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Abstract: Problem statement: Many modern structures are made from thin sheltsigh of these
elements depends to a large extent on their bugklghavior which is hugely affected by the initial
geometric imperfectionsApproach: For axially compressed isotropic circular cylin@dticshells,
axisymmetric localized geometric imperfections wkrend to reduce severely the buckling strength.
Among various axisymmetric shapes of localized clsféhat were investigated, the entering triangular
form was recognized to yield the most adverse caisee multiple localized defects may be present in
the same shell structure and interact, studying timeitual effect on the buckling load is of great
importance for shell desigiResults: In this study, the effect of two interacting enteritriangular
localized axisymmetric initial geometric imperfests on shell buckling strength under uniform axial
compression was modeled by means of the finite @¢method. A special software package which
was dedicated to buckling analysis of quasi axisgtnio shells was used in order to compute the
buckling load either via the linear Euler buckliagalysis or through the full non linear iterative
procedure. A set of five factors including shedpact ratios, defect characteristics and the distan
separating the localized initial geometric impetifmes had been found to govern the buckling
problem. A statistical approach based on the Tagoaihod was used then to study their relative
influence on the buckling load reduction. It wa®wh by comparison with the single imperfection
case that further diminution of the critical loa@svobtainedConclusion/Recommendations: In the
range of investigated parameters, the distanceratapg the localized geometric imperfections and
imperfection wavelength were found to yield majaftiences on the critical load. Further studiestmus
be performed in order to assess shell bucklinghgtrein the presence of more than two defects and t
state the relative influence of the interveningdes.

Key words: Buckling, finite element method, shells, localizggometric imperfections, Taguchi
method

INTRODUCTION geometry seems to be perfect, precise measurements
enable always to detect defects having in general a
Thin shells are used in many fields such asmagnitude of the same scale order than shell te&kn
structural elements (silos, tank). Whatever the  During service life, shell structures may be
manufacturing process used for this type of stmestu subjected to various kind of loading, such as axial
the final geometry is never perfect. Defects affert compression, external/internal pressure, flexure or
the shell initial form known as geometric imperfens  torsion. For thin cylindrical shells under uniforemial
disturb the ideal desired shell geometry. Contrbl ocompression, the buckling strength constitutes ydwa
manufacturing processes of shells and theithe most adverse design issue. Calculation of the
optimization makes it certainly possible today tobuckling load as it could be affected by the preseof
decrease these imperfections, but they could nbger various kinds of initial geometric imperfections
completely eliminated since, even if at first gudlss  represents hence a crucial task. The pursued olgast
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to know how to perform shell structural design with Circumferential weld-induced imperfections were
pertinent and relevant margins of safety. found to have a great influence on buckling of thin
Several studies have been reported in the litexatu walled cylindrical shell structures. Hutchinseh al.
which deals with the effect of imperfections oressth  (1971); Amazigo and Budianski (1972) and Guetial.
buckling of thin shell structures. Arbocz and Batico (2000) investigated localized axisymmetric
(1969) have studied experimentally buckling ofimperfections and have shown that a single
cylindrical shells subjected to general imperfatsio axisymmetric imperfection is sufficient to yieldrde
They have shown that a huge reduction of the bogkli effect on buckling strength of thin shells.
critical load could be obtained. Koiter (1982) lyagen Combining shell theory with actual field
a review study about the effect of geometricimperfection measurements, Pirctetral. (2001) have
imperfections on shell buckling strength. Otherfound that three parameters governed the shapkeeof t
extensive investigations have been achieved in theurveyed weld imperfections: the amplitude (deptig),
particular field of shell buckling as it could be wavelength (width) and the roundness. This last has
influenced by initial geometric imperfections: Kait been found to have small influence in comparisoti wi
(1982); Yamaki (1984); Arbocz (1987); Bushnell the two first.
(1989); Godoy (1993) and Combescure and Galletly Using an analytical approach which is based on
(1999). They have dealt with the effect of bothArbocz equations, Arbocz (1987) and Khamliehial.
distributed and/or localized imperfections on reguc ~ (2004) have considered a parabolic localized
of the buckling load. imperfection and have obtained large reductionhef t
All the previous literature agrees on the factt tha buckling load for thin axisymmetric cylindrical she
imperfections reduce drastically the buckling loafd ~under uniform axial compression. Using finite elene
elastic cylindrical shells when subjected to axialModeling of shell buckling Mathon and Limam (2006)
compression. The obtained reduction depends howev&@s compared the relative influence of severallioea

on the nature of initial geometric imperfectionattare  ImpPerfections on reduction of the buckling load of
present in the shell structure. It has been fousal that shells subjected to axial compression or to flextte

reduction of the buckling load is, in general, morehas shown that a triangular imperfection shapethas

