American J. of Engineering and Applied Science®)2481-487, 2009
ISSN 1941-7020
© 2009 Science Publications

An Original Geometric Programming Problem Algorithm to Solve
Two Coefficients Senditivity Analysis

!Abbas Y. Al-Bayati andHuda E. Khalid
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Abstract: Problem statement: It has been noticed by Dinkel and Kochenberger tthey developed
sensitivity procedure for Posynomial Geometric Paogming Problems based on making a small
changes in one coefficienApproach: This study presented an original algorithm fordfirg the
ranging analysis while studying the effect of pdsaions in the original coefficients without regal

the problem, this proposed procedure had beendthpp two coefficients simultaneously. We also
had developed one of the incremental strategiesake suitable comparisorResults: Comparison
results had been done between the gained resuit fhe sensitivity analysis approach and the
incremental analysis approacBonclusion: In the standard Geometric Programming Problem, we
obtained an original algorithm, for the first tim®y changing two coefficients simultaneously in the
objective function.
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INTRODUCTION variable coefficient vector c are differentiable an
open neighborhood of c. These differentials are:
This study deals with the sensitivity analysighe

case of less than type inequalities. Techniqueigoed &V _< gd_q )
to study the effects of small changes in the inputv’ <= ¢
variables on the optimal solution of an optimizatio
problems, with out having to solve the entire peoil g e | oy e dc,
again and again, are known in the literature as™® :Zjl{b'(”zklhﬂ@)Zub(k)c_l} 3)
sensitivity analysis techniquds Dinkel and | '
Kochenberger studying the effect of changing ~
coefficients separately on the optimal solufidh

......

where, J;/ (') represents the components of the inverse
MATERIALSAND METHODS of J©) and:

The mathematical formulation of the sensitivity d)\k:zi”:mkdesi k=1,...F (4)
analysis for posynomials (polynomials with positive
coefficients) are discussed in the researaif The major restriction of this result, from an
Dinkel et al.*) as follow: applications point of view, is that are no inactprémal
constraints at the optimal soluti@ > 0foralli) .Thus

assuming the problem has been reformulated, if
necessary , to meet this restriction.

For differential changes ddhat maintain the
positivity conditions on all dual variables, theandual
solution is estimated as:

Theorem 1. Suppose that the primal geometric
program has d>0 and rankY& m If the solution to the
dual geometric program ha&>0 and if the Jacobian
matrix J@)with components is:

(1) KD
bq bq —

AO= L iy ) 7L @D o5 vds iz1.n 5)
q

nonsingular atd’, then the functions which give the ' =\ 4+ Zn:g_ de. )

optimized parameter® and v(3) in terms of the =R
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where, @& is given by (3). Once the dual solution is Lower Upper
known the estimate of the new primal solution is bound Range of 4 bound
computed as:

sv(d) i0[0]
5N () i0[K]

and
(logx)=[(a ) @ )" @ J () @®

Where: Fig. 1: Cross-shape figure

C Xdxd .. . xi :{

(@)

Step 2: Calculate the cofactors &; and A, in those
_ equations obtained in the step 1, we note thasitheof
k=)' :1’;""”0 ) ©) A\ is the opposite to the sign &f for eachi=1, 2...,n.
logd; —logA, —log(c + d¢ )

logd; +logv @ )~ log(G + d¢ )

. 1 Step 3: Categorized those equations in two groups:
i=n,+1,...,n

e The first group is containing the +ive cofactors of
and n is the number of terms in the primal objective A, and the —ive cofactors a6
function. o _ « The second group is containing thiwe cofactors
If the sub-matrix ) = 1,..., n, j =1, ..., d, has of A; and the +ive cofactors &
rank d then &) is nonsingular for eact>0.

_ _ Step 4: From the first group, calculate the lower bound
Theorem 2: Suppose the primal GPP has d>0 and let, A, and the upper bound @, while the upper of,

b(), .j = 1 m are Iinegrly independent._lf thepbs and the lower bound af, will be calculated from the
matrix with components;§), | = 1,..., nnand j=1,...d 2nd group

has rank d then @j, given by (1), is nonsingular for
each >0. Since we are interested in other thanStep 5: Since our searching is concerned about the
range of any two coefficients in the objective fiioic

. . - dc
differential changes we will mterpre% and e as by changing them simultaneously so any small change

rates of chand®. That is: in the lower bound of\; will effect on the upper bound
of A, similarly, upper bound of; and lower bound of
v V-V A, will be effected, this connection gives us anigpil
vy (10)  to construct the cross-shape in Fig. 1.
, Step 6: Find the intersection points &f+dd, = 0 with
de _6-¢ (11)  AjandA, axis.
G G

Step 7: Determine the pieces of the those lines between
where,v' and ¢ denote the new values of the objective the intersection points and study all points at feces
function and coefficients respectively. to fln_d the most |mport[ant answer on the following

most important question:

o . _ At which point on the pieces of the 1st and 2nd

An original GPP algorithm: Before we make some g:q,ns will we find ma, with minA, simultaneously?

observations of the new original procedure, let us

consider the outlines of this algorithm: Step 8: After finding those points, apply the following
rule:

Step 1: Putg + do = 0 as an equations of the two

variableshA; andA, where i = 1, 2...,n is the number of « The upper bound o#; is then the minimum of

dual variables. Aq>0 for those i when (14)<0 for which (13) is
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satisfied. If A;<0 evaluating (13) for those | for Note3:

which (14)>0 then the lower bound Anbeing the
maximum suck\™, by regarding the observations «
(a), (b) and (c) in Note 2

Step 9: End.

