = The number of the CMGs 

nδ ∈ℜɺ   = The gimbal rate command and is obtained 
as: 

 
G T+δ =ɺ  (8) 

 
where, T T 1G G (GG )+ −=  is the pseudo-inverse of matrix 
G. 
 In order to describe the attitude kinematics, we 
have the following quaternion kinematic differential 
equation: 
 

z y x1 1

z x y2 2

y x z3 3

x y z4 4

0q q

0q q1
0q q2

0q q

ω −ω ω    
    −ω ω ω    =
    ω −ω ω
    −ω −ω −ω     

ɺ

ɺ

ɺ

ɺ

 (9) 

 
 
Fig. 1: Pyramid configuration for four SGCMGs 
 
Pyramid array of four SGCMGs: Setting n = 4, we 
consider a pyramid array of four SGCMGs as shown in 
Fig. 1, where four SGCMGs are located on the faces of 
pyramid and the gimbal axes are orthogonal to the 
pyramid faces. Each SGCMG has the same angular 
momentum and the skew angle is chosen as 

54.73(deg)β =  so that the momentum envelope becomes 
nearly spherical. The angular momentum vector h is 
given as a function of gimbal angle δ as: 
 

1 2 3 4

w 1 2 3 4

1 2 3 4

c sin cos c sin cos

h h cos c sin cos c sin

s sin s sin s sin s sin

− β δ − δ + β δ + δ 
 = δ − β δ − δ + β δ 
 β δ + β δ + β δ + β δ 

 (10) 

 
where, hw is the angular momentum of a wheel, 
c cosβ = β  and s sinβ = β  and the Jacobian matrix G is 
given by: 
 

1 2 3 4

w 1 2 3 4

1 2 3 4

c cos sin c cos sin

G h sin c cos sin c cos

s cos s cos s cos s cos

− β δ δ β δ − δ 
 = − δ − β δ δ β δ 
 β δ β δ β δ β δ 

 (11) 

 
MATERIALS AND METHDOS 

 
Singularity avoidance using SVD: A singularity is 
encountered when there exists some direction for which 
the array of CMGs is not capable of producing torque. 
This phenomenon occurs when the gimbal angles of 
CMGs become some specific arrangement. The 3×4 
Jacobian matrix G is a function of the gimbal angles, as 
shown in Eq. 11 and it has the maximum rank of 3. 
When rank(G) 2= , Eq. 11 deteriorates, where all 
column vectors of Jacobian matrix G become coplanar 
and there exists a unit vector us orthogonal to that 
coplanar plane; i.e.: 



Am. J. Engg. & Applied Sci., 3 (1): 49-55, 2010 
 

51 

T
sG u 0=  (12) 

 
 Therefore, the CMG system cannot produce any 
momentum along the direction of singular vector us. 
 In this study, we propose a method of singularity 
avoidance that uses the singular value decomposition to 
obtain the singular direction and output the torque 
orthogonal to the singular direction for fast singularity 
avoidance. 
 First, we consider the singular value decomposition 
of the Jacobian matrix G. For such G, there exist 
unitary matrices 3 3U ×∈ℜ  and 4 4V ×∈ℜ  such that 

T
3U U I=  and T

4V V I=  and: 

 
TG U V= Σ  (13) 

 
where: 
 

1

2

3

0 0 0

0 0 0

0 0 0

σ 
 Σ = σ 
 σ 

 (14) 

 
 The positive numbers, 1 2 3 0σ ≥ σ ≥ σ ≥ , are called 

singular values of matrix G. 
 From Eq. 13, for 1≤i≤3, we have: 
 

T T T 2
i i i(GG )U U( ) or (GG )u u= ΣΣ = σ  (15a) 

 
T T T 2

i i i(G G)V V( ) or (G G)v v= Σ Σ = σ  (15b) 

  
and T

4(G G)v 0= , where: 

 
[ ]1 2 3U u u u=  (16a) 

 
[ ]1 2 3 4V v v v v=  (16b) 

 
 The column vector ui and vi are the left and right 
singular vectors of matrix G, respectively. The pseudo 
inverse of matrix G can be expanded with Eq. 13 in 
terms of the singular vectors ui and vi as follows: 
 