. L . ; most severe effect on buckling strength.
severe in case of distributed imperfections than fo ideri h bined eff i f
localized ones. Considering the combined effect resulting from

Imperfections for which maximum reduction of the localized geometric imperfections and residualsstes
buckling load is obtained could be artificial anarety Hubneret al. (2006) has recently investigated the case

h . . . of large steel cylinders with patterned welds.
ﬂlc?ig?tilr%algll;gci?c:r:hiiir:g? Eggsvét)anh?gwrr]n?ehﬂ:e%c In almost all the previous study only single
P Co o y mg geometric imperfections were considered. The olvect
never be encountered in practice in case of regllssh

Therefore, modern investigation in the filed of Ikhe Icgc;]ilzsedStilr{r?gerlfséctt?or:gvv?/iﬂ?c? taeﬁgcc;v;/héwsohélrl]tamtmg
buckling has been motivated largely by the analgéis

buckli h o h ¢ ) Istrength. The localized geometric imperfections
uckling ~strength 'in the presence of typical ,nsjdered are assumed to have an entering triangul

imperfections  obtained from modal analysis Of¢y |t was found by Mathon and Limam (2006) that
measured data or by considering realistic impeidact o entering configuration (peak of the geometric

shapes such as those resulting from welding opeati herfection is towards the shell axis of symmetry)
performed during assembling of shell parts. yields the most adverse case as to buckling stiengt
.Steel silos and tankg are constructed from plategqyction  in comparison with the outgoing
which are rolled to obtain the correct curvatured an configuration (peak of the geometric imperfectian i
subsequently welded together to form strakes. Theutwards the shell axis of symmetry). The triangula
strakes are brought together then to assemble byeometric imperfection has a shape which can be
welding the complete shell structure. At circumféi@  characterized by only tow parameters: The amplitude
welds localized geometric imperfections develope Th and the width denoted also wavelength.
welding profile can vary from one shell to anotbat a Investigation of the relative effect of the
common feature of welds is that their geometry lsan intervening factors on the shell buckling load is
characterized by a small number of parameters whicherformed following two stages. At first, the triarar
are associated to the amplitude and wavelengthetd w geometric imperfection is considered alone and then
defects. Measurements have revealed that mostihe situation where two defects having this forre ar
axisymmetric imperfections occur in shell structure interacting. In this second situation, the distance
assembled by welding, Dinget al. (1996). separating the two defects is an additional paremi&o
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these three parameters one should add the shelttasp !
parameters: Radius over thickness and length over [

thickness. Thin axisymmetric cylindrical shells reanf -— _ LA
homogeneous and isotropic elastic material are t Ld ' ¥ N
considered. They are assumed to deform under dypure R ¥ ow -
axisymmetric strain state when they are subjected t '—f >

y y ] — < ¢ N

axially uniform compressive loads. %

The objective pursued is to quantify the relative - -
influence of factors. This is performed in ordegtgess
which factor would be preferably to act on in order
enhance the shell buckling resistance.

In order to limit the total number of simulatiorss,
design of experiment method using Taguchi (1986)
approach is applied. Three levels for each of the f
intervening factors have been selected.

