
American J. of Engineering and Applied Sciences 2 (4): 611-619, 2009
ISSN 1941-7020
© 2009 Science Publications

Corresponding Author: Salaheddin Odeh, Department of Computer Engineering, Faculty of Engineering, Al-Quds University,
P.O. Box 20002, Abu Dies, Jerusalem, Palestine

611

Vision-Based Obstacle Avoidance of Mobile Robot Using

Quantized Spatial Model

Salaheddin Odeh, Rasha Faqeh, Laila Abu Eid and Nihal Shamasneh
Department of Computer Engineering, Faculty of Engineering, Al-Quds University,

P.O. Box 20002, Abu Dies, Jerusalem, Palestine

Abstract: Problem statement: Problem of moving a robot through unknown environment has
attracted much attention over past two decades. Such problems have several difficulties and
complexities that are unobserved, besides the ambiguity of how this can be achieved since a robot may
encounter obstacles of all forms that must be bypassed in an intelligent manner. This research had been
aimed to develop a system that was able to detect obstacles in a mobile robot's path using a single
camera as only sensory input and to achieve the target point in optimized manner. For this reason,
algorithm which took total path length and safety into account was developed. Approach: To control
movement of robot from a starting to a target point inside the site where obstacles can obstruct the way
of robot, real-time software-specially tailored for this purpose-was necessary to develop. To analyze
and to process scene images captured by a (vision) camera, camera was installed at the top over the
center of site in a way that it covered whole site through which sufficient image information could be
delivered. From sequentially captured images that was manipulated through image processing and
computer vision, the system built a representative site model, whose ingredients were gridded squares
as a result of quantized spatial plane of site and then it began planning the desired routing path.
Results: For building a robot path, less computing effort was necessary because grid information was
much easier to deal with than pixels and only a minimum amount of stored data of symbolic site model
from current and previous state was necessary. Conclusion: Using a quantized spatial domain, a less
computational effort was necessary to control movement of robot with the ability of obstacle detection
and avoidance.

Key words: Robotics, obstacle avoiding, image processing, computer vision

INTRODUCTION

 Generally, vision-based robotic systems with the
ability of obstacle detection and avoidance are
relatively complicated since extracting information
from a stream of the site images consisting of the robot
and the obstacles can be a very complex task to achieve
real-time performance with as little computing
processing as possible. The problem of moving a robot
through unknown environment has attracted much
attention over the past two decades. Although at first
glance, the problem goal sounds simple like “Move the
robot from a start position to a desired destination”,
several difficulties and complexities are unobserved,
besides the ambiguity of how this can be achieved. A
robot may encounter obstacles of all forms that must be
bypassed in an intelligent manner. Accordingly, a great
deal of our research focuses on the use of computer
vision to achieve a vision-based autonomous mobile

robotic system capable to be navigated within its
environment through logically acting on the sensed data
to avoid such obstacles. The robot tries to locate
hindering obstacles, both stationary and moveable,
plans ways to bypass these objects and, finally, acts
according to the resulted plan.
 According to Picardi et al.[1], computer vision is the
branch of artificial intelligence that focuses on
providing computers with the functions typical of
human vision. Currently, there are many computer-
vision based applications that have been produced in
fields such as: Industrial automation, robotics,
biomedicine and satellite observation of earth. Several
applications in the field of robotic systems that can
autonomously detect obstacles were developed and
implemented such as a car-like wheeled robot, in which
navigation is based on a distributed active-vision
network-space approach using fuzzy logic[2]0. The
scheme also includes trajectory tracking and obstacle

