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Abstract: Problem statement: Maximum Likelihood (ML) decoding has been applied for the uplink 
of a Multi-Carrier Code Division Multiple Access (MC-CDMA) system based on Orthogonal 
Frequency Division Multiplexing (OFDM). Multiple-Input Multiple-Output (MIMO) channel from k 
users, which moves at vehicular speed, to the Base-Station (BS) is time-varying. For time-varying 
channels, Sphere Decoding (SD) was introduced to perform ML decoding. Whereas, computational 
complexity of SD (due to a QR-factorization for each symbol), is nevertheless high. Modified SD had 
been proposed to achieve near optimum solutions that called Subspace-Sphere Decoder (SPSD). 
Approach: Proposed algorithm was based on subspace and orthogonal projection with very small 
dimensionality as robustness scheme in an iterative Multi-User Detection (MUD) and Parallel 
Interference Cancelation (PIC) method. Results: This approach had been achieved intense reduction of 
computational complexity for time-varying channel via one and more than one order of magnitude at 
channel estimation and multiuser detection respectively. Furthermore, SPSD was robustness to channel 
estimation error (about 3.8 dB) as compared to the representative counterparts in literature. 
Conclusion: Effectiveness of proposed method was demonstrated by simulations. 
  
Key words: Sphere decoding method, orthogonal projection, low complexity receiver, time variant 

channel, Multiple-Input Multiple-Output (MIMO), Multi-Carrier Code Division Multiple 
Access (MC-CDMA) 

 
INTRODUCTION 

 
 We consider the uplink of a Multi-Carrier Code-
Division Multiple Access (MC-CDMA) system based 
on Orthogonal Frequency Division Multiplexing 
(OFDM) with N subcarriers. We focus on A Multiple-
Input Multiple-Output (MIMO) multi-user system. 
Each user k∈{1, …, K},  has T transmitted antennas and 
the base-station provides with R receive antennas. The 
receiver carries out iterative Parallel Interference 
Cancelation (PIC), channel estimation and Multi-User 
Detection (MUD) jointly[1-3]. For multi-user detection a 
subspace-based sphere decoder is employed. 
 In[3], the researchers use the Sphere Decoding (SD) 
in an iterative receiver for each user independently after 
PIC is more robust to channel estimation errors than a 
Linear Minimum Mean Square Error (LMMSE) filter. 
For time-varying channels the computational 

complexity of the SD in[3], due to a QR-factorization for 
each symbol, is nevertheless high. 
 
Contribution of the paper: We model the time-varying 
channel developing a SD method. Our model allows 
improving a novel implementation of the classical SD 
technique for time-varying channels by advantage of 
Discrete Prolate Spheroidal (DPS) sequences. Our new 
algorithm allows intense reduction of computational 
complexity. In this study, the time-variant channel model 
utilizing the subspace and orthogonal projection via 
DPS sequences and the proposed detection algorithm 
are detailed as well as the computational complexity.  
 
System model: An iterative multi-user MIMO receiver 
for a MC-CDMA uplink, executing PIC followed by 
SD, related to[2-4], as well as channel model are 
presented. We define the transmit antenna t∈{1 ,…, T} 
of user k∈1, …K} using the indexing (k, t). 
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Fig. 1: Illustration of the iterative MC-CDMA receiver 
 
Multi-antenna transmitter: Let us consider the 
transmitter of user k ∈{1, …K} whereas each transmit 
antenna (k, t) with t ∈{1, …T} sends a block of M 
OFDM symbols, including l pilot symbols affording for 
channel estimation. (M-J)T data symbols are jointly 
coded, interleaved, mapped to a QPSK constellation 
and split into T blocks of length (M-J). Data symbol 
b(k, t) is spread over all N subcarriers using i, i, d spre- 
ading sequence s(k,t) ∈C

N from a QPSK constellation. 
Thus, transmit antenna (k, t) sends the OFDM symbols 
s(k,t)b(k,t)[m] for: 
 
m ∈ { }{0,...,M 1} {pilot positionsineachdata black}− −  
 
Iterative multi-antenna receiver: The iterative 
receiver structure as shown in Fig. 1. The propagation 
channel from transmit antenna (k, t) to receive antenna r 
is characterized by the frequency response 

