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Abstract: Problem statement: An error minimization in robot arm dynamics impreweperations and
performance of production systems. Many contrimgithave been made in area of robot dynamics
since the earliest study more than two decades,dutumber of researchers are still contributing
various principles and new techniques for the lsst of robots in reality, especially in the field o
industry, as this field of study is inexhaustibldis study attempted to analyze the performancanof
industrial robot by comparing solutions obtaineihgsRK method and Single-Term Haar Wavelet
Series (STHWS) method. Exact solution of systeragpfations representing arm model of a robot had
been compared with corresponding discrete soluttatifferent time intervals. Absolute error between
exact and discrete solutions had also been detedninsuggest the method of improving performance
of a robot. Approach: Haar wavelet had been applied extensively for aigprocessing in
communications and proved to be a useful matheaiatiol for dynamical systems. In this study,
STWHS method had been used for solving differentigliations. Result had been obtained and
compared with exact solutionResults. Error had been compared by exact solutions, RKSafdWS
solutions were reported for non-singular systen estimated as almost zero. The validation had
been carried out with reference to earlier reseamcitput appeared in this field of study.
Conclusion/Recommendations. For robot arm model selected for study, solutidmtamed by
STHWS was found to be accurate from results.

Key words: Robot dynamics, Runge-Kutta methods, single-ternarHaavelet series, non-singular
systems

INTRODUCTION the dynamic modeling and simulation of a
manipulatof®. The performance of a robot arm with
In an automated production system, the presence oéspect to control accuracy and mechanical effaies
robots operations and its performance improves théased on the effects of manipulator gra¥ityThe
quality of the manufacturing systems. It is essdrth  various techniques have been suggested to redece th
study the performance of a robot by widely usedinaccuracy level and the erfb?.
techniques in mathematical modeling. Literatures ar Mathematical models of robot dynamics to predict
available on the analysis of performances of robotgoupling effects and dynamic nonlinearities, oftee
using differential equations. These equations pi®vi used to achieve maximum accuracy and performance in
simple analytical solutions without non- linear robot control. The design of a robot control systiem
differential equations leading to limited consttainrfhe = made complicated by the non-linear and coupled
robotic system performance can be affected dubdo t characteristics of its dynamics. The dynamics oftzot
interaction between the joint motion and the angulacan be described by a set of coupled non-linear
motion of the constrained surface in addition te th equations in the form of gravitational torques,iais
effects of differential angular velocity and theinp  and centrifugal forces. The significance of themeds
torqué™. The uncertainty in constraint functions affectsdepends on the physical parameters of the robet, th
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load it carries and the speed at which the robetatps. As of the formKx (t) =Ax(t)+Bu (t) . The values
To reach the level of accuracy, compensation fer th
above mentioned parameter variations and distugsanc
become much more critical. Hence the design of theA
control system becomes much more complex.

The numerical techniques are well proven method’ 1t
for solving the system of differential equations, B =0.00265
produces the stable, efficiency and accufdfy
Recently, Haar wavelet have been applied to signal The values of parameters concerning the joint -2
processing in communication research and physic8r€:
research and proving to be wonderful mathematical
tool. The main advantage in this method is to carnae A =0.0438
differential equations into algebraic equationspndee A, =0.3610
solution identification and optimization procedu@® B, =0.0967
either reduced or simplifi€§*.

An attempt has been made in this study to analyze  And by choosing T= 1 and F = 1 with initial
an industrial robot and its control problem while condition:
minimizing the error of solutions to position thebot

of the parameters concerning the joints-1 are:

15=0.1730
=-0.2140

accurately by using STWHS for non-singular system q(o) -1
robot arm model. The obtained solution have bee " (o) 0
compared with stated solutidtfs® and is tabulated. e2 (9 =
3
x,(0)] | o

Robot arm moddl: The dynamics of a robot arm can be

represented By> 2 _ o
The corresponding exact solution is:

T=A(Q)Q+B(Q.Q+dq9 e (f) = @[~ 1.15317919c¢s 0.4019340f4t
+0.306991074si(1 0.4019340%4t+  0.15317
Where:
A(Q) = Coupled inertia matrix x,(t) = €17 0.463502009si 0.4019340]4t