Am. J. Engg. & Applied Sci., 2 (4): 611-619, 2009

612

avoidance, where two distributed wireless charge-
coupled-device cameras individually driven by two
stepping motors are constructed to capture the dynamic
pose of the robotic system and the obstacle. In another
investigation, the MARS project[3], a rover for
exploring the Mars needs to be able to navigate
autonomously. NASA particularly had been looking
towards designing a rover to explore Mars and other
celestial bodies before men and women are sent to the
planet. One reason the rover must be intelligent is that
light takes around 28 min to travel to Mars from the
Earth and therefore real-time tele-operation[4] is out of
question. The Jet Propulsion Laboratory (JPL) team at
NASA has considered the robot vision approach to be a
good solution for detecting obstacles because it is non-
mechanical, non-scanning and compatible with
stereographic viewing by human operators. Baker et al.[5]
presented a vision-based tracking system of an outdoor
mobile robot for the purpose of street-crossing. The
system can detect and track vehicles in real time to
extract motion regions to decide safe crossing timing.
Some other robotic applications, whose main concern is
dealing with stereo vision-based obstacle detection[6],
are focused on partially sighted people. Obstacle
avoidance is a major requirement for any technological
aid aimed at helping such people, even for blinds or
children to navigate safely. A further application, which
serves impaired people, is a vision-based assistive
navigation for robotic wheelchair platforms[7]. It
presents an interesting example, where conventional
wheelchair platforms are expanded with advanced
navigational capabilities.
 This research project has been aimed at developing
a system that not only detects obstacles in a mobile
robot's path using a single camera as the only sensory
input, but it also achieves the target point in an
optimized manner. For this reason, an algorithm, which
takes the total path length and safety into account, was
developed. The implemented vision-based autonomous
mobile robotic system can be applied in an industrial
environment to move safely from one point to another
by detecting and avoiding the stationary or movable
obstacles existing in its path, which stands for a line
production in the site and so on.

MATERIALS AND METHODS

Robotic system control overview: As illustrated in
Fig. 1, the obstacle detection is carried out by software,
which analyzes and processes scene images captured by
a (vision) camera installed on the ceiling inside the site,

where the robot and the obstacles are located. The
following algorithm is the main procedure of the
control software of the robotic system in forms of
pseudo-code.

Initialization:

WHILE robot system is running
 BEGIN
 Image capturing // Result: Scene shot
 Obstacle detection // Result: Obstacle perception
 Obstacle modeling // Result: Obstacle model
 Obstacle avoidance // Result: Motion command
 END

 After building a computer model of the site with its
different objects (the robot and the obstacles), the system
starts planning the routing path that reaches from the
current point to other possible end points. The methods
and techniques used for building the model are image
processing and computer vision. The former involves
manipulating a digital image to generate a second image
that differs in some respects from the original one;
whereas the latter involves extracting numerical or
symbolic information from images[0]. One reason our
system can be seen as an autonomous and, thus, as
artificially intelligent is because of its capability to
decide the movement path to be pursued without
interfering of human pilots or operators. The robot tries
to locate obstacles, both stationary and moveable, plans
how to bypass these objects and finally acts according to
the resulted plan. According to the hindering obstacles,

Fig. 1: Principal architecture of the vision-based

autonomous mobile robotic system

Am. J. Engg. & Applied Sci., 2 (4): 611-619, 2009

613

the movement path can be either invariant or variant.
This forces us to compute and update the route
sequentially through rechecking the entire environment
or site state using a sequence of scene shots.
 In this investigation, the consideration and
solutions for realizing the vision-based autonomous
mobile robotic system leans on the following
restrictions and assumptions: Firstly, the robot moves in
the vertical (default) or the horizontal direction.
Secondly, the obstacles might be stationary or movable
with a fixed or an accelerating speed. Thirdly, the
obstacles move in the horizontal direction to the left
and right and vice versa.

Image capturing: Capturing images of the robot in its
environment is achieved by a digital colored video
camera as a visual input device, which provides the
system software with the necessary visual sensory data
for further analysis. The passive nature of the camera
implies that it has low signal interference in the
presence of other sensors, so it gives it an advantage
over other types of sensors that might be used to obtain
environmental information. A top view camera such as
the DOME camera, which delivers a view of 360° (near
bird view) is the most suitable for such kind of
applications. It can be connected to the computing
system via USB port. An image resolution of 680*480
pixels with 24 bit RGB color format is sufficient for
such kind of application to obtain the necessary
information. The computing system receives a video
stream of the site and with the help of a software timer,
only single shots from that stream are captured and then
analyzed. Among the different software packages that
are suitable to deal with digital video cameras is the
Microsoft DirectX Software Development Kit,
especially the dynamic library link “DShowNet.dll”.

