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Abstract: Problem statement: A cluster of small-sized Single-Gimbal Control MameGyros
(SGCMGs) is proposed as an attitude control actuiato high-speed maneuver of small satellites.
There exists a singularity problem what is pecutarthe CMG systemApproach: This study
presented a simple singularity avoidance steedmgusing the Singular Value Decomposition (SVD)
algorithm. Results. Capability of the present steering method in siagly avoidance was
demonstrated with numerical simulations for fixedrgracking control of a small satellite using fou
SGCMGs.Conclusion: The proposed steering law utilizes the singuldmeva@lecomposition to obtain
singular vectors and generates the command gindial that keeps the command torque in the
direction orthogonal to the singular direction wéttmaximum gain.
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INTRODUCTION In this study, we consider a fixed-star tracking
control of a spacecraft using four SGCMGs and
Recently, many missions using small satellitesshavpropose a method to solve the singularity avoidance
been engaged, because small satellites are eamler goroblem.
faster in development than large satellites andebhe
they can provide increased launch opportunities. IPPynamics of spacecraft with CMGs: We briefly
development of small satellites, one of the moseige  describe the mathematical model of a system of
constraints is limited power, mass, or capacityafous redundant CMGs applied to attitude control of adrig

devices. In order to perform high-speed maneuver ofPacecraft. The Euler's equation of motion of.aidrig
small satelites, in this study, we develop antate SPacecraft equipped with CMGs is described by:

control system using Control Moment Gyros (CMGs). .
Small-sized CMGs installed to a small satellite cant+®@H=0 (1)
provide enough torque, angular momentum and sléav ra
while not increasing in power, mass, or volume. Where: .
In the past, CMGs have been applied to attituge" 0 0° = The tgtal angular momentum vector in the
control of large-sized space structures such as the body-fixed frame .
international space station. However, attitude mont ®@DD0° = The spacecraft angular velocity vector
with CMGs is also effective to small satellites,
especially for high speed or large angle maneuver. The notation o denotes the skew-symmetric
However, there exists a singularity problem what ismatrix defined by:
peculiar to CMGs. To solve this problem, some

singularity avoidance techniques have been devdlope 0 -0
in several papers (Bedrossiahal., 1990; Ford and «'=| w, 0 - (2)
Hall, 2000; Wieet al., 2001). The authors also proposed -0, ® 0

a simple singularity avoidance logic for a set ofirf

SGCMGs using Singular Value Decomposition (SVD)  The total angular momentum vector H can be
(Tani et al., 2004; Okubo and Tani, 2005). expressed as follows:
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H=Xo+h 3) Z axis
Where:
JOO%*3 = The inertia matrix of the spacecraft including

CMGs
hOO® = The CMG angular momentum vector
expressed in the body-fixed frame

y axis

Substituting Eq. 3 into Eq. 1, we obtain;

(Jo+ h)+ o (do+ h)= C (4)

Equation 4 can be divided into the following two
equations if the internal torque generated by CNKGs

denoted ag003: X axis
Jo+t W do=T1 (5a) Fig. 1: Pyramid configuration for four SGCMGs
h+wh=-1 (5b)  Pyramid array of four SGCMGs: Setting n = 4, we

) _ ) consider a pyramid array of four SGCMGs as shown in

Thus the dynamic equation of motion of afig. 1, where four SGCMGs are located on the fafes
spacecraft equipped with CMGs consists of thepyramid and the gimbal axes are orthogonal to the
dynamics of the spacecraft (Eq. 5a) and the dyr@ofic pyramid faces. Each SGCMG has the same angular
the CMGs (Eqg. 5b). The desired CMG angularmomentum and the skew angle is chosen as
momentum rate for generating the spacecraft controf =54 73(deg so that the momentum envelope becomes

torque is given by: nearly spherical. The angular momentum vector h is
h=T=-1-uh (6) given as a function of gimbal angleas:

The CMG angular momentum vectbe h@) is a —cBsind, - cod, + § sid,+ co,
function of the gimbal angle vect&OO", then the h=h,| cod,— @ sid,~ co3;+ & sby (10)
time derivative of the angular momentum is obtain a Bsind, + $ sid, + B sid; + B sy,
h=Ohd_ (7) Where, b is the angular momentum of a wheel,

0% dt cf=co and sp=sinB and the Jacobian matrix G is
Where: given by:
G=GQ) i Tue 3n ngcob:ca?1 matrix ~cf cosd, Sird, f cos, - sid,
gmm = Ihe ”f”"b i‘r Ott eCMGSd G obtaneg®= M| TS ~@cos,  sib, @] (1)