( 

MATERIALSAND METHODS

Shell equations corresponding to Sanders modetig. 1: Geometry of the imperfect cylindrical shell
and incorporating the effect of initial imperfect® showing two localized defects
Markus (1988), are used to analyze the effect itialn
geometric imperfections on shell buckling strenfgih
the particular case of thin circular cylindricalefib
subjected to quasi-static uniform compressive loads
variant of this model has been used by Combesade a
Galletly (1999) in order to perform finite element
modeling of shell buckling. Relevant modeling of
geometrically imperfect shell equations has theanbe . ) ;
carried out by this author who has developed Stanla 1° clarify the presentation, the following non
software package (called earlier INCA). Stanlakdsed ~dimensionalized ~ parameters —obtained form the
on an analytical expansion in terms of the circuenféal imperfect shgll factors monitoring the shell bungli
wave number and finite element modeling of axialStrength are introduced:
dependant quantities. The initial imperfections are
included in shell model formulation under thees R/tradius to thickness ratio
assumption of small perturbations to the shell getom ¢ H/R length to radius ratio

This software was validated by comparison of thes A/t defect amplitude parameter
obtained bulking results with those produced byeoth « d/Rdefect interval scale to radius ratio
commercial finite element buckling software. e K :)\/(1.72\/Et) parameter fixing the defect wave

For cylindrical axisymmetric shells undergoing
axial compression a special element designated €oqu  lengthA
was developed. It is used in the following in order
model the imperfect axisymmetric cylindrical shell RESULTS
having one or two localized geometric imperfections
Stanlax offers either a linear Euler buckling asay
mode or a full non linear iterative computationtbé
buckling load. For shells under axial compressiibn,
was shown that a linear Euler calculus is sufficien

The shell material is linear elastic having Youwng’
modulus E and Poisson’s ratio and The defects are
localized in the median zone of the shell lengthl an = )
sufficiently far from the shell ends in order tooavany 'S fixed at A/t = 1 and its wavelength At= 15 mm,
interaction with the boundary conditions. The seddc 9 2 presents the evolution of the buckling loatio
boundary conditions are those corresponding to%: /9. @s function of the number of elements waih
clamped shell ends. the actual critical load andy the classical buckling
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During the whole study the shell radius is
maintained constant at the value R = 135 mm white t
other parameters are varied. As shown in Fig. 1,
parameters t, H, A designate respectively shell
thickness, shell length, defect amplitude and dista
separating the two localized geometric imperfeation

Let's consider a single triangular geometric
imperfection located at the mid height of the slieil
which geometric and material properties are given b
R =135 mm, H = 405 mm, t = 0.09 mm, E x10'° Pa
andu = 0.3. In this case the classical buckling load is
0q = 28.23%10° Pa. When, the imperfection amplitude
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load defined ass. = E ' Atotal number of St_anlax softvyare gnables for each_ combination
o \/S(Tuz) R’ associated to a given line of the Taguchi tablg3>)
Mo compute the critical load. A total set of 27 rasival
simulations have been performed. The results arengi
in Table 2.
Subsequently Analysis Of Variance (ANOVA) has

100 elements were found sufficient to guarantee FE

model convergence. Another study on the influerfce o

the number of circumferential harmonics on FEM

results has enabled to conclude that 25 harmomes ay f d i der to determi th lati

enough to guarantee convergence in the exampl.%een performed In order fo determine ihe relative
fluence of each factor.

domonstrated that for all single o ineractig., B IMPosing the shell aspect rato Rt 0 be great

imperfection cases a total number of 300 elememtds a than 450 for th'.n shell approximation to be valithas

a total number of 30 harmonics guarantee weIIbeen shown in I.EI Bahaoui (2007) that the most

convergence of the finite element model adverse case, W'th refgards.to the shell pucklmg
) strength when considering a single entering tridangu

oo s o i 5oL, SECMENIE geometi. mperfcton, s oblaed for: Rt = 450,
P 9 H/R = 3, K = 2.5, the obtained results expressethas

determine the most severe defect characteristide as actual critical load divided by the classical catiload

the buckling load reduction, El Bahaoui (2007). 3éne R
.S . versus the parameter A/t are presented in Fig.he T
characteristics have then been used to estimate ﬂ?:%ntinuous curve gives the results associatedsiogie
effect of two interacting defects on the shell Hirak 9

load. In the following the single defect parametersdefeCt' The dashed curve gives in the same conditio

corresponding to the most adverse case are refieriasl ?r];arr:glrj?gr]zt:g?ngt?ilg?; ptggeéﬁzlrjlgs for two  intergctin
intermediate values as indicated in Table 1. Talgéeses '

also the list of parameters levels that have bee
considered in the analysis of shell buckling unther
coupling situation of localized geometric imperfens:

rllable 1: Ranges of variation of the consideredofact
Parameter K Alt R/t H/R d/R