TG V U+ += Σ  (17) 
 
Where: 
 

1

2

3

1 / 0 0

0 1 / 0

0 0 1 /

0 0 0

+

σ 
 σ Σ =
 σ
 
 

 (18) 

 Therefore, the pseudo-inverse steering law in Eq. 8 
can be written as follows: 
 

3
T

i i
i 1 i

1
G T v u T+

=

 
δ = =  σ 

∑ɺ  (19) 

 
 If σi is zero in a singularity, the gimbal rate 
command diverges to the infinity. The singularity 
robust steering law (SR steering law) is a method to 
avoid such a singularity (Wie et al., 2001). In this 
method, the gimbal rate command is given by the 
following equation: 
 

#G Tδ =ɺ  (20) 
 
where, G# is called the SR inverse given by: 
 

# T T 1G G (GG I)−= + λ  (21) 
 
and λ is a constant positive scalar to be properly 
selected. Note that: 
 

# # TG V U= Σ  (22) 
 
where: 
 

2
1 1

2
# 2 2

2
3 3

/ ( ) 0 0

0 / ( ) 0

0 0 / ( )

0 0 0

 σ σ + λ
 σ σ + λ Σ =
 σ σ + λ
 
  

 (23) 

 
 At a singular point with rank(G) 2=  and σ3 = 0, 
vectors u3 and v3 represent the singular torque and the 
singular gimbal rate direction, respectively. Then: 
 

2
Ti

i i2
i 1 i

v u T
=

 σδ =  σ + λ 
∑ɺ  (24) 

 
 Now, we introduce an evaluation function for 
indicating that the system is approaching to a 
singularity. The following singularity parameter κ is 
defined as an index of the degree of singularity: 
 

1

3

σκ ≡
σ

 (25) 

 
where, σ1 and σ3 are the maximum and the minimum 
singular value of matrix G, respectively. The value of κ 
increases, as the gimbal angles approaches to a singular 
point with σ3 being a very small value. In this study, we 
propose the following steering law: 
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3
Ti

i i SA 12
i 1 i

v u T k SW( )v
=

 σδ = + κ σ + λ 
∑ɺ  (26) 

 
where, SW(κ) is a switching function defined as: 
 

d

d

1
SW( ) 1

2

 κ − κκ = +  κ − κ 
 (27) 

 
 The first term in Eq. 26 is the same as the SR 
steering law in Eq. 20 and the second term is added to 
escape from the singularities. When κ is smaller than 
κd, the switching function SW(κ) = 0 and the proposed 
steering law in Eq. 26 reduces to the conventional SR 
steering law in Eq. 20. 
 
Fixed star tracking attitude control: We consider 
fixed-star tracking attitude control of a spacecraft. 
Suppose that there are two fixed stars in the inertial 
frame as shown in Fig. 2. The line-of-sight vector of the 
remote sensor is aligned along z axis of the body-fixed 
frame. 
 A coordinate transformation matrix C from the 
inertial frame to the body-fixed frame is defined as: 
 

cos 0 sin

C sin sin cos sin cos

cos sin sin cos cos

θ − θ 
 = φ θ φ ϕ θ 
 φ θ − φ ϕ θ 

 (28) 

 
where, φ and θ are the Euler angle about x axis and y 
axis of the body-fixed frame, respectively. The direction 
vector of star i, for i = a,b in the body-fixed frame is 

defined as 
Tb b b b

i i1 i2 i3s s ,s ,s =   . 

 

 
 
Fig. 2: Configuration of two fixed-stars 

 Therefore, we obtain: 
 

b
i1

b
i2

b
i3

s 0 sin

s C 0 sin cos

s 1 cos cos

  − θ   
     = = φ θ     
     φ θ    

 (29) 

 
 From Eq. 29, θ and φ are calculated as: 
 

( )b
i1asin sθ = −  (30a) 

 
b b

i2 i3s s
atan2 ,

cos cos

 
φ =  θ θ 

 (30b) 

 
 A PD controller is designed as follows: 
 

x

p d y

z

K K

0

φ ω   
   τ = − θ − ω   
   ω   

 (31) 

 
where 3 3

pK ×∈ℜ , 3 3
dK ×∈ℜ  are the gain matrices. 

