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Abstract: Problem statement: An error minimization in robot arm dynamics improves operations and 
performance of production systems. Many contributions have been made in area of robot dynamics 
since the earliest study more than two decades, but, a number of researchers are still contributing 
various principles and new techniques for the best use of robots in reality, especially in the field of 
industry, as this field of study is inexhaustible. This study attempted to analyze the performance of an 
industrial robot by comparing solutions obtained using RK method and Single-Term Haar Wavelet 
Series (STHWS) method. Exact solution of system of equations representing arm model of a robot had 
been compared with corresponding discrete solution at different time intervals. Absolute error between 
exact and discrete solutions had also been determined to suggest the method of improving performance 
of a robot. Approach: Haar wavelet had been applied extensively for signal processing in 
communications and proved to be a useful mathematical tool for dynamical systems. In this study, 
STWHS method had been used for solving differential equations. Result had been obtained and 
compared with exact solutions. Results: Error had been compared by exact solutions, RK and STHWS 
solutions were reported for non-singular systems and estimated as almost zero. The validation had 
been carried out with reference to earlier research output appeared in this field of study. 
Conclusion/Recommendations: For robot arm model selected for study, solution obtained by 
STHWS was found to be accurate from results.  
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INTRODUCTION 
 
 In an automated production system, the presence of 
robots operations and its performance improves the 
quality of the manufacturing systems. It is essential to 
study the performance of a robot by widely used 
techniques in mathematical modeling. Literatures are 
available on the analysis of performances of robots 
using differential equations. These equations provide 
simple analytical solutions without non- linear 
differential equations leading to limited constraints. The 
robotic system performance can be affected due to the 
interaction between the joint motion and the angular 
motion of the constrained surface in addition to the 
effects of differential angular velocity and the joint 
torque[1]. The uncertainty in constraint functions affects 

the dynamic modeling and simulation of a 
manipulator[2,3]. The performance of a robot arm with 
respect to control accuracy and mechanical efficiency is 
based on the effects of manipulator gravity[8]. The 
various techniques have been suggested to reduce the 
inaccuracy level and the error[4-8].  
 Mathematical models of robot dynamics to predict 
coupling effects and dynamic nonlinearities, often are 
used to achieve maximum accuracy and performance in 
robot control. The design of a robot control system is 
made complicated by the non-linear and coupled 
characteristics of its dynamics. The dynamics of a robot 
can be described by a set of coupled non-linear 
equations in the form of gravitational torques, coriolis 
and centrifugal forces. The significance of these forces 
depends on the physical parameters of the robot, the 
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load it carries and the speed at which the robot operates. 
To reach the level of accuracy, compensation for the 
above mentioned parameter variations and disturbances, 
become much more critical. Hence the design of the 
control system becomes much more complex. 
 The numerical techniques are well proven method 
for solving the system of differential equations, 
produces the stable, efficiency and accuracy[9,10]. 
Recently, Haar wavelet have been applied to signal 
processing in communication research and physics 
research and proving to be wonderful mathematical 
tool. The main advantage in this method is to convert a 
differential equations into algebraic equations; hence, 
solution identification and optimization procedures are 
either reduced or simplified[10,11].  
 An attempt has been made in this study to analyze 
an industrial robot and its control problem while 
minimizing the error of solutions to position the robot 
accurately by using STWHS for non-singular system 
robot arm model. The obtained solution have been 
compared with stated solutions[12,13] and is tabulated.  

 
Robot arm model: The dynamics of a robot arm can be 
represented by[1,5,13]: 

 

( ) ( ) ( )T A Q Q B Q,Q C Q= + +ɺɺ ɺ  

 
Where: 
A(Q)  = Coupled inertia matrix 

( )B Q,Qɺ  = The matrix of coriolis and centrifugal forces 

C(Q)  = The Gravity matrix 
T = The Input torques applied at various joints 

 
 For a robot with two degrees of freedom, under the 
assumption of lumped equivalent masses and mass less- 
links, the dynamics are represented in terms of systems 
of non-linear equations and by applying the method of 
reduction, it has been represented in terms of the 
following system of linear equation of time invariant 
case. The behavior of the robot arm model has been 
completely described by state equations and the state 
equations provides perfect controls[14,15]: 

 

 

1 2

2 10 1 11 2 10 1

3 4

2 2 2
4 20 2 21 4 20 3

e x

x B T A X A e

e x

x B T A X A e

=
= − −
=

= − −

ɺ

ɺ

ɺ

ɺ

  (1)  