Some theor etical observations:
Note 1:

Note 2:

(&) We suggest that the lower bound Ap don’t

(b) We make the same steps on the bounds,; afith

(c) At changing in ¢and ¢ simultaneously we must

If we attempt to change the upper boundacénd
A, simultaneously or the lower bourdkisand A,

The above algorithm is originally designed by us
with a numerical evidence we put those results in
Table 1-4 which are verified by using our programs
writing in Matlab

If we try to change three coefficients
simultaneously, this required to study three
dimensional space and this is not the domain of our
research in this research but it is a good field to
study in future

this will shift the cross-shape right or left taple 1: The effect of the sensitivity analysi®iproblems

respectively. The important thing now, because weg

have consider the change in two coefficients, thig
yields two dimensional space for whigy is the 2
horizontal axis and)\, is the vertical axis .The
equationsd+dd; = 0 are straight lines ia; andA,
plane

G (B)
0.012624766 -0.012624766
-0.012624766 0.012624766
3 0.052363195 -0.052363195
4 -0.052363195 0.052363195
5 0.039272396 -0.039272396
6 -0.052363195 0.052363195
7 -0.002029759 0.002029759
8 -0.018698897 0.018698897
9 -0.005918973 0.005918973

Table 2: Maximum and minimum changes in 9 problems

exceed the negative value of © maintain the

Al AZ

posynomial nature. Also fdk,
replacing (A) by (B)

note that this changing is with respect (the céses
A>0 - A,>0 andA<O0 — A,<O are out of our
ranges since it is contradict the conditions in th
problems)

@8\1@0‘!#(}3&)!4_

-83.892382270 3329233.990000

11.911373650 -472697.864300
-15.462960660 613641.083500
7.751342565 -307608.766300
-15.462960660 613641.087500
7.635325135 -303004.663300
21.496974180 -853094.403500
21.496974180 -853098.403500

1.056374340 -4192.177244

Table 3: Allowable ranges in the sensitivity anayfer changing in cand ¢ simultaneously

c, =0.419 c,=0419 ¢, =0 c, =3.47537434 c,=3.419 ,=3.419 ¢ =0581 c, =4.419
Dual variable c,=1195997 ¢,=91997 c, =12227282.17 c,=91804,822 «¢,=99997 ¢, =99997 c, = 1245997 c,= 90997
5 0.720567740  0.86575708  0.714266600 0.88173357 81018108 0.88036199  0.7087731 0.88676459
5, 0.279443226  0.13424920  0.285733390 0.11826643  8685D2  0.11963801 0.2912269 0.11323540
3, 0.026135030  0.62833053  1.005022700 0.69459555  3D7ERIL  0.68890667 -0.02278494  0.71546250
5, 0.978887740  0.37669224  1.005022700 0.31042722 195286  0.31611609 1.02780772 0.28956027
3, 0.019601270  0.47124789  0.999999930 052094666 ~ 9952B1  0.51668000 -0.01708871  0.53659686
5, 0.973864970  0.37166947  0.062025560 0.30540445 602339  0.31109333  1.02278494 0.28453749
3, 0.061012490  0.03766942  0.062025560 0.03510077 5085234 0.03532129  0.06290879 0.03429189
5 0.562067060  0.34702305  0.571399860 0.323359810 2383303 0.32539131 0.57953638 0.31590822
3, 0.077886920  0.00981671  0.080841130 {Not allowabl®.00247612  0.00296938  0.08341667 -0.00003239

{Not allowable

sinced, = &, =0}

sinced, = 0}

{Not allowable} {Not allowable}
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Table 4: Allowable ranges in the sensitivity analyand increment analysis for changing irand ¢ simultaneous

Cl= Cl= Cl= Cl=
0.01092549664174 0.01092549664174 0.5534959906538.5534959906535
= = = = Cl=01 Cl=-1 Cl=-1 Cl=