N
(k,t)gr m ∈   ℂ  at time instant m with elements gr(k, t)[m, 

q]. The index q∈{0, …, N-1} denotes the subcarrier 
index. The related effective spreading sequence is 
defined by: 
 

r(k, t ) r (k, t)s diag(g [m])s(k, t)=ɶ  (1) 
 
 In the following, we will omit the time index m 
unless necessary, the contribution of transmit antenna 
(k, t) to the signal at receive antenna r is r,(k,t ) (k, t )s bɶ . The 

received signals from all transmit antennas of all users 
at the receive antenna r, can be expressed as follows: 
 

K T

r (k,t ) r
k 1 t 1 r (k, t)

y s b n
= =

= +∑∑ ɶ  (2) 

 
 This can be expressed in matrix notation as: 
 

r r ry s b n= +ɶ  (3) 
 

where,
N KT

r r(1,1),..., r(k,t ),..., (rK,T)s s s s × = ∈ 
ɶ ɶ ɶ ɶ ℂ , represents 

the effective spreading matrix at antenna r, 
T KT

(1,1) (k,t ) (K,T)b b ,...,b ,..b = ∈  ℂ  is entail all KT transmit-

ted symbols and nr is additive white Gaussian noise 
with zero mean and variance 2

z NIσ . 

 Denoting by T T T
1 Ry [y ,..., y ]= the vector containing 

the R received signals is now given by: 
 
y sb n= +ɶ   (4) 
 
where, T T T NR KT

1 Rs [s ,...,s ] ×= ∈ɶ ɶ ɶ ℂ represents all R effective 

spreading matrices and the noise vector n has zero 
mean with variance 2z NRIσ . 

 The contribution of user k (i.e., derivation from 
symbols b(k) = [b(k,1), …, b(k,1)]

T can be expressed as 
follows: 
 

(k ) (k) (k) (k)ˆY =s b n  +   (5) 
 
 Where:  
 

  

1(k,1) 1(k,T)
(k) NR T

r(k, t )

R(k,1) R(k,T)

s ... s

ŝ s

s ... s

×

 
  =∈ 
 
 

ɶ ɶ

ɶ⋮ ⋮ ℂ

ɶ ɶ
 (6) 

 
is the effective spreading sequences from all transmit 
antenna of user k to all receive antennas. To execute 
detection of the desirable user, removing the 
contribution of all other users (i.e.,k k≠ ) in (4), by 
accomplishing PIC: 
 

  
, , ,(k) (k ) (k ) (k )

k k k k

(k) (k) (k) (k ) (k )

y y y s b

y sb s b s b n

≠ ≠
= − = −

≈ − + ≈ +

∑ ∑ ɶɶ

ɶ ɶɶ ɶ ɶ

   (7) 

 
 The soft symbols in (k, t )b [m]ɶ and (k, t )b [m]ɶ are 

computed from the extrinsic probabilities and A 
Posteriori Probabilities (APP) respectively, equipped by 
the BCJR decoder (i.e., the (M-J) T detected symbols 
w(k, t)[m] are jointly de-mapped, de-interleaved and 
decoded using a BCJR decoder)[3,5] after detection 
using: 
 

(k, t ) (k, t )

(k, t)

1
b [m] (2EXT(c [2m]) 1)

2
1

j (2EXT(c [2m 1]) 1)
2

= −

+ + −

ɶ

 (8) 

 

(k,t ) (k, t )

(k,t )

1
b [m] (2APP(c [2m]) 1)

2
1

j (2APP(c [2m 1]) 1)
2

= −

+ + −

ɶ

 (9) 

 
 To perform MUD entangles PIC (7) for user k, we 
combine the subspace SD algorithm in order to detect 
b(k) by an appropriate iterative structure to reduce the 
computational complexity.  
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Time-variant channel model: The estimating of time-
variant frequency response gr(k,t) [m] demonstrates 
performance of the iterative receiver structure since the 
effective spreading sequence r(k, t )sɶ truthfully depends on 

the factual channel realization.  
 The maximum variation in time of the wireless 
channel is upper-bounded by maximizing normalized 
one-sided Doppler bandwidth[4]: 
 