 As of the form ( ) ( ) ( )Kx t Ax t Bu t= +ɺ . The values 

of the parameters concerning the joints-1 are: 
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 The values of parameters concerning the joint -2 
are: 
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 And by choosing T1 = 1 and T2 = 1 with initial 
condition: 
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 The corresponding exact solution is: 
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Single term Haar wavelet series: The orthogonal set 
of Haar wavelets hn(t) is a group of square waves with 
magnitude of ±1 in some intervals and zeros 
elsewhere[9-11]. In general: 
 

( ) ( )j j
n 1

j

h t h 2 t k ,n 2 k,

j 0,0 k 2 ,n, j,k Z

= − = + 


≥ ≤ < ∈ 
 (2) 
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 Namely, each Haar wavelet contains one and just 
one square wave and is zero elsewhere. Just these zeros 
make Haar wavelets to be local and very useful in 
solving singular and nonsingular systems. 
 
Function approximation: Any function [ ]2y(x) L 0,1∈  

can be decomposed as:  
 

( )

[ ]

j
n n

i 0

j

y t c h (t),n 2 k,
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∞
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Where: 
 

 ( )
1

j
n n

0

c 2 y t h (t)dt= ∫  (5) 

 
 The series expansion of y(t) contains infinite terms. 
If y(t) is piecewise constant by itself, or may be 
approximated as piecewise constant during each 
subinterval, then y(t) will be terminated at finite terms, 
that is: 
  

( ) ( ) ( ) ( ) [ ]
m 1

T
n n m m

n 0

y t c h (t) c h t , t 0,1
−

=

≈ = ∈∑   (6) 

 

( ) [ ]T
0 1 m 1mc c c ...c −≅  

 

( ) ( ) ( ) ( ) ( ) T

0 1 m 1mh t h t h t ...h t−≅     

 
where, “T” means transpose and jm 2= . 
 
The product operational matrix of the Haar 
wavelet: The first four Haar function vectors which 
x n / 8= , n = 1,3,5,7 can be expressed the following: 
  

[ ]T

(1/8)h 1,1,1,0= , [ ]T

(3/8)h 1,1, 1,0= −  
 

[ ]T

(5/8)h 1, 1,0,1= −  [ ]T

(7 /8)h 1, 1,0, 1= − −  
 
 This can be written in matrix form as:  
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  In general, we have: 
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 The integration of the vector (m)h (t)  is given by: 

 

( ) ( ) ( ) ( ) [ ](m)m mh t dt P h t , t 0,1= ∈∫   (8) 

 
where, (m)P is the m×m  operational  matrix  and is 

given by: 
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where, [ ](1x1)P 1/ 2= , so: 
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Solution for linear systems: Consider a linear system 
of the following form: 
 

( ) ( ) ( )Kx t Ax t Bu t ,= +ɺ ( ) 0x 0 x=   (10) 

 
where, [ ]t 0,1 / m∈ . 
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 In the normalized interval with m.tτ =  
 

( ) ( ) ( )1
Kx Ax Bu ,

m
τ =  τ + τ  ɺ ( ) 0x 0 x=   (11) 

 
where, [ ]0,1τ∈ . 

 Now expressing ( )x ,τɺ ( )x τ and ( )u τ  in single-

term Haar series as: 
 

( ) ( )i i 0x a hτ = τɺ  

 
( ) ( )i i 0x b hτ = τ  and ( ) ( )i i 0u rhτ = τ   (12) 

 
 And the following recursive relationship is 

obtained with 
1

P
2

= : 

 

( )i i i

1
b a x j 1

2
= + −  

 
( ) ( ) ( )i i i i ix j a x j 1 2b x j 1= + − = − −   (13)  

 
where, i, j 0,1,...,n N.= ∈  Substituting Eq. 12 and 13 into 
Eq. 11, we obtain nonlinear algebraic equations and 
they may be solved to obtain xi. The single-term Haar 
wavelets method with piecewise constant orthogonal 
functions is an extension of the single-term algorithm 
Eq. 10, that avoids the inverse of the big matrix induced 
by the Kronecker product. This approach is applicable 
for any transform with piecewise constant basis. 
Therefore, in this study, the above algorithm is used in 
solving the robot arm control problems to avail the 
advantages of its fast, local and multiplicative 
properties. 
 