" = The gimbal rate command and is obtaine

ae 9 $cod, B cos, [ cds Ps abs

5=G'T @) MATERIALSAND METHDOS

Singularity avoidance using SVD: A singularity is
encountered when there exists some direction factwh
G. . ) . . the array of CMGs is not capable of producing terqu
In order to describe the attitude kinematics, weThjs phenomenon occurs when the gimbal angles of
have the following quaternion kinematic differehtia ~\pGs pecome some specific arrangement. Thé 3
equation: Jacobian matrix G is a function of the gimbal anghs
shown in Eg. 11 and it has the maximum rank of 3.
When rank(G)= 2, Eq. 11 deteriorates, where all
9) column vectors of Jacobian matrix G become coplanar
and there exists a unit vectog arthogonal to that
s R T T, a, coplanar plane; i.e.:
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G'u,=0 (12) Therefore, the pseudo-inverse steering law in8q.
can be written as follows:

Therefore, the CMG system cannot produce any
momentum along the direction of singular vector u 5=G'T :i[lj\/‘ uTT (19)
In this study, we propose a method of singularity =\lo )"
avoidance that uses the singular value decompnositio
obtain the singular direction and output the torque

orthogonal to the singular direction for fast sikagiy command diverges to the infinity. The singularity

avoidgnce. . : ... robust steering law (SR steering law) is a method t
First, we consider the singular value decompasitio 5\ iq such a singularity (Wiet al., 2001). In this

of_the Jacob_u’;m matrix G. For such G, there eX'SPnethod, the gimbal rate command is given by the
unitary matrices UDOO%® and vOO** such that following equation:

U'u=1, and V'V =I, and:

If o; is zero in a singularity, the gimbal rate

5=G'T (20)
G=UzV' (13)
where, G is called the SR inverse given by:
where:
G'=G (GG +AI)* (21)
oo 0 0 O
=0 g, 0 O (14) and A is a constant positive scalar to be properly
0 0 o, O selected. Note that:
G* = vz*UT (22)

The positive numbersg, >0,>0,>0, are called
singular values of matrix G. where:
From Eq. 13, for 4i<3, we have:

0,/ (02 +)) 0 0
(GGT)U: U(ZZT) or (GGT )l.‘l :0'i2 u (153) . 0 o, /(0.22 +2) 0 (23)
- 0 0 0,/ ©2+\)
(G'G)V=V(E'S) or (G'G)v =0y (15b) 0 0 0
and (G'G)y, = 0, where: At a singular point withrank(G)= 2 and a3 = 0,
vectors y and ¢ represent the singular torque and the
U=[u u, u (16a) singular gimbal rate direction, respectively. Then:
2

V= 16b 5= 9 u’

[Vl V, V, V4] ( ) ) ;[0i2+AjVIU| T (24)

The column vector;and v are the left and right Now, we introduce an evaluation function for

singular vectors of matrix G, respectively. The yzke indicating that the system is approaching to a

inverse of matrix G can be expanded with Eq. 13 "singularity. The following singularity parameter is
terms of the singular vectorsand vy as follows: 9 Y- 9 9 y P

defined as an index of the degree of singularity:

G'=vz'UT a7 s
K=—L (25)
Where: Os
/s, 0 0 where,0; ando; are the maximum and the minimum
singular value of matrix G, respectively. The vahi
.| 0 1/0, © _ _ )
It= 0 0 1o (18) increases, as the gimbal angles approaches t@alain
0 0 0 8 point with s being a very small value. In this study, we

propose the following steering law:
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. & o Therefore, we obtain:
622 o VU TT + kg, SW(K)Y, (26)
o +A
s, 0 - sind
where, SWK) is a switching function defined as: s.”|=C 0]=| sinp cod (29)
S 1| | cosp co8
_1f K=Ky
SW(K)_z(K —Kq| ¥ 1} (27) From Eq. 299 andg are calculated as:
The first term in Eq. 26 is the same as the SR8=-asin(s") (30a)
steering law in Eqg. 20 and the second term is added
escape from the singularities. Whenis smaller than b b
Kq, the switching function SW¥} = 0 and the proposed (p:atan{:ozse :;ﬁ] (30b)

steering law in Eqg. 26 reduces to the conventi@&Rl

steering law in Eq. 20. ) )
A PD controller is designed as follows:

Fixed star tracking attitude control: We consider
fixed-star tracking attitude control of a spacetcraf 0 W,
Suppose that there are two fixed stars in theiaert __x |g K| w
frame as shown in Fig. 2. The line-of-sight veaibthe 0 wy
remote sensor is aligned along z axis of the bodydf ‘
frame.