D max s
o

vmax fc
v T

C
=   (10) 

 
Where: 
vDmax = The maximum (supported) velocity 
Ts = The OFDM symbol duration 
fc = The carrier frequency  
co = The speed of light 
 
 Time-limited snapshots of the band-limited fading 
process span a subspace with very small 
dimensionality. The same subspace is spanned by 
Discrete Prolate Spheroidal (DPS) sequences[4] {u i[m]} 
are defined as[6]: 
 

D max
M 1

i i i
l 0

sin(2 v (l m)
u [m] u [l]

(l m)

−

=

π −λ = ∑
π −

 (11) 

 
 The  sequences [ui[m]} are doubly orthogonal 
over  the  infinite  set  {-∝, .., ∝}  and  the  finite  set 
JM = {0,…,M-1}, band-limited by vDmax and 
maximally energy concentrated on JM. The Slepian 
basis function ui = (ui[m])m∈{0,…,M-1) is the time-limited 
DSP sequences. The eigenvalue λi are primped such 
that λ1 >λ2, … >λ, the time-variant frequency selective 
channel gr(k, t)[m]∈CN for the duration of a single data 
block JM = {0,…M-1} is projected onto the subspace 
spanned by linear superposition of the first D Slepian 
sequences and is approximated as: 
 

D

r(k,t) r(k, t ) r(k, t ) i
i 1

r (k, t)

ˆg [m] g [m] [i]u [m]

[m]
=

≈ = φ

= Φ ψ

∑
  (12) 

 
where, the matrix N D

r (k,t )
×Φ ∈ℂ  contains all the 

subcarrier coefficients for every subcarrier q∈{0,…,N-

1} and the vector 
T D

1 D[m] [u [m],...u [m] ψ = ∈  ℂ  for 

m∈(0,…M-1). The dimension D is order of 3-5 for 
practical issues[2,4]. Substituting (12) into (1) yields: 
 

r(k, t) r (k, t)s diag( [m])s(k, t)= Φ ψɶ   (13) 

 
 And substituting (13) into (6) can be expressed 
as (k) (k )ŝ [m]= Φ ψ

⌢
ɺ , where: 

2(k2) 2(k,t )
(k)

R (k2) 2(k,t )

NR DT

diag( )s(k,1) diag( )s(k,T)

diag( )s(k,1) diag( )s(k,T)

×

 Φ Φ
 Φ =  
 Φ Φ 

∈

⋯
⌢

⋮ ⋱ ⋮

⋯

ℂ

 

 
and 
 

DT T

[m] 0 0

[m] 0 0

0 0 [m]

×

ψ 
 ψ = ∈ 
 ψ 

ɺ ⋱ ℂ   (14) 

 
 Consequently, the received signal of user k after 
PIC given in (7) can be represented as: 
 

(k) (k) (k) (k)y [m] [m]b [m] n [m]= Φ ψ +
⌢

ɶ  (15)  
 
  The sphere decoder is developed by context of 
above equation.  
 
Sphere decoder and its modifications: The SD 
technique was introduced in[7] to perform the Maximum 
Likelihood (ML) decoding by searching over only those 
points of the lattice that lie within a hypersphere of radius 
p around the received signal[8,9]. Firstly, the ML detection 
and its low computational complexity implementation 
using SD are recalled as described in[8]. Secondly, 
utilizing the SD for MUD in the iterative MIMO 
multiuser MC-CDMA uplink as mentioned above. Then, 
we exploit the details of the subspace SD structure by 
using the model (15) to reduce the computational 
complexity for a MIMO MC-CDMA system. 
 