Noise reduction: Before going futher, it is of great
significance if we redurce or, even, remove the noise
contained in an image. However, noise removing is
related with information loss. Most noise removal
processes are called filters that are applied to each point
in an image, the so-called convolution, by using
information in a small local window of pixels (the
mask) and then replacing the value of the center pixel
with the value determined[9]. One appropriate noise
removal is the median filter[10], which, as its name
implies, replaces the value of a pixel by the median of
the gray levels in the neighborhood of that pixel.
However, the original value of the pixel is included in
the computation of the median. Median filters are quite
popular because (for certain types of random noise)
they provide excellent noise-reduction capabilities, with

considerably less blurring than linear smoothing filters
of similar size. Order-statistics filters, to which the
median filter belongs, are nonlinear spatial filters whose
response is based on ordering or ranking the pixels
contained in the image area encompassed by the filter
and then replacing the value of the center pixel with the
value determined by the ranking result.

Obstacle and robot detection: Our approach depends
on the instantaneous global perception of obstacles and
robot positions. Distinguishing robot pixels from
background and obstacle pixels is done by using
distinguished colors for the background (green), the
robot (red) and the obstacles (blue or others). Figure 2
shows two output images, one for the obstacles and
another for the robot, are the results of applying an
extracting filter such as the Euclidean color filtering on
the original image. The Euclidean color filtering
extracts the pixels that are closed to the desired object
color (the robot or the obstacles) by using the Euclidean
distance described in formula 1), through which we can
obtain how much the color vector C1 of each pixel in
the image closes to the desired color C2. In a color
image, each pixel consists of the three color
components: Red, green and blue modeled as integer
values between 0 and 255. While 255 means full color
tense, 0 means no color at all:

2 2 2
1 2 1 2 1 2d (R R) (G G) (B B)= − + − + −

 (1)

Fig. 2: Manipulating and processing of image data

through the Euclidean color filter for obtaining
the robot and obstacles images

Am. J. Engg. & Applied Sci., 2 (4): 611-619, 2009

614

 It is clearly noted that if d is less than the
predefined threshold of ε then the pixel keeps its
original color, otherwise the pixel is set to black [0, 0,
0]. Up till this phase, two images are produced from the
original image: One includes the robot and the other the
obstacle, through applying the image processing
techniques.

Obstacle modeling for computer vision: This phase
looks into the meaning of the data that was being
provided by the previous phases. The acquired data are
used as input to the model and algorithm developed to
deal with the obstacles and the robot positions, which
come under the computer vision part of this
investigation, thereby achieving the necessary
representative or symbolic data through obstacle
modeling based on the images previously acquired by
the image processing phase. The symbolic data are
needed later for the autonomous obstacle avoidance.

Converting to rectangle frames: In order to obtain a
representative model of the obstacles and the robot, a
converting algorithm, the so-called image-symbol
conversion algorithm, determines the dimension of the
obstacles and the robot available in forms of images,
which has been acquired in the previous step. One way
to determine these image objects is to scan the image
after clustered pixels and to delimit the founded clusters
with rectangle frames, each with (x, y) coordinates,
height and width. Consequently, every object in the
scene is provided with the appropriate loci data in the
spatial domain of the site. No matter what shape the
obstacles and the robot have, they are mapped into
rectangle frames for the purpose of simplifying the
manipulation of these objects. As Fig. 3 shows,
software-technically, both images for the robot and the
obstacles that are previously acquired through applying
the Euclidean color filtering, will be scanned and
analyzed to allocate the robot and the obstacles position
within the site image. The scanning algorithm scans the
image containing the obstacles and only if a fixed
number of adjacent pixels of an obstacle are met, the
algorithm considers these pixels as a new obstacle
object.
 The information achieved by the conversion
process is stored in an array data structure, simplifying
the symbolic representation of the robot and obstacles
data. Accordingly, it is less complicated to control the
robotic system within the site embracing the dynamical
obstacles. Every data structure record consists of
various data elements that are necessary for
representing and managing our robot path problematic.