A coordinate transformation matrix C from the WhereK 00O%°, K,00** are the gain matrices.
inertial frame to the body-fixed frame is defined a

(31)

p

RESULTSAND DISCUSSION

cosh 0 - sirb
C=|singsiM® co® sip cB (28)  Numerical simulation: We show a numerical example
cospsird - sinp cod cds of the tracking control for two fixed stars, staaad

star b. The spacecraft parameters, the initial itmmd
where, and® are the Euler angle about x axis and yand the control gain are given in Table 1. Theddioa

axis of the body-fixed frame, respectively. Theedtion ~ Vectors of two fixed stars in the inertial frame given
vector of star i, for i = a,b in the body-fixed fina is  &S:

: b_[ab ob ob]"
defined ass® =[ 55" 5" - %=[0.0, 1], $=[0,0, -1 (32)
ﬁ Start b In this study, the constant positive scalan (Wie
etal., 2001) is chosen as:
X axis
A =0.01exq - 10det(GG ); (33)
Roll angle ¢ Body frame
, NS —rr 1 . Table 1: Numerical simulation data
/ . ¢ Y AXiS -
L Y - 2y Symbol Value Units
b J diag[l0, 9, 8] Ko
Pitch angle hw 0.5 Nms
_ Wy [0, 0,0 deg se¢
Z axis b [0,0,0,0] deg
(LOs) &, [0, 0,0, 0 rad sect
‘S 1 rad se¢
Inertial frame e
B 54.73 deg
Ksa 0.01 -
i ! Start b ‘. 40 i
. . . . Kp diag[5, 4.5, 4] -
Fig. 2: Configuration of two fixed-stars Kg diag[20, 18, 16]
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Fig. 3: Simulation result: SR steering law

A simulation result of the tracking control with connecting two fixed stars, star a and star b i th
the conventional SR steering law in Eq. 20 is shawn inertial frame.
Fig. 3 and that with the proposed steering iaw In Fig. 3 associated with the SR steering law in
Eq. 26 is shown in Fig. 4. In Fig. 3 and 4, (a)who Eq. 20, the tracking control of star a and b is pleted
the direction angle; (b) the spacecraft angulaosigy; in about 150 sec. The CMG system encounters the
(c) the gimbal rate; (d) the gimbal angle; (e) theinternal singularity ob = [270, 0, 90, 0] deg at about
angular momentum of SGCMGs and (f) the2 sec. The fixed star a is tracked in about 75 sec.
singularity parameterk. In Fig. 3a and 4a, the Similarly, the singularity 0b = [90, 0, 270, O] deg
direction angle is given as the angle between s axiis encountered at about 77 sec. The fixed star b is
(LOS) of the body-fixed frame and the line tracked in about 150 sec.
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Fig. 4: Simulation result: proposed steering law

In Fig. 4 associated with the proposed steering The result of the numerical simulation demonstrates
law in Eq. 26, a singularity is also encountered athe advantage of the proposed method in singularity
about 2 sec, where the CMG system is avoiding theygigance over the conventional SR steering lave Th
smgularl_ty by the output torque in _the dlrect|o_n SR algorithm simply utilizes an artificially perbhed
perpendicular to_ the singular direction. For th'SFommand torque in order to avoid the singularity,

the CM’G system is about 1.56 Nms in the case of thg/hereas the presgnt methgd eﬁiciently generates th
proposed steering law in Eq. 26, whereas it is om);:_ommand torque in the direction orthogonal to the

about 0.56 Nms when the SR steering law in Eqs20 iSingular direction with a maximum gain to escaerfr
applied. the singular point rapidly.
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CONCLUSION Tani, Y., H. Okubo, H. Tokutake and H. Azuma, 2004.
Singularity robust control of redundant control
In this study, a cluster of four SGCMGs in pyramid moment gyros for small satellites. Proceeding of
configuration has been studied for fixed-star thagk the 24th International Symposium on Space
control of a small satellite. A new and simple stagp Technology and Science, 30 May-6 June, JSASS,
law for singularity avoidance has been proposedc Th Miyazaki, Japan, pp: 1-6.
proposed method utilizes the SVD to obtain theudeng Wie, B., D. Bailey and C. Heiberg, 2001. Singularit
vector and generates the command gimbal rate that robust steering logic for redundant single gimbal
keeps the command torque in the direction orthogona  control moment gyros. J. Guid. Control Dyn., 24:
to the singular direction with a maximum gain. A 865-872.
numerical example of the fixed-star tracking cohlras http://direct.bl.uk/bld/PlaceOrder.do?UIN=101943
been demonstrated to show the advantage of the 938&ETOC=RN&from=searchengine
proposed method over the conventional SR steering
law.

REFERENCES
Bedrossian, N.S., J. Paradiso, E.V. Bergmann anddell,

1990. Steering law design for redundant single-
gimbal control moment gyroscopes. J. Guid.

Control Dyn., 13: 1083-1089.
http://adsabs.harvard.edu/abs/1990JGCD...13.1083
B

Ford, K.A. and C.D. Hall, 2000. Singular direction
avoidance steering for control moment gyros. J.
Guid. Control Dyn., 23: 648-656.
http://www.aoe.vt.edu/~cdhall/papers/fordhalljgcd.
pdf

Okubo, H. and Y. Tani, 2005. Singularity robust
steering of redundant single gimbal control
moment gyros for small satellites. In: Proceeding
of the 8th International Symposium on Artificial
Intelligence, Robotics and Automation in Space,
Sept. 5-8, Munich, Germany, pp: 1-8.

55