MATERIALS AND METHODS  
 
Maximum likelihood decoder: For convenience, we 
omit the user index k and superscripts, replaced s with 
H in Eq. 7. The resulting signal model of a MIMO 
single-user system in a flat-fading channel is given by: 
 
y = Hb + n  (16) 
 
 Suppose there are T transmit and R receive 
antennas. Denote by Tb∈ℂ  and Ry∈ℂ are the symbol 
transmitted and the received signal, respectively. Let 

R TH ×∈ℂ represent the channel matrix and Rn∈ℂ is 
additive complex white Gaussian noise with zero mean 
and variance 2

z RIσ . Indeed, components of the data 

vector b(t) (here, t∈{1,…,T} indexes the layer) are 
assumed zero-mean, statistically independent with unit 
variance and are uniformly drawn from the same 
symbol alphabet 0 A 1A {a ,...,a }−= . All quantities 

involved in (16) are either real or complex valued. In 
the complex-valued case, the noise components are 
assumed as circularly symmetric complex Gaussian. 
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 The ML detection finds the data symbol vector b in 
the discrete alphabet AT such that maximizes the 
likelihood function as follows: 
 

TTmi
b Ab A

b b arg max f (y b) arg min{ y Hb 2}
∈∈

= = = −
⌢

 (17) 

 
 To identify the ML vector, an exhaustive search is 
required. Due to the number of candidate vectors for b 
and search over AT elements, the complexity increases 
exponentially with T We attempt to find a subset of b, 
with small number of candidate vectors, in which the 
ML vector can be found with a low computational 
complexity by a SD as following. 
 
The sphere decoder algorithm: The SD have been 
introduced with small number of candidate vectors in 
order to reduce an exhaustive search in (17)[3,10,11]. This 
is achieved by considering the search into a subset C (p) 
defined as: 
 
 

2T 2C(p) {b A y Hb p }= ∈ − ≤   (18) 
 
where, p>0 is a given radius, the ML vector can be 
found in C (p) as the smallest cost: 
 

2
barg min{ y Hb }−
⌢

 (19) 
 
 The SD technique finds C(p) for a given p by 
applying the thin QR factorization (or, equivalently, 
Cholessky decomposition of the Gram matrix (G = HH 

H) of the matrix H, is unique as defined in[12]. Hence, 
we write H = QR, where R TQ ×∈ℂ is a unitary matrix 
and T TR ×∈ℂ   is  an  upper  triangular  matrix.  From 
Eq. 18, the following constraints can be derived: 
 

2 2z Rb p− ≤   (20) 
 
where, z = QHy, the error vector to be minimized is 
given by ∈ = z-Rb.  
 For t ∈{1, …, T}, define the partial vectors and the 
partial matrix as follows: 
 
 

T(t)z [z[t],...,z[R]=      (21a) 
 

T(t )b [z[t],...,z[R]=     (21b) 
 

T(t ) [t],..., [R]∈ = ∈ ∈    (21c) 
 

 
t , t t ,T

( t) (T t 1) (T t 1)

T,T

R .... R

R 0

0 0 R

− + × − +

 
 ∈ 
 
 

⋱ ⋮ ℂ   (22) 

 
 Noting that R is upper-triangular and ∈(t) can be 
written as:  

∈(t) = z(t) – R(t)b(t)  (23) 
 
and substituting (23) into (20) can be expressed as: 
 

( )
T2 2 2t2 2

i t

d(t) [i] d(t 1) [t]
=

= ∈ = ∈ = + + ∈∑  (24) 

 
where, d(t) is the partial distance, meaning that 
d(1)2>d(2)2>…>d(t)2. We denote the set of candidate 
symbols at step t, with partial distance d(t)≤p, by Ct(p). 
The Ct(p) can be found by backward recursion using 
(24), for an iterative implementation of SD. Note that if 
Ct(p) becomes an empty, there is no vector in C (p), a 
larger value of p has to be chosen (if p→∝, i.e., over 
the whole set At ) and the procedure has to be repeated. 
In this case, we have Ct (p) = AT-t+1. Then, an exhaustive 
search may be directed to find the ML vector with C (p) 
Hence, to verify C1(p) restrain at least the ZF-criterion 
given by:  
 

{ }J

21
zF

b A
b arg min R z b−

∈
= −   (25) 

 

 Consequently, the Eq. 20 becomes 
22

zF p z b= − . 