Fig. 3: Scanning an image for obstacle detection for the

purpose of symbolical representation

The image-symbol conversion algorithm functions as in
the following:

• Once the algorithm meets a new obstacle object, it

reserves a new obstacle record and then sets the
obstacle record element “oymin” (Fig. 3) to the
current y-coordinate value. This value is fixed and
could not be changed for the currently scanned
obstacle

• Conversely, it is possible to change the variable
“oxmin” since the algorithm might meet pixels
with “x” values less than the current stored one

• The values of the variables “Oymax” and “Oxmax”
will be incremented with each new line scan that
contains pixels, which belong to a specific obstacle

 As explained above, all obstacles in the image site,
which can be in forms of any geometrical shape, will be
mapped into representative rectangles.

Converting to gridded squares (2D-boundaries):
From a computational viewpoint, it is more efficient if
we quantize the image site with its different objects. As
is obvious, the interplay of the robot and obstacles takes
place in the spatial domain and thus, we have here to
quantize the two dimensional plane, where the robot
and the obstacle being. Quantization consists of
selecting breakpoints in magnitude and then re-mapping
any value within an interval to one of the representative
output levels[0]. In order to convert the captured images
of the site consisting of the robot, obstacles and
background into symbolic data, the view port will be
divided into gridded squares (hereafter referred to as
grid elements) to enable the software system to deal

Am. J. Engg. & Applied Sci., 2 (4): 611-619, 2009

615

with gridded squares and not with single pixels. The
grid-element size has a role key regarding the
determination of the free background space and the path
options to be planned. On the one hand, keeping the
grid elements small gives more adequate results and
more free grid-element options but this will increase the
processing time, which may affect the characteristics of
our real-time system; on the other hand, keeping the
grid element size large reduces the free space utilization
that may yields to less options when deciding the robot
safe path. Pursuing of grid information is much easier
regarding problem solving and demands less
computational effort due to the fact that a single pixel
has no significant meaning without its surrounding.
 Every grid element represents a group of image
pixels ordered into equally sized boundaries and has its
own coordinates G (i, j) that is obtained by reading the
image pixels from the image origin p (0, 0) until
reaching the coordinate p (width-1, hight-1) from top
left towards bottom right side. As a result, the
representative data are achieved through coding the
pixels into their respective 2D-boundary indices and,
then, deciding the value of that grid element using the
previously defined boundaries based on the pixel index,
leading to fill the grid elements with the appropriate
values for that boundary. If the grid element index is
located within the robot boundary, then the grid
element will be assigned the symbolic value R for
robot. If it is located within obstacle boundaries, then
the grid element value is set to the symbolic value O;
while the remaining grid elements (background) is
assigned a value equal to B.

The LEGO robot: Our research aimed at developing a
vision-based algorithm to move a robot hindered by
stationary or movable obstacles securely, A suitable
robotic system for experimenting and testing our
techniques is the Lego Mindstorms NXT[12], which can
be remotely controlled through a wireless
communication and whose controlling code easily
embedded in the vision-based algorithm code. The
MINDSTORMS robotic system is flexible to build
since it includes various components such as an array of
building blocks, motors, sensors and a central
controller, known as the LEGO RCX[13]. The LEGO
Mindstorms makes use of the LEGO assembly
instruction set (LASM) to interpret and execute both
onboard programs and PC-driven requests. LASM byte
code is sent to the RCX from a PC via infrared data
transfer, usually from a tower connected to the PC via
USB or RS-232 (serial) cable. Two motors built in the
robot are used to provide all possible motions including
forward, reverse, right and left turns.

