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Abstract: Problem statement: This study described the design of a 3-phase AC Induction Motor 
(ACIM) vector control drive with position encoder coupled to the motor shaft. Approach: It was 
based on free scale’s  (Motorola's)  68k  micro processor  devices.  Although  the free scale 56F80x 
(56800 core) and 56F8300 (56800E core) families were well-suited for digital motor control and 
offer all things was needed, but we decided to realize a complete vector controller with a powerful 
68k processor. Results: Obviously all 680X0 and many 683XX can overcome this task very easily, 
but we decided 68332 for time consuming because it combines high-performance data manipulation 
capabilities with powerful peripheral subsystems. All software and hardware was based on Peter J. 
Pinewski's nice research from Motorola. Conclusion: In this study the overall software algorithm and 
in two fellow papers the hardware schematics and performance will be described respectively.  
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INTRODUCTION 

 
 Traditional control methods, such as the Volts-
Hertz control method, control the frequency and 
amplitude of the motor drive voltage. In contrast, vector 
control methods control the frequency, amplitude and 
phase of the motor drive voltage. The key to vector 
control is to generate a 3-phase voltage as a phasor to 
control the 3-phase stator current as a phasor that 
controls the rotor flux vector and finally the rotor 
current phasor. 
 Ultimately, the components of the rotor current 
need to be controlled. The rotor current cannot be 
measured because the rotor is a steel cage and there are 
no direct electrical connections. Since the rotor currents 
cannot be measured directly, the application program 
calculates these parameters indirectly using parameters 
that can be directly measured. 
 The technique described in this paper is indirect 
vector control because there is no direct access to the 
rotor currents. Indirect vector control of the rotor 
currents is accomplished using the following data: 
 
• Instantaneous stator phase currents, ia, ib and ic 
• Rotor mechanical velocity 
• Rotor electrical time constant 
 
 The motor must be equipped with sensors to 
monitor the 3-phase stator currents and a rotor velocity 
feedback device. 

 By mapping the measured three phase stator 
currents as a vector onto a two axis (d-q) coordinate 
system, the stator current is broken into two component, 
id and iq, which are orthogonal to each other and are 
used to control the rotor flux and torque current 
respectively. From a practical point of view, the flux 
and torque currents are controlled through the motor 
voltages and slip frequency. How these are controlled is 
based on calculations made on the measured phase 
currents and speed. The hardware requires speed 
sensing and current sensing in addition to the six 
PWMs necessary to drive the inverter. Figure 1 
illustrates a system which utilizes a MC68332 to 
implement a simple vector controller. The system uses 
the on-chip timer to implement the center-aligned 
PWMs and for the speed sensing input. A jointed 
MC145050 and QSPI are used by the algorithm to 
sense the phase currents and the torque (throttle) input. 
The control algorithm is executed in software and is a 
large factor in determining performance. Therefore, 
successful implementation is dependent upon how the 
software executes the control algorithm. 
 
Implementing the algorithm: The critical loop of the 
vector control system is  implemented  as  an  interrupt 
service routine. This loop performs the current 
measurement and transformation, the speed sensing and 
calculation,  the  PI  controller,  slip  calculation, 
modulation  strategy,  and  any    fault   checking[1,2].  
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Fig. 1: Simple vector controller hardware block diagram 
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Fig. 2: Vector controller block diagram 
 
The vector control loop is shown in Fig. 2. This system 
executes the interrupt service routine every 240 µs, 
which is two PWM period. The outer loop is used to 
implement the torque and flux controller, which are 
simple normalized lookup tables based on the A/D and 
speed readings, respectively. Transport and calculation 
delays are minimized by organizing the software so that 
the software code which does not depend on A/D 
reading is executed while the A/D conversions are 
taking place. Fig. 3 shows a flow diagram of the 
interrupt service routine. 
 
Slip frequency calculator: The slip frequency 
calculator is the critical block which ensures correct 

field orientation between rotor flux and torque current. 
This is based on the IQ and ID currents as well as the 
rotor open circuit time constant (Lr/Rr). The equation 
for the slip calculator is given below: 
 

s
r

1 IQ
f

2 T ID
=

π
 (1) 

 
where, Tr

 = Lr/Rr is rotor time constant. 
 If the correct value of Lr/Rr is not known or is not 
achieved the vector control algorithm will operate in a 
“de-tuned” manner. This means that the flux and torque 
currents  are  improperly  aligned with the rotor flux 
and  that  they  are not truly de-coupled. In other words, 
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Fig. 3: Program flow diagram 
 
a change in torque current would cause a change in 
rotor flux. The result is that instantaneous torque 
control is not achieved. This may be acceptable in 
applications such as an electric vehicle traction drive 
where the torque response is not critical and it is not 
worth the effort to implement more complicated 
techniques such as rotor temperature compensation or 
adaptive techniques. 
 