RESULTS 
 
 The following Table 1-4 show the result obtained 
for five time intervals. The exact solutions, RK 
solutions and STHWS solutions are reported with its 
errors for non-singular systems and graph has been 
obtained. For calculation m is taken as 32. If m 
increases the accuracy in values also increases.  
 

DISCUSSION  
 
 In this study, the obtained discrete solutions for the 
Robot Arm model problem using the STHWS give 
more accurate values when compared to the classical 
RK methods. From the Table 1-4 and Fig. 1-4 the 
following observations are made: 

• For the robot arm model selected for study, the 
solution obtained by STHWS is found to be 
accurate from the STHWS error 

• The error in solutions obtained by both RK and 
STHWS increases with the increase in time 

• The STHWS method yields accurate solution even 
when it is compared with RK-eight stage seven 
order solution [12] for non-linear system  

 
Table 1: Solutions of the robot arm non singular system model for e1(t) 
    e1(t) 
  --------------------------------------------------------------- 
Solution  Exact RK RK STHWS STHWS 
No. Time  solution solution error solution error 

1 0.0 -1.000000 -1.000000 0.0 -1.000000 0.0 
2 0.5 -0.974242 -0.974239 3E-06 -0.974240 2E-06 
3 1.0 -0.894296 -0.894290 6E-06 -0.894292 4E-06 
4 1.5 -0.757677 -0.757669 8E-06 -0.757671 6E-06 
5 2.0 -0.564199 -0.564189 1E-05 -0.564191 8E-06 

 
Table 2: Solutions of the robot arm non singular system model for 

x2(t)  
    x2(t)  
  ------------------------------------------------------------------- 
Solution  Exact RK RK STHWS STHWS 
No. Time solution solution error solution error 
1 0.0 0.000000 0.000000 0.0 0.000000 0.0 
2 0.5 0.104525 0.104525 0.0 0.104524 1E-06 
3 1.0 0.216100 0.216099 1E-06 0.216098 2E-06 
4 1.5 0.330447 0.330443 4E-06 0.330444 3E-06 
5 2.0 0.442677 0.442671 6E-06 0.442673 4E-06 

 
Table 3: Solutions of the robot arm non singular system model for e3(t)  
    e3(t)     
  -------------------------------------------------------------- 
Solution  Exact RK RK STHWS STHWS 
No. Time  solution solution error solution error 
1 0.0 -1.000000 -1.000000 0.0 -1.000000 0.0 
2 0.5 -0.998621 -0.998618 3E-06 -0.998620 1E-06 
3 1.0 -0.994603 -0.994598 5E-06 -0.994601 2E-06 
4 1.5 -0.988113 -0.988108 5E-06 -0.988110 3E-06 
5 2.0 -0.979311 -0.979305 6E-06 -0.979307 4E-06 

 

 
 
Fig. 1: Error graph non singular system model for e1(t) 
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Table 4: Solutions of the robot arm non singular system model for 
x4(t)  

     x4(t)     
  ------------------------------------------------------------------- 
Solution  Exact RK RK STHWS STHWS 
No. Time solution solution error solution error 
1 0.0 0.000000 0.000000 0.0 0.000000 0.0 
2 0.5 0.005455 0.005452 3E-06 0.005454 1E-06 
3 1.0 0.010563 0.010559 4E-06 0.010561 2E-06 
4 1.5 0.015343 0.015336 7E-06 0.015340 3E-06 
5 2.0 0.019816 0.019807 9E-06 0.019812 4E-06 

 

 
 
Fig. 2: Error graph non singular system model for x2(t) 
 

 
 
Fig. 3: Error graph non singular system model for e3(t) 
 

 
 
Fig. 4: Error graph non singular system model for x4(t) 

CONCLUSION 
 
 Accuracy in the solution for a robot arm model 
decides the control of the movement of robot. In turn, 
operational performances of an automated 
manufacturing system for the future could be improved. 
In this study, the attempts are made to find the quality 
of the solution obtained by STHWS compared to that of 
RK solution for the same condition. From the tables and 
graph, we observe that the STHWS yields very less 
error (almost no error). And this STHWS is more 
suitable for studying the Robot Arm model problem. 
Moreover, this STHWS method is highly stable because 
it is based on the Haar wavelet series method, which is 
also highly stable and hence one can get the solution for 
any length of time. 
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