Autonomous obstacle avoidance in the quantized
spatial plane: The information obtained previously can
be now used to construct the robot free path. During
this phase, the control program determines a motion
command to control the robot with each timer tick. Up
till now, the image is divided into a number of grid
elements that each has its representative value and
coordinates. Obstacle grid elements, the robot and the
free-space grid elements are known. What we are going
to use is the available information in order to determine
the path and then to send the robot a motion command.
For controlling the robot movement inside the
environment, several parameters about each obstacle
object must have been managed and stored sequentially
by the control software. A summary of these parameters
is discussed in the following:

• Side: This parameter is used in combination with

the motion direction to decide whether it is
necessary to worry about the obstacle crossing or
not. The obstacle position can have the values
LEFT, RIGHT and CENTER, corresponding to the
current location of the robot. It is to note that the x
values for the right and left side of both the robot
and the obstacles are significant for taking that
decision. This parameter is implemented inside a
method concerning about determining the position
of an obstacle relative to the robot

• Closeness: This parameter gives the number of grid
elements that the obstacles are far or in contact
vertically with the right or the left edge of the
robot. It is used to calculate whether it is safe to
cross or to go around an obstacle

• Robot motion: It can have two values, vertical and
horizontal; however, the robot default motion is in
the vertical direction, as long as no obstacles will
be crossing its path

• Grid element: This essential parameter is used to
model the environment of the vision-based
autonomous mobile robotic system, where the
interplay of the different objects, namely the robot
and obstacles, takes place. Every grid element is
definite through its discrete coordinates i and j and
indicates whether it is free or occupied by a part of
the robot or an obstacle. For every grid element,
the controlling software stores the current and
previous information, Gc(i,j) and Gp(i,j), with the
following meanings:

B Free space background

G(i,j) O Occupied by an obstacle

R Occupied by the robot


= 



Am. J. Engg. & Applied Sci., 2 (4): 611-619, 2009

616

Fig. 1: Determining the obstacle motion direction

through the current and previous grid elements
of an obstacle and its adjacent grid elements

 It is interesting to note that the previous grid
elements of an obstacle, in addition to its adjacent grid
elements, play a central role in finding out the motion
direction of an obstacle. Technically, such software
approach is a powerful approach due to the fact that it is
the only history information processed or saved through
two successive iterations (Fig. 4).
 The adjacent grid elements are known from the
current obstacle grid coordinate values, so when we
know where the obstacle starts and ends, we can also
know its adjacent grid elements from left and right.
Since we know the adjacent coordinates, we are able to
find out from the history information what the pervious
value was, which is already saved in the previous
iteration. If it is the first iteration step, then the previous
grid values are set to zeros. From Fig. 4, the current and
the previous values are used to determine the direction
of motion of an obstacle, which can be to the right, to
the left, or even if it is still. It can be noticed that the
current value for both the right and the left adjacent grid
elements are zeros.
 The following pseudo-code clarifies how we can
determine the motion state of an obstacle:

BEGIN
IF the previous value of the right adjacent grid element
equals B AND the previous value of the left adjacent
grid equals B
 BEGIN
 The obstacle is still
 END
ELSE IF the previous value of the right adjacent grid
equals B AND the previous value of the left adjacent
grid equals O

 BEGIN
 The obstacle motion is to the right
 END
ELSE IF the previous value of the right adjacent grid
equals O AND the previous value of the left adjacent
grid equals B
 BEGIN
 The obstacle motion is to the left
 END
END

 The following pseudo-code includes the complete
algorithm for controlling the motion and direction of
the robot:

WHILE robot does not reach the end line
 BEGIN
 IF the robot motion is vertical
 BEGIN
 IF the robot coordinate y-value is far from the

nearest obstacle
 BEGIN
 Move the robot forward until the robot is

near to the obstacle
 END
 ELSE
 BEGIN
 Determine the parameters SIDE,

CLOSENESS and ROBOT MOTION for
the nearest obstacle to decide the robot
motion command.