As soon as we obtain t such that d(t)2>p2 (inferring 
d(1)2>p2), we abandon all b ∈ AT having the partial b(t) 
= AT-t+1 If Ct (p) is not empty, we can build C (p) from 
Ct (p), t ∈{1,…,T}, as follows: 
 
C(p)= C1(p) × C2(p) × … × CT(p)  (26) 
 
where, × denotes the Cartesian product. After T steps 
the SD algorithm terminates. This technique can be 
demonstrated by tree-pruning in[3,8]. The distinct steps 
of the SD are shown in Table 1. For time-varying 
channels the computational complexity of the SD due to 
a QR-factorization for each symbol, is nevertheless 
high. Hence, we develop a lessened-rank low-
complexity by using the Eq. 15 and its individual 
properties, for time-variant channels based on subspace 
and orthogonal projection with very small 
dimensionality. The main results of this study are based 
on the modified subspace-sphere method. 
 
Subspace-sphere decoder combined with thin QR 
decomposition: the proposed algorithm is considered 
as an efficient detection algorithm for time-variant 
channel to reduce the computational complexity. That is 
a combination of the SD, with a subset of a vector space 
which employs the PIC at the iterative receiver scheme. 
We note that (k)Φ

⌢
 and [m]ψ  in (15), are time-invariant 

despite user dependent and time-variant during 
common to all users, respectively. Let us now 
specialize the results as mentioned above to the case of 
the time-variant channels with thin QR decomposition 
in Eq. 15, without lose of generality, we omit the 
superscript k and (k)y [m]ɶ  rewritten as: 
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y[m] [m]b[m] n[m]= Φψ +
⌢

ɶ  (27) 
 
 Using sorted QR decomposition of Φ

⌢
, we can 

write QRΦ =
⌢

, where NR DTQ ×∈ℂ  and DT DTR ×∈ℂ  are a 
unitary matrix and an upper triangular matrix, 
respectively. Following the same steps as the ML 
decoder and the SD detection, Eq. 27 and 17, can be 
expressed as: 
 

H Hz[m] Q y[m] R [m]b[m] Q n[m]= = ψ +ɶ   (28) 
 

{ }T

2

b A
b arg min z[m] R [m]b[m]

∈
= − ψ
⌢

  (29) 

 
 From Eq. 29, the following SD constraints can be 
derived: 
 

2 2z[m] R [m]b[m] p− Ψ ≤   (30) 
 
 The error vector to be minimized is given by 

z[m] R [m]b[m]∈= − ψɺ . Hence, we revise the Eq. 1-3, 21 

and 22 as follows: 
 

T(t) D(T t 1)

T(t ) T t 1

T(t ) D(T t 1)

t ,t t ,T
( t) D(T t 1) D(T t 1

T,T

z z[Dt 1) 1],...,z[DT]

b b[t],...,b[T]

[D(t 1) 1],..., [DT]

R R

R 0

0 0 R

− +

− +

− +

− − × − +

= − + ∈  

= ∈  

∈ = ∈ − + ∈ ∈  

 
 = ∈ 
 
 

ℂ

ℂ

ℂ

⋯

⋱ ⋮ ℂ

  (31) 

 
 Noting that R(t) is upper triangular whose main 
diagonal elements are upper-triangular and elsewhere 
are full and Eq. 14 becomes as: 
 

 ( t ) D(T t 1) D(T t 1

[m] 0 0

0 0

0 0 [m]

− − × − +

ψ 
 ψ = ∈ 
 ψ 

ɺ ⋱ ℂ   (32) 

 
 Then ∈(t) can be written as ( t ) ( t ) ( t) ( t ) ( t )z R b∈ = − ψɺ , the 
partial distance can be expressed as: 
 

D

2 22 (t) (t ) ( t ) ( t ) ( t )

T
2 22

i t j

d(t) z R b

[i, j] d(t 1) [t]
= ∈

= ∈ = − ψ

= ∈ = + + ∈∑∑
ℂ

 (33) 

 
 Let us now drive the subsets of the vector space z(t) 
and the elements of R(t), we obtain: 
 

T(t) D
D(t 1) 1,..., Dt

(t ) D D(t 1)
t,t tT

z z z

R R ,...,R

− +

× +

 = ∈ 

 = ∈ 

⌢
ℂ

⌢
ℂ

 (34) 

Table 1: The T steps of the SD algorithm[3] 
Step T:  For all b[T]∈A compute d(T)2 If  d(T)2≤ρ2  

 store b[T]∈Ct(ρ) 