. ] > Lower threshold 1 2.0 450 1 0.000
Lower threshold, intermediate value and higherntermediate value 2 25 1000 2 0.370
threshold. Higher threshold 3 3.0 1500 3 0.741

Based on Table 1, a parametric study regarding the
influence of two interacting defects has been cotelll  Table 2: Simulation data layout according to Taguth«(3™)
This was performed according to a design of orthogonal array
experiment method using five factors and threelgeve Simulation

for each factor such as they are given by the Thaiguc Dumber ZAIOt g/(?oo }I Rzﬁso HllR 0”(/)02”87
1 . . . . . .

table LoA(35). .The quel so considered is hence linear, 20 0.000 > 1000 5 0222

without any interaction between factors. It hasrbee 3 2.0 0.000 3 1500 3 0.213

shown a posteriori that there is no need to comsides 2.0 0.370 1 1000 3 0.240

; ; : 5 2.0 0.370 2 1500 1 0.247

mterl?ctlon between factors as the residuals arg ve ] 50 0.370 3 250 > 0.188

small. 7 2.0 0741 1 1500 2 0.229

8 2.0 0.741 2 450 3 0.261

. . . : 9 2.0 0.741 3 1000 1 0.809

05t 1 10 25 0.000 1 1000 1 0.254

11 25 0.000 2 1500 1 0.192

0al | 12 25 0.000 3 450 3 0.185

13 25 0.370 1 1500 3 0.293

o3l | 14 25 0.370 2 450 1 0.371

= 15 25 0.370 3 1000 2 0.733

B 16 25 0.741 1 450 2 0.355

voozt 1 17 25 0.741 2 1000 3 0.184

18 25 0.741 3 1500 1 0.686

o1f . 19 3.0 0.000 1 1500 1 0.223

20 3.0 0.000 2 450 2 0.165

a . ‘ ‘ . . . 21 3.0 0.000 3 1000 3 0.166

0 50 100 150 200 250 300 22 3.0 0.370 1 450 3 0.574

Nurmber of elements 23 3.0 0.370 2 1000 1 0.300

24 3.0 0.370 3 1500 2 0.135

) ) 25 3.0 0.741 1 1000 2 0.733

Fig. 2: FEM convergence as function of the numter o026 3.0 0.741 2 1500 3 0.172

elements 27 3.0 0.741 3 450 1 0.619
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Regarding the intrinsic influence of the geometric
imperfection amplitude, it is well known that this
parameter monitors to a large extent the shell gk
strength as it is shown for example in Fig. 3 ie th
range A/t O [0,3]. But, in the range of parameters
values considered here Al [2,3] this parameter has
only a reduced influence as one could notice thahf
the plateau present in the buckling curves, Fig. 3.

According to the multifactor analysis of variance
ANOVA, on can verify that the method of Taguchi
which has been applied here without taking into
account interaction between factors is well justfi
since the residuals are very small (not exceed¥y 8

Fig. 3: Comparison between a single defect and two
interacting defects

DISCUSSION

3 5 1 Studying the buckling load for the case of a sngl
BR | b P=00981 triangular entering geometric imperfection, as fiorc
3 ORE| 5t - + F=01m4 of wavelength and amplitude parameters shows always
T K : P=0.0702 that there are only small effects associated to
0370 0741 y
~ 4R % + 4 P=00191 parameters H/R and R/t in the range of thin shéls.
at 2, 3P P=07959 had been shown also that the wavelength K = 28gjie
+ ++ + the most adverse case, El Bahaoui (2007). Fiximg th
tor e imperfection wavelength at this value, the most
e e e et

-0.38

EORE:

0.0z

022

042

important parameter left in case of a single geamet
initial imperfection is the imperfection amplitudds

effect stabilizes however in the most dangerouesvail

of amplitudes A/t [2, 3] as the results show in general
the existence of a plateau in the curve giving the
buckling load o./o as function of A/t.