 END
 END
ELSE IF the robot motion is horizontal towards the left
side
 BEGIN
 IF the robot is bypassing an obstacle from the
 left
 BEGIN
 Motion decision is to turn the robot to the

right in order to return the robot to the
vertical direction.

 END
 ELSE // the robot is still in contact with the
 // obstacle
 BEGIN
 Move the robot forward in the horizontal

left direction.
 END
 END
ELSE IF the robot motion is horizontal towards the
right side

Am. J. Engg. & Applied Sci., 2 (4): 611-619, 2009

617

 BEGIN
 IF the robot is bypassing an obstacle from the

right
 BEGIN
 Motion decision is to turn the robot to the

left in order to return the robot to the
vertical direction.

 END
ELSE // the robot is still in contact with the
obstacle

 BEGIN
 Move the robot forward in the horizontal

right direction
 END
 END
END LOOP
// The robot reaches the end line

RESULTS

 Figure 5 clarifies a scenario, in which the
autonomous robotic system based on the previous and
current obstacle information its next motion course
concludes, thereby avoiding to collide with the
obstacles. In this example, the robot moves in the
vertical direction. Within this state, the parameters for
the most adjacent obstacle (Fig. 5) that are necessary for
controlling the robot movement inside the environment
have these values: “side = obstacle to the right of the
robot”, “closeness = contact” and “obstacle motion = to
the right”. Accordingly, the motion decision for the robot
is “Turn to the left to bypass the obstacle”.
 According to Kamon and Rivlin[0], total path length
and path safety are the two evaluation criteria that can
be used to measure the performance of algorithm for
robotic path planning. The path safety consideration
takes place while evaluating path quality. By default,
the algorithm for deciding the motion direction of the
robot guides the robot in the vertical path as long as
there are no obstacles crossing its path. Accordingly,
this leads to a minimized path length. Otherwise, it
controls the robot to move in the horizontal path if an
obstacle crosses its track. In other words, the robot
doesn’t wait for that particular obstacle to clear the
vertical path by going around it until it will become
clear. Moreover, a reverse motion is applied before the
robot needs to turn right or left in case of lack of
enough space for achieving that, so making the motion
safer. Besides using the grid approach for obtaining a
less computational effort, it provides a safe margin that
prevents contact between the robot and the obstacles.

Fig. 5: A scenario within the site, in which the

autonomous robotic system based on the
previous and current obstacle information its
next motion course, concludes, thereby,
avoiding to collide with the obstacles

 There are several difficulties encountered while
carrying out this research:

• Controlling the movement of the robot: In order to

rotate the robot 90° to the right or to the left, the
Lego robot must use a time parameter. This is
achieved through motion turning by powering one
motor and turning off the other for a predefined
time. Consequently, it is difficlut to have exactly

Am. J. Engg. & Applied Sci., 2 (4): 611-619, 2009

618

90° of turn besides, this procedure is aggravated
through the poor motor performance, which
depends on the battery level. The robot turning
requires space so the motion command must be
initiated in advance, which makes the
programming harder as the turning space must be
included in any situation that faces the robot

• Sizing the Scene: The used camera is a web cam,
which provides a very narrow view, resulting in
reducing the available scene size. To maximize the
scene size either the camera must be heightened or
a larger degree view camera must be used such as
the DOME camera

• Calibrating the camera: The light tense affects the
color levels of the scene objects that influneces the
color segmentation negatively. Thus, this results in
a variation of the value of the grids

CONCLUSION

 It has been shown how we developed the
autonomous mobile vision-based robotic system, which
demands a less computational effort through quantizing
the image site consisting of the robot, obstacles and the
background, leading to a powerful computing approach
as we only save the state information of the current and
previous steps. The robotic system is able to direct the
robot between two points safely, by acquiring the
spatial states using a top view camera as the only sensor
used; then applying image processing followed by
computer vision in an artificial manner. Introducing
additional parameters, the robot motion can take place
in a more complicated environment, in which the
obstacles movement is not only restricted to a
horizontal movement, but rather in every direction. One
might approach such solutions and bypass the
previously supposed limitations by applying more
advanced computer vision techniques such as model-
based tracking using Kalman filter[0] for pursuing the
obstacles with unrestricted motion.