Speed measurement/calculator: Speed measurement 
is one of the requirements for the vector controller. 
Hardware speed sensing can be accomplished with a 
toothed disk on the rotor shaft. The amount of teeth on 
the disk determines the resolution (the more teeth, the 
better the resolution). Speed measurement can be 
accomplished by a pulse type counter where the number 
of edges per time can be counted to give rotations per 
minute. Rotor frequency can be calculated by: 
 

r

rpm p
f

120
×=  (2) 

 
 where p is the number of poles. 
 In the example system, 200 tooth disk per 
revolution at a sample time of 5 ms equates to one 
measured edge ($0001) equaling 1 Hz rotor frequency. 
The precision of the speed sensor in the example 
system is 1 Hz. 

Integrator: The integrator takes the frequency value 
and converts it to an angle for determining cosθ and 
sinθ. The integrator is a simple addition function of the 
form: 
 
θ = Old_theta + frequency × interrupt_rate × 2Number-of-bit 

 
 In the example system, for a 16-bit angle variable 
and interrupt_rate = 244 µs, the above equation can be 
simplified to yield: 
 
θ = Old_theta + frequency (that is shifted left by four) 

 
 Also the frequency resolution is 0.0625 Hz as 
calculated here: 
 

Frequency resolution = 1/(2Bits × interrupt_rate) 
 
cosè and sine: Both the vector rotators in the 2-3 phase 
transformation and the 3-2 phase transformations 
require cosè and sinè. In a microcontroller, there is no 
sine or cosine function. A way around this is through 
sine and cosine lookup tables. In actuality, only one 
table needs to be created since the cosine function is a 
90 degree shift of the sine function. The lookup table 
itself is best constructed with a limited number of 
samples equaling a power of two (i.e., 256 point sine 
Table) and linearly interpolating between the sample 
points to produce a much larger effective table. As an 
example, the 332 vector controller utilizes a 16-bit 
angle variable. With a sine table of 256 points: 8 bits of 
the  angle  variable  is  used to index into the table and 
8 bits are used for interpolation. 
 
Current normalization: Current is sampled with the 
A/D converter. Many A/Ds, such as MC145050, are 
unipolar. This means they only accept a positive 
voltage level and the conversion result is unsigned. The 
currents, however, are sinusoidal in nature and have 
both positive and negative values. Because of this, the 
hardware must do some level shifting and amplifying to 
get the currents to be unipolar and to reach full scale of 
the A/D converter. The software must then convert the 
unipolar A/D readings into positive and negative values 
for use in the algorithm. This requires a simple 
subtraction of the zero current reading from the present 
phase current reading. The zero current reading can be 
obtained from initial startup before the drive is enabled. 
Another aspect of the A/D converter is that the 
converter may have a smaller bit size than the data size. 
The A/D readings should be left shifted such that full 
scale of the A/D is full scale of the data size. This is 
important for formatting the data into signed fractional 
numbers. 
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Fig. 4: Standard PI controller 
 
3-2 Phase transformation: The three to two phase 
transformation is used to convert the measured AC 
phase currents, ia and ib, into the two DC current 
components, IQ and ID. The conversion is comprised of 
the a-b-c to d-q transformation and a vector rotator as 
defined as: 
 
abc to dq transformation vector rotator 
 
iqs = ia IQ = iqs × cosθ – ids × sinθ 

ids = –
1
3

ia –
2
3

ib ID = iqs × sinθ + ids × cosθ 

 
 The above equations can be combined and 
simplified to yield: 
 
IQ = ia × cosθ + (0.57735 × ia + 1.1547 × ib) × sinθ 
ID = ia × sinθ – (0.57735 × ia + 1.1547 × ib) × cosθ 
 
PI current controllers: The two PI regulators control 
the current components, IQ*  and ID*, defined by the 
torque and flux controllers. These are standard PI 
controllers of the form that is depicted in Fig. 4: 
 The output voltage is the control variable which is 
adjusted to ensure zero error in actual and commanded 
current. In terms of the MCU, the PI controller is 
defined as a difference equation. Using s = l-z−1, the 
difference equations for the PI controllers become: 
 
VQ = VQ × z−1 + kp(IQ_err – IQ_err × z−1) + ki × IQ_err 
VD = VD × z−1 + kp(ID_err – ID_err × z−1) + ki × ID_err 
 
where, z−1 is a delay operator. Therefore, (V×z−1) and 
(error×z−1) are previous values of the voltage and error 
respectively. 
 