Dual 1.98907450335826  1.98907450335826  1.446504@288 1.44650400934649 c2=19 c2=1 c2=1 c2=1
variable Sensitivity analysis Increment analysis ns&&ity analysis  Increment analysis Sensitidhyalysis  Sensitivity analysis ~ Sensitivity analysidncrement analysis
61 0.57324699633083 0.38599011429509 0.86890197867858971437867349 0.59159174061681  0.4849724293108057099690865665 0.36942007548640
5*2 0.42675300366917  0.61400988570491  0.131098021320421028562132651 0.40840825938319  0.5150275706892042900309134335  0.63057992451360
6; 0.13349054427694 0.24416928708291 0.065257991790819342482843379 0.12925686098397  0.1951260938996d.13400982634819 0.25256707117627
51 0.33702897400910  0.67942180780158  -0.00000000@000084378174399595 0.31299736329592  0.51454582889900.33624254943152  0.70749528278640
6; 057324699633083 0.38599011429509 0.86890197867858971437867349 0.59159174061681  0.4849724293108057099690865665 0.36942007548640
5*6 0.00000000000000  0.00845459440089  0.1422170300348%0349107343137 0.00882425531404  0.01683442979603.00108234531952 0.00743631805382
6; 0.28661924200770 0.18452264364437 0.292235798439414135637128838 0.28696790792462  0.22564594540339.28657668068146 0.17726556918633
5; 0.33440663034118  0.34089955855327  0.152494808428085656420153804 0.32311940010716  0.32222071317368.33579107360347  0.34372388482617
6; 0.30572287516258 0.58011527000410 0.044152223550120886423045173 0.28949298896763  0.45032064286010530771356341156  0.60214600194424
5;0 0.21919054316968  0.32349066748720  0.128041448306986814278031812 0.21353494141429  0.2768382124962920117234285314  0.33123284006549
611 0.20023408123380 0.44376968413946 0.07694923074R6E6391518337738 0.19258452620639  0.336291951674P033624254943152  0.46241960303047
5;2 0.33370289740091  0.67942180780158  -0.00000000@000084378174399595 0.31299736329592  0.514545828399 {Not allowable} 0.70749528278640

{Not allowable}

RESULTS

Example 1: Consider the following GPP with degree of
difficulty two:

>with (optimization):

— O 2

2.419 9599
1-3,) | 8,.In| ——=
a-s) 57wl 5T

NLP solv:
ming, (X)= 2.419% % %+ 95997%*® x ¥*° In(10) In(10)
Subject to: , 8,In(288670), (138, ).In(25819)

In(10) In(10)
28867%"° % X% < 1 5 i 0-038668 58, ) [ 0.038660; +3,
25819){0'2 )§1X48)<315 1 .. 5. n[és] . 6 n[%]
0.03866 + 0.03866x< 1 In(10) In(10)
0.0081666% + X' %< 1 5 _In[o.oome«s@ +68j 5 .In((67+68J
0.0834%'< 1x> 0 E 1,2,3,4,5, . 5 ’ 3

In(10) In(10)

Here the degree of difficulty is d = 9-6-1 = 2.
The dual objective function is:

2(3)=8, |og%+62 Iog%“s logg,+3, logg
2

1

-1.078833948, ,{2.8,+ 0.675,

=0.80,+ 0.7%,+0,+0,+0,= 1+ 4.8,- 038
+0, =-0.8,-0.750, + 0, = 00,+d,= 1},
assume= nonnegative, maximize)

3

3,109 %2 +5,log 125, log L2 [5.26927101441275526,
° ° ! [8 = 0.332342173499054206,
+8,l0g%24 4 5, 10gc, 5 = 0.502081435651985375,
8 ® = 0.330558085797352685,
. . . d; =0.360758067560167442,
First this system can be solved by: 5, = 0.124330967111861854,
"NLPSolve" Maple function gives following 03 = 0.6694419142026204,
results: 0y =0.00516961698108152346]]
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Suppose cchange to gA; and ¢ change g+A,

Problem 3 (for i = 3):

and consider 08, 0=5 =& +dy fore: o _
maxA\;which is the min,
s.t.
A, A, 0.021646628,-0.000000545669938
J 1
&b {bl Ve, TP )_2} +0.6694419142 = 0
=h (1) A, A, with A;<0; A,>0
J; { b, (2 )— )—}
(12) Problem 4 (for i = 4):
J;i|:b1(1)%+ b, (1)%2 + minA; which is the ma,
+b (2) 1 2 s.t.
N A, -0.021646628,
JZ{bl @+ b )ﬂ +0.0000005454669928+0.3355808580 = 0
with A>0; A,<0
We have: Problem 5 (for i = 5):
(b @(b 03+ b @3)+] A, maxA; which is the min,
:6i — S.t.
b (2(h WI+ b (DF) |G (3 001623497,
. 7 -0.00000040910024244+0.502081435 =0
Hb (b O+ b @)+, } with £4,<0- 50
b (2 DI+ b (2 c
@b w3t b 23) T Problem 6 (for i = 6):
Let: minA; which is the Ma&,
s.t.
A=[b, Qb OI+ b @F ¥ b (2 (1a)  0.021646628:+0.000000545669928
(b (M DI+ b (2 +0.3305580857 = 0
(b (2 L+ b 23 ] with AS0: A,<0
B=[b, (b, WL+ b (2% ¥ b (2 (15) Problem 7 (for i = 7):
+(b,(2)(b, I+ b (2
(b, W5+ b (202 ] minA; which is the maX;
Evaluating (A) and (B) fori =1, 2,....9 we willge S

Table 1.
Substitute these values in (13) and solve
following nine optimization problems:

Problem 1 (for i = 1):

maxA;which is the mid,

S.t.
0.00521900206%;-0.0000001315120829
+0.8756690329 = 0

with A1<0; A2<O

Problem 2 (