Fig. 4: Multifactor ANOVA diagram performed on the
five factors

The effect of two interacting geometric
imperfections is not very important when the parame Studying the buckling load for the case of two
Alt is small. But, when A/t increases (A/t>1) theot triangular entering geometric imperfections, asfiom
geometric imperfection configuration yield an ohwo of the above parameters plus the distance sepgutiin
reduction of the shell buckling strength as comgare localized defects has shown the same conclusions
with the single geometric imperfection effect. Thest  regarding the effects of shell ratio parameterg th
adverse reduction of the shell buckling loag/o imperfection amplitude and wavelength. This gives
passes from 0.20 in the case of a single defeonlp  details why it is important to analyze effect of
0.16 in the case of two interacting defects. parameter d on the buckling strength within the svor

Figure 4 presents the obtained ANOVA diagraminterval of amplitudes A/t0O [2,3]. The pursued
performed on simulation results as given in Table 2objective is to help from a practical point of view
One can notice that the relative distance betwaen t determining the ideal height for welding strakesialih
two localized defects d/R gives the lowest proligbil allows maximizing the bulking strength of shell
which is equal to 1.91%. This percentage is welblwe assembly.
the other percentages associated to the other mamai Fixing for instance the parameters: R = 135 mm,
parameters of the problem: A/t (79.69%), K (7.02%),A/t = 2, K = 2.5, R/t = 450, H/R = 3 and varyingeth
R/t (18.54%) and H/R (9.81%). This signifies thiat, distance separating the two localized imperfections
the range of parameters values investigated heenwh from d = 50-150 mm increases the reduced buckling
considering the situation of two coupled defecte t load from 0.17-0.21. The gain is significant arahc
relative distance between the two geometriceven be higher for other values of parameters.
imperfections is the most important parameter.slt i To assess these results further parametric stadées
followed by the geometric imperfection wavelengtida needed. Investigating the effect of more than two
by the shell aspect ratios. The defect amplitudetha defects and considering complete ranges of parasete
lowest influence on shell buckling loads. will be very useful.
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CONCLUSION Ding, X., R. Coleman and J.M. Rotter, 1996. Techaiq
) ) ) o for precise measurement of large-scale silos and
Numerical simulations based on the finite element  50ks. J. Survey. Eng., 122: 15-25.
method have been performed in order to quantifyl she g ganaoui, J., 2007. Buckling of thin cylindricstells:
buckling load reduction in the presence of localize analysis of the effect of a localized imperfectitm.

defects. Elastic thin cylindrical shells subjectedaxial French, Master Memory, FS Tetouan, Morocco.

compression and having one or two axisymmetricgogoy, L.A., 1993. On loads equivalent to geomatric
defects of entering triangular form have been aealy imperfections in shells. J. Eng. Mech. ASCE.
A set of five factors intervening in the problemvha 119: 186-190. ’

been considered. A parametric study according ‘Gysic, G., A. Combescuand J. F. Jullien, 2000. The

Taguchi method of design of experiment has them be influence of circumferential thickness variations o

performed in order to determine their relative uefice the buckling of cylindrical shells under external

on the shell buckling strength. _ _ pressure. Comput. Struct., 74: 461-477. DOI:
It has been shown that two interacting defeci 10.1016/S0045-7949(99)00053-X

could yield further reduction of the critical load Hibner, A., J.G. Teng and H. Saal, 2006. Buckling

comparison with the single defect case. In the eaofg behavior of large steel cylinders with patterned
parameters investigated, the distance separateguh welds. Int. J. Pressure Vessels Pip., 83: 13-26: DO
triangular geometric defects has been found to tlaee 10.1016/}.ijpvp.2005.10.003

major influence on critical load reduction. It @léwed |, ichinson. JW.. R.C. Tennyson and D.B. Muggreidg

by the defect wavelength and by the shell aspéicisra 1971. Effect of a local axisymmetric imperfection
The Qefect amplitude has the lowest influence ail sh on the buckling of a cylindrical shell under axial
buckling loads. compression. AIAA J., 9: 48-52.
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