 
RESULTS AND DISCUSSION 

 
Numerical simulation: We show a numerical example 
of the tracking control for two fixed stars, star a and 
star b. The spacecraft parameters, the initial condition 
and the control gain are given in Table 1. The direction 
vectors of two fixed stars in the inertial frame are given 
as: 
 
sa = [0, 0, 1]T, sb = [0, 0, -1]T (32) 
 
 In this study, the constant positive scalar λ in (Wie 
et al., 2001) is chosen as: 
 

( )T0.01exp 10det(GG )λ = −  (33) 

 
Table 1: Numerical simulation data 
Symbol Value Units 
J diag[10, 9, 8] Kgm2 
hw 0.5 Nms 
ω0 [0, 0, 0]T deg sec−1 
δ0 [0, 0, 0, 0]T deg 

0δɺ  [0, 0, 0, 0]T rad sec−1 

max
δɺ  1 rad sec−1 

β 54.73 deg 
kSA 0.01 - 
κd 4.0 - 
Kp diag[5, 4.5, 4] - 
Kd diag[20, 18, 16] - 
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 (a) (b) 
 

   
 (c) (d) 
 

   
 (e) (f) 

 
Fig. 3: Simulation result: SR steering law 

 
 A simulation result of the tracking control with 
the conventional SR steering law in Eq. 20 is shown in 
Fig.  3  and  that with the  proposed  steering law in 
Eq. 26 is shown in Fig. 4. In Fig. 3 and 4, (a) shows 
the direction angle; (b) the spacecraft angular velocity; 
(c) the gimbal rate; (d) the gimbal angle; (e) the 
angular momentum of SGCMGs and (f) the 
singularity parameter κ. In Fig. 3a and 4a, the 
direction angle is given as the angle between z axis 
(LOS) of the  body-fixed frame and the line 

connecting two fixed stars, star a and star b in the 
inertial frame. 
 In Fig. 3 associated with the SR steering law in 
Eq. 20, the tracking control of star a and b is completed 
in about 150 sec. The CMG system encounters the 
internal  singularity of δ = [270, 0, 90, 0]T deg at about 
2 sec. The fixed star a is tracked in about 75 sec.  
 Similarly, the singularity of δ = [90, 0, 270, 0]T deg 
is encountered at about 77 sec. The fixed star b is 
tracked in about 150 sec.  
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 (a) (b) 

 

 
 (c) (d) 

 

   
 (e) (f) 

 
Fig. 4: Simulation result: proposed steering law 

 
 In Fig. 4 associated with the proposed steering 
law in Eq. 26, a singularity is also encountered at 
about 2 sec, where the CMG system is avoiding the 
singularity by the output torque in the direction 
perpendicular to the singular direction. For this 
reason, the maximum output angular momentum of 
the CMG system is about 1.56 Nms in the case of the 
proposed steering law in Eq. 26, whereas it is only 
about 0.56 Nms when the SR steering law in Eq. 20 is 
applied.   

The result of the numerical simulation demonstrates 
the advantage of the proposed method in singularity 
avoidance over the conventional SR steering law. The 
SR algorithm simply utilizes an artificially perturbed 
command torque in order to avoid the singularity, 
whereas the present method efficiently generates the 
command torque in the direction orthogonal to the 
singular direction with a maximum gain to escape from 
the singular point rapidly.  
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CONCLUSION 
 
 In this study, a cluster of four SGCMGs in pyramid 
configuration has been studied for fixed-star tracking 
control of a small satellite. A new and simple steering 
law for singularity avoidance has been proposed. The 
proposed method utilizes the SVD to obtain the singular 
vector and generates the command gimbal rate that 
keeps the command torque in the direction orthogonal 
to the singular direction with a maximum gain. A 
numerical example of the fixed-star tracking control has 
been demonstrated to show the advantage of the 
proposed method over the conventional SR steering 
law. 
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