B(Q,Q) = The matrix of coriolis and centrifugal forces

C(Q) = The Gravity matrix
T = The Input torques applied at various joints

+0.123390173cds 0.401934074t
+0.1078""| - 1.15317919cfs 0.4019340)7

+0.306991074sif 0.40193407%4t

For a robot with two degrees of freedom, under the
assumption of lumped equivalent masses and mass lese, (t) = 1.02990897 681
links, the dynamics are represented in terms akesys — 6.9041 2448481691683
of non-linear equations and by applying the methbd
reduction, it has been represented in terms of the (t) = -0.1167959628 204!
following system of linear equation of time invaria N '
case. The behavior of the robot arm model has been +0.1167959626 %1%
completely described by state equatiansl the state

equations provides perfect contffide: Single term Haar wavelet series: The orthogonal set

of Haar wavelets {ft) is a group of square waves with
magnitude of +1 in some intervals and zeros

& =X, elsewher€™. In general:

X, =B, T,-A,X ,~A ¢

-e:: X410 1 1 2 %1 (1) hn(t): hl(z t— k) n=2+k (2)
x,=B4T,-A%X ,~A% , j=0,0sk<2,n,jk0Z

585



Am. J. Engg. & Applied i, 2 (4): 584-589, 2009

1,05t<% 1111

h,(t) = 1 ©) _(1 1 -1-1
-1-<t<1 1-100

2 00 1 -1

Namely, each Haar wavelet contains one and just
one square wave and is zero elsewhere. Just thesg z
make Haar wavelets to be local and very useful in
solving singular and nonsingular systems. _{h(m)(llzm),nm) (3/2m),h, (3/2m], @)

(m)

In general, we have:

Function approximation: Any functiony(x)OL?[0,]] L7 Ry (2= 2)72M)..

can be decomposed as:
_ 111
- H(l) _[1] ’ H(Z) _|:1 —l:|
y(t)=>c,h,(t),n= 2+ K,
i=0

(4) . . o _
j20,0< k<2 ,t0[0] The integration of the vectdr,, (t) is given by:
Where: -

o iy (9)dt= Ry iy (3. 0[ 0 (®)
1
=2 y(t)h, (H)dt 5
o j;y() " ®) where, B, is the mxm operational matrix and is
given by:

The series expansion of y(t) contains infiniterter
If y(t) is piecewise constant by itself, or may be .y 2mP 0 = Ho ©)
approximated as piecewise constant during eachtm Hely 0
subinterval, then y(t) will be terminated at finigrms,

that is:
wherepP,,, =[1/9, so:
m-1
y(t)=> c.h, ()= ¢y hy (9 0[O0 (6) 8 -4 -2 -2
n=0
2 -1 4 0 -2 2
=191 o =19 1 o o
Cry D[ @066 ]
1 -1 0 O
.
h (1) O hy (1) hy(1) ... _ _
(m)() [0()hl() hn—l(')] 32 -16 -8 -8 -4 -4 - 4 - 4
where, “T” means transpose and= 2 . 16 0 -8 8 -4-4 4 4
4 4 0O 0 -4 4 0 O
The product operational matrix of the Haar P :1/64—14 4 0 0 -4 4 0 O
wavelet: The first four Haar function vectors which ~® 1 1 2 0 0 0 0 O
x=n/8,n=1,35,7 can be expressed the following: 1 1 =2 0 0 0 0O O
. . 1 -1 0 2 0 0 0 O
h(1,8)=[1,1,1,(} ! h(3/8):[1‘1‘_1’q 1 -1 0 -2 0 0 O O
T T
heie =[1-1.03 hge =[1-1,0-1 Solution for linear systems: Consider a linear system
of the following form:
This can be written in matrix form as:
Kx (t)=Ax(t)+Bu(t), x(0)=x, (10)

_[hw(@/8),h, (3/8),h, (3/8):|T

@y, (5/8),h, (7/8) where, t0[0,1/m .
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In the normalized interval with =m.t e For the robot arm model selected for study, the
solution obtained by STHWS is found to be
Kx (1) :%[Ax (1) +Bu ()], x(0) = %, (11) accurate from the STHWS error

e The error in solutions obtained by both RK and

STHWS increases with the increase in time
where, 10[0,1] . e The STHWS method yields accurate solution even
Now expressingx(t), x(t) and u(t) in single- when it is compared with RK-eight stage seven

. _ order solutiof*? for non-linear system
term Haar series as:

. _ Table 1: Solutions of the robot arm non singulatey modefor e(t)
% (t)=ah (1) a()
Solution Exact RK RK STHWS STHWS
Xi (T) = bi ho (T) and U (T) = riho (T) (12) No. Time solution solution error  solution error
1 0.0 -1.000000 -1.000000 0.0 -1.000000 0.0
; ; ; ; e 2 0.5 -0.974242 -0.974239 3E-06 -0.974240 2E-06
And the fOIIOWIng recursive relatlonshlp IS 3 1.0 -0.894296 -0.894290 6E-06 -0.894292 4E-06
obtained withp =+ - 4 15 -0.757677 -0.757669 8E-06 -0.757671 6E-06
2 5 2.0 -0.564199 -0.564189 1E-05 -0.564191 8E-06
1 . Table 2: Solutions of the robot arm non singulasteyn model for
bi—§a+x(1—1) xa(t)
%(t)
x.(i)=a +x(j-1)=28 - x(j-9) (13)  Solution Exact RK RK  STHWS STHWS
No. Time solution solution error  solution  error
o o . 1 0.0 0.000000 0.000000 0.0 0.000000 0.0
where,i,j=0,1,...,n0 N. Substituting Eq. 12 and 13 into 2 05  0.104525 0.104525 0.0  0.104524 1E-06
Eq. 11, we obtain nonlinear algebraic equations and 10 0216100 0216099 1E-06 0.216098 2E-06

they may be solved to obtain Xhe single-term Haar 150330447 0330443 4E-06  0.330444  3E-06
y may i g 5 2.0 0442677 0.442671 6E-06 0442673 4E-06

wavelets method with piecewise constant orthogonat
functions is an extension of the single-term altponi
Eq. 10, that avoids the inverse of the big matmouiced
by the Kronecker product. This approach is appleab

Table 3: Solutions of the robot arm non singulatemn model for £
()

for any transform with piecewise constant basisSoluton Exact RK RK ~ STHWS  STHWS
Therefore, in this study, the above algorithm igcus ’i‘o- g'g“e 5‘;“3(')%’2)00 501'“(;'(‘)’8000 egoor 50'1”388000 er(f)"cf)
solving the robot_ arm control problems to gv_all f[he2 05 0998621 -0.998618 3E-06 -0998620 1E-06
advantages of its fast, local and multiplicative 3 1.0  -0.994603 -0.994598 5E-06 -0.994601 2E-06
properties. 4 15 -0.988113 -0.988108 5E-06 -0.988110 3E-06

5 20 -0.979311 -0.979305 6E-06 -0.979307 4E-06

RESULTS
0.00001

The following Table 1-4 show the result obtained /0001
for five time intervals. The exact solutions, RK 0.0000081
solutions and STHWS solutions are reported with its 00000071
errors for non-singular systems and graph has beer z 0.0000061
obtained. For calculation m is taken as 32. If m = 0.0000057

increases the accuracy in values also increases. o]
0.000002 1
DISCUSSION 0000001 -
. . . . 0
In this study, the obtained discrete solutionstifer RK Time STHW
Robot Arm model problem using the STHWS give )
more accurate values when compared to the classica 2080501815 w2
RK methods. From the Table 1-4 and Fig. 1-4 the
following observations are made: Fig. 1: Error graph non singular system model f¢t) e
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Table 4: Solutions of the robot arm non singulastay model for

X4(t)

X(t)

Solution Exact RK RK STHWS  STHWS
No. Time solution solution error solution error

1 0.0 0.000000 0.000000 0.0 0.000000 0.0

2 0.5 0.005455 0.005452 3E-06 0.005454 1E-06
3 1.0 0.010563 0.010559 4E-06 0.010561 2E-06
4 15 0.015343 0.015336 7E-06 0.015340 3E-06
5 2.0 0.019816 0.019807 9E-06 0.019812 4E-06
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CONCLUSION

Accuracy in the solution for a robot arm model
decides the control of the movement of robot. Imtu
operational  performances of an  automated
manufacturing system for the future could be impihv
In this study, the attempts are made to find thalityu
of the solution obtained by STHWS compared to tfat
RK solution for the same condition. From the talaled
graph, we observe that the STHWS yields very less
error (almost no error). And this STHWS is more
suitable for studying the Robot Arm model problem.
Moreover, this STHWS method is highly stable beeaus
it is based on the Haar wavelet series method, wisic
also highly stable and hence one can get the ealr
any length of time.
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