REFERENCES

1. Picardi, M. and T. Jan, 2003. Recent advances in

computer vision. Ind. Phys., 9: 18-21.
http://radio.weblogs.com/0105910/2003/03/22.html

2. Hwang, C.L. and C.Y. Shih, 2009. A distributed
active-vision network-space approach for the
navigation of a car-like wheeled robot. IEEE.
Trans. Ind. Elect., 56: 846-855.
http://ieeexplore.ieee.org/xpl/preabsprintf.jsp?arnu
mber=4608745

3. Katz, G., 1993. The MARS project: Robot
navigation using a vision system. MA thesis,
School of Electrical Engineering and Computer
Science and Engineering. The University of New
South Wales.

 http://www.geocities.com/SiliconValley/Lakes/715
6/t2.htm

4. Baard, S., 1994. Teleoperation and Robotics in
Space. The American Institute of Aeronautics and
Astronautics, ISBN: 1563470950, pp: 502.

5. Baker, M. and H.A. Yanco, 2005. Automated street
crossing for assistive robots. Proceeding of the
IEEE 9th International Conference on
Rehabilitation Robotics, June 28-July 1, IEEE
Xplore Press, Chicago, Illinois, pp: 187-192. DOI:
10.1109/ICORR.2005.1501081

6. Se, S. and M. Brady, 1997. Stereo vision-based
obstacle detection for partially sighted people.
Proceeding of the Asian Conference on Computer
Vision N°3, Jan. 8-10, Hong Kong, pp: 144-151.
http://cat.inist.fr/?aModele=afficheN&cpsidt=2038
765

7. Tranhanias, P.E., M.I.A. Lourakis, A.A. Argyros
and S.C. Orphanoudakis, 1996. Vision-based
assistive navigation for robotic wheelchair
platforms. Proceedings of the IAPR TC-8
Workshop on Machine Perception Applications,
(MVA’96), Graz, Austria, pp: 43-57.
http://portal.acm.org/citation.cfm?id=251041

8. Kubota, H., K. Fukui, M. Ishikawa, H. Mizoguchi
and Y. Kuno, 1990. Advanced vision processor
with an overall image processing unit and multiple
local image processing modules. Proceedings of
the IAPR Workshop on Machine Vision
Applications, Nov. 28-30, Tokyo, pp: 401-404.

http://www.cvl.iis.u-
tokyo.ac.jp/mva/proceedings/CommemorativeDV
D/1990/papers/1990401.pdf

9. Gonzalez, R.C., R.E. Woods and S.L. Eddins,
2004. Digital Image Processing Using MATLAB.
Prentice Hall, ISBN: 0130085197, pp: 609.

10. Gonzalez, R.C. and R.E. Woods, 2002. Digital
Image Processing. Prentice Hall, pp: 793.
http://books.google.com.pk/books?id=iW0dAQAA
CAAJ&dq=Digital+Image+Processing.

11. Li, Z.N. and M.S. Drew, 2004. Fundamentals of
Multimedia. Prentice Hall, ISBN: 0130618721,
pp: 560.

12. Astolfo, D., M. Ferrari and G. Ferrari, 2007.
Building Robots with LEGO Mindstorms NXT.
Syngress, ISBN: 1597491527, pp: 447.

Am. J. Engg. & Applied Sci., 2 (4): 611-619, 2009

619

13. Bishop, O., 2008. Programming Lego Mindstorms
NXT. Syngress, ISBN: 1597492787, pp: 187.

14. Kamon, I. and E. Rivlin, 1997. Sensory-based
motion planning with global proofs. IEEE Trans.
Rob. Autom, 13: 814-812. DOI:

10.1109/70.650160

15. Morris, T., 2003. Computer Vision and Image
Processing. Palgrave, Macmillan, ISBN:
0333994515, pp: 300.