Step τ:  For all t 1b[t 1],...b[t] C ( )
τ

++ ∈ ρ    with b[t]∈A 

compute d(t)2  

 If d(T)2≤ρ2 ∴ store tb[t],...b[T] C ( )
τ ∈ ρ    

Step 1:   For all  zb[2],...b[T] C ( )
τ ∈ ρ    with b[1]∈A 

compute d(1)2 

  If d(1)2≤ρ2 store  
T

2b[1],...b[T] C ( )∈ ρ    

 
 Accordingly, the partial distance defined by (33) 
has now the form: 
 

D

2T T22 (t ) 2 (i) (i) (i) (i)

i t i tj

2 2

d(t) [i, j] z R b

d(t 1) [t]

= =∈

= ∈ = ∈ = − ψ

= + + ∈

∑∑ ∑
ℂ

⌢⌢
ɶ

  (35) 

 
 Consequently, in order to commit the iterative 
Subspace-Sphere Decoder (SPSD) algorithm, the d(1)2 
can  be  found  by  backward  recursion and initiating at 
t = T, using (35) with applying above counterpart's 
revise in Table 1. The following, we compute 
complexity of our algorithm in terms of floating point 
operation (flop).  
 
Computational complexity: Let us here define the 
computational complexity of the various algorithms. 
That will be assessed in terms of the required number, 
as floating point operations (flops)[12]. A flop is an 
addition, subtraction, multiplication, division or square 
root operation in the real domain. Thus, one Complex 
Multiplication (CM) requires four real multiplications 
and two additions, leading to six flops. Similarly, one 
Complex Addition (CA) requires two flops. In our 
appointing, the crucial parameters are T and R (i.e., the 
size of system model), Q = A(i.e., the cardinality of 
the symbol alphabet A) and pt = Ct(p)(i.e., the number 
of candidate vectors preserved at step t ∈{1,…,T}).  
 
Complexity of the comprehensive search: We 
demonstrate the advantage of the QR decomposition by 
evaluating the computational complexity for 
comprehensive (i.e., exhaustive) search subsequent to 
QR decomposition as[3]:  
 In[12], one QR Decomposition (QRD) of size 
NR×T, possesses complexity as: 
 

2
2

QRD

2T
C 4(NR) 2NRT flops

3

 
= − + 
 

 (36) 

 
 Utilizing Comprehensive Search (CS) on the full 
matrix R TH ×∈ℂ , Without QR factorization, for all 
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possible vectors b∈AT, the computation of Hb requires 
NR×T CM and NR×(T-1) CA, proceeding to: 
 

noQRD T
csC NR(8T 2)Q flops= −   (37) 

 
Applying comprehensive search after a QR 
decomposition: In this situation, for all possible 
vectors Tb A∈ , the computation of Rb requires (here, 

T TR ×∈ℂ ), exclusively 
T(T 1)

2

+
CM and 

T(T 1)

2

+
 CA, 

proceeding to T
RDC 2T(2T 1)Q flops= + . Hence, 

 
2

QRD 2
CS QRD Rb

T

2T
C C C T(4(NR) 2NRT

3

(4T 2)Q )flops

= + = − +

+ +
  (38) 

 
Complexity of the sphere decoder: Using the SD 
algorithm which is illustrated in Table 1, we can now 
elaborate on the computational complexity utilizing an 
iterative implementation of the sphere decoder method 
by refining the derivations in[3]. We define the 
cardinality preserved at step t such that 

T t 1
t t (p)p C Q − += = . 

 We consider the computation at step t and time 
instant m (i.e., R(t)b(t)) as follows: 
 
• For all [b[t+1],…b[T]]T ∈ Ct+1(p), the computation 

requires (T-t) CM and (T-t-1) CA 
• For all b[t]∈A, the computation requires only one 

CM and one CA 
 

Therefore: 
 

T 1

SD t 1
m t 1

C 8TQ 2 p (4T 4t1)flops
−

+
=

= + −∑∑  (39) 

 
 The Total Complexity Order (TCO), for data block 
of length M-J, to account with Eq. 36, can be obtained 
a: 
 

TCO

SD SD QRDC C (m j)C= + −  (40) 
 
 To compute an upper-bound of Eq. 40, we can 
substitute pt+1 with QT-t in Eq. 39 as follows: 
 

TCO

SD SDsc QRDC SUM(C (M J)C= + −   (41) 
 
Complexity of the subspace-sphere decoder: To 
evaluate the performance of our proposed detection 
method (SPSD), the computation at step t and time 
instant m (i.e., ( t) ( t ) ( t )R bψ

⌢
ɶ ) can be acquired as follows: 

 
• The computation of ( t ) ( t )bψɺ requires, D(T-t) CM 

and D CM for all 
T

t 1b[t 1],...b[T] C (p)++ ∈   and for 

all b[t]∈A, respectively 

• The computation of ( t) ( t ) ( t )R bψ
⌢
ɶ  requires D2[T-t-

1)+D(D+1)/2 CM and D2[T-t-1)+D(D-1)/2 CA for 

all 
T

t 1b[t 1],...b[T] C (p)++ ∈    in addition D[D+1))/2 

CM and D[D-1))/2 CA for all b[t]∈A 
• One QRD of size NR × DT, possesses complexity 

as: 
 

  
2

2
QRD

2(DT)
C DT 4(NR) 2DNRT flops

3

 
= − + 

 
  (42) 

  
 Hence: 
 

( )SPSD

T 1

t 1m t 1

C 4D 2 D TQ 2D

p (1 D 4D)(T t)flops
−

+=

= + +

+ = −∑ ∑
 

 
 The TCO concerning SPSD, can be obtained as:  
 
 TCO

SPSD SPSD QRDC C C= +  (43) 
 
where, (M-J) is the data block length and CQRD is 
demonstrated in Eq. 42. 
 Consequently, we compute an upper-bound of Eq. 
43 as same as Eq. 41 as follows: 
 

TCO
SPSDsc SPSDsc QRDC C C= +  (44) 

 
RESULTS 

 
Simulation setup: We use the same simulation setup as 
in[1,3]. The realizations of the time-variant frequency 
selective fading channel hr(k, t) [n, l], sampled at the chip 
rate Rc = 1/Tc are generated utilizing an exponentially 
decaying power delay profile as: 
 

p

1

/4L 12 1/4 l

l
[l] e e

−−η = ∑  (45) 
 
 With root mean square (rms) delay spread TD = 4Tc 

≅ 1 µs for a chip rate of Rc = 3.84.106 Hz[14,15]. The 
autocorrelation for every channel tap is given by Clarke 
spectrum (e.g., resolvable paths, L = 15). The system 
operates at carrier frequency fc = 2 GHz and k∈{16, 24, 
32, 64}, users move with velocity v = 102.5 km h−1. 
According to mentioned parameters the Doppler 
bandwidth is, BD ≅ 190 Hz. The number of subcarriers 
is N = 64 and the OFDM symbol with cyclic prefix 
has length P = N + G = 79. The data block comprise of 
M = 256 OFDM symbols as well as l = 60 pilot 
symbols which results in a D≥ [2vDmaxM] + 1 ≅ 3. Due 
to investigate the diversity gain of the receiver only 
(i.e., no antenna gain) the MIMO channel taps are 
normalized as[13]: 
 

 { }2T R L

r(k,t )t 1 r 1 l 0
E h [n,l] 1

= = =
=∑ ∑ ∑   (46) 
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 All depicted results are averaged over 100 
independent channel realizations by applying the data 
transmission as a QPSK constellation[16]. Without loss 
of generality, we can assume each user applying equal 
number of transmitter and receiver antenna (i.e., T = R). 

 
DISCUSSION 

 
 To evaluate the proposed method, simulations are 
performed in tree steps.  

 
The bit error rate performance: Firstly, we compared 
the results in terms of Bit-Error-Rate (BER) versus 
SNR. We focus on the multiuser detector utilizes the 
subspace-sphere method. In Fig. 2 we illustrate the 
BER versus Eb/No for different users as well as in fully 
loaded systems (i.e., k = N = 64). The solid lines 
demonstrate the results for Perfect Channel knowledge 
(PC), while the dashed lines show the results for 
subspace-sphere Channel Estimates (CE). We also 
depict the Single User Bound (SUB), which indicates 
the BER that is achieved with one single user and 
assuming that the receiver has access to the exact 
channel knowledge (i.e., coefficients). We compare our 
results with[3], as the following:  

 
• With exact knowledge of the channel: LMMSE, 

sphere decoder and subspace-sphere multiuser 
detector exhibit to perform, respectively 

• Utilizing channel estimates, the subspace-sphere 
method adjacent to sphere decoder for identical 
iteration. Subspace-sphere detection outperforms 
LMMSE detection, which is stouter to channel 
estimation error (about 3.8 dB) 

 
The QR decomposition computational complexity: 
Secondly, we show the advantage of the QRD in term 
of flops. For instance, suppose T = R = 4, the Eq. 37 
and 38 becomes as: 

 
noQRD 6
CSC 1.97.10 flops≅   

 
QRD 6
CSC 1.06.10 flops≅  

 
 Hence, the ratio  QRD noQRD

CS CSy C / C 53.8%= ≅ , we see 

that when executing a QRD first and subsequently 
comprehensive search, which permits complexity 
reduction of a factor approximately 1.85. 

 
The global computational complexity: At the final 
step, we compared the computational complexity based 
on the number of flops required with other 
representative counterparts[3,13]. In Table 2, to exhibit an 
easy reference from our derivations, we comparison the 
analytic expressions for the total numbers of complex 
multiplications, additions required by the 
aforementioned methods. 

  
Fig. 2: BER Vs SNR with k∈16, 24, 32, 64} users for 

SPSD method 
 

  
Fig. 3: Computational complexity in flops: For 

Channel Estimation (CE) and multiuser 
detection (MUD) 

 
Table 2: Comparison of computational complexity 
Detectors Complex multiplications/additions 
LMMSE[13]  2T2(K2T/3+8N KT+N-K)(M-J) 

SD[3] T3 2
t 1t 1

[2T (2N N 1/ 3) T(8Q 2) 4 p )](M J)+=
− + + + + −∑   

SD  
T 1

t 1t 1
as wellasabove (2T 6 p )](M J)

−
+=

− + −∑  

PSD ( )
3 2 2

T t

t 1t 1

2T (2N N / D 1/ (3D )) / D [2D

4 2D)TQ p (1 D (3 4D)(T t))](M J)
−

+=

− + +

+ + + + + − −∑
  

 
 We show the computational complexity in Fig. 3 
for k = 64, T = R = 4, M = 256, J = 60 and D = 3 as 
acquired from simulations, per receiver iteration. The 
subspace-sphere method authorizes a complexity 
reduction of approximate one order of magnitude for 
channel estimation by implementing four iterations. 
Utilizing the subspace-sphere multiuser decoder for joint 
antenna detection with PIC leads to computational 
complexity reduction by more than one order of 
magnitude. This complexity reduction comes at the 
expenditure  of  a  slight  increase  of   BER  (about 0.58 
dB). Consequently, a trade-off has to be made between 
performance and computational complexity, which is 
sufficient for practical and macroeconomic issues.  
 

CONCLUSION 
 
 We have presented the subspace method applying 
sphere detection as an alternative to the LMMSE and 
classical sphere decoder for MIMO multicarrier CDMA 
systems. The subspace-sphere algorithm is proposed to 
joint time-varying channel estimation and multiuser 
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detection. To achieve high accuracy, we have been 
combined the subspace-sphere method with 
interference cancelation for every stage. We also 
defined suitable radius of searching termination. In this 
study, a low computational complexity receiver 
performing Soft Input Soft Output (SISO) channel 
decoder with BCJR algorithm are studied by a hybrid 
method that involves the extrinsic information for the 
multiuser computation and the APP for the channel 
estimation in context of additional pilot symbols. Our 
new method allows drastic computational complexity 
reduction one and more than one order of magnitude at 
the channel estimation and the multiuser detection 
respectively, that is validated by simulation results. 
Applying the subspace-sphere methods implies a slight 
loss in performance which is insignificant compared to 
the gain in computational complexity. 
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