2-3 Phase transformation: The 2-3 phase 
transformation is used to convert the stator voltages, 
VQ and VD, into phase voltages va, vb, and vc. The 
conversion is comprised of the reverse vector rotator 
and the dq to abc transformation which are defined as: 
 
Vector rotator dq-abc transformation 
vqs = VQ × cosθ + VD × sinθ va = vqs 

vds = VD × cosθ – VQ × sinθ vb = –
1

2
vqs –

3

2
vds 

 vc = –(va + vb) 

 
 

Fig. 5: Resulted line-line voltage 
 

 
 

Fig. 6: Overall drive system 
 
 These equations can be combined and simplified to 
yield the equations: 
 
va = VQ × cosθ + VD × sinθ 
vb = –0.5va – 0.8660254 × (VD × cosθ – VQ × sinθ) 
vc = –(va + vb) 
 
High time calculations: Output of the 2-3 phase 
transformation block are the voltages for va, vb and vc. 
The final step is to convert these voltages into PWM 
duty cycles. The PWM duty cycles can range from 0-
100% where 0% represents the negative peak of the 
sinewave and 100% represents the positive peak. This 
means the zero crossovers is at 50% duty cycle. The 
equations to convert the phase voltages to PWM duty 
cycles are given below: 
 
A-HIGH = va × Period/2 + Period/2 
B-HIGH = vb × Period/2 + Period/2 
C-HIGH = vc × Period/2 + Period/2 (2) 
 
 From practical point of view, the resulted line-line 
voltage may be similar to Fig. 5.  
 
Experimental aspects: Because of the paper limitation, 
it is not possible to overcome evaluation of all 
schematic hardware and experimental results. In two 
follow papers, the schematic hardware and overall 
system performance will be described. But for a 
perspective, Fig. 6-8 show the overall evaluated system 
and its performance after gains adjusting. 
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Fig. 7: Motor speed ripple in control mode 
 

 
 
Fig. 8: Motor running during steady state 
 
 Gains adjusting are almost a hard work. The kp 
gain determine overall system performance and the ki 
gain is used to zeroes the error in steady state. At the 
first time these gain may set to zero. Then the kp gain 
increase until the response become as fast as possible 
with no overshoot. Then the ki will be set to a small 
number. 
 To verify the speed regulation and response time, it 
is better we examine the system in speed control mode 
rather than torque mode.  
 We use a simple frequency to voltage converter 
using lm331. The output of shaft encoder is fed to this 
simple circuit, so by using a storage oscilloscope we 
can analyze the speed tuning and response time for 
adjust ki, kp gains respectively (Fig. 7).  
 

MATERIALS AND MATHODS 
 
 In general, this system consist of one processor 
board, one auxiliary board and a 3-phase induction 
motor. The processor board consist of a MC68332 as 
main processor and it’s peripherals such as RAM, A/D 
converter, buffers and others. 16 bit data bus is 
constructed by two 32k*8 bit SRAMs. memory back-up 
circuitry that is combined of two Ultra-capacitor and 
MAX691 is sufficient for three month, so the needing 

for any EPROM, EEPROM or FLASH is removed. 
MC145050 is used for A/D conversion. This chip is 
well suited for MC68332 processor in 10 bit resolution.  
The auxiliary board consist of some logic ICs and OP-
AMPs for pulse and analog-signal conditioning 
respectively. It also has a insulation-barrier to 
completely insolate the controller-board from power-
stage. Two CSNE151-100 hall-effect-sensor is used in 
this board for phase current sensing. The power-stage, 
also, is present in this board that itself consist of three 
IR2113 as gate-drivers, IRF840 as power switches, 
RCD Snubbers, over-current-protection circuitry and 
some others. 
 The induction Motor is a 3-phase, 220V/380V, 
120W, two pole type, that a 200 pulse/rev shaft-encoder 
is coupled to it’s shaft. 
 

RESULTS 
 
 This study propose a basic vector control algorithm 
and it’s implementation for induction motor control. It 
show that the control schema consist of several 
functional blocks. These blocks is discussed in some 
details and a few application tips for implementation of 
these blocks into hardware is offered. At last, 
experimental results show the validation of the 
proposed algorithm and it’s implementation. 
 

DISCUSSION 
 
 Today, there is a wide variety of DSPs and 
algorithms those are optimized for Motion-control. If 
our goal was only the vector control of the induction 
motor, then it was better that we choose other type of 
processors, and off-course, a great optimization in cost 
and developmental-time would be achieved. But our 
final goal was to design and construction of a very 
powerful Single-Board-Computer (SBC) using 
MC68040 that can be used for any processes. So we 
decided to choose one 68k family processor like 68332, 
because it is well suited for motion control tasks and off 
course the CPU32 has a great compatibility with 68040 
processors. 
 

CONCLUSION  
 
 Vector control systems, for the most part, are 
comprised of the same control blocks. However, some 
systems implement more precise calculation methods 
for determining and controlling rotor flux. In the next 
design we will use the very powerful MC68040 for this 
art. The proposed system in this study can be 
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foundation to implementing more advanced and precise 
techniques using 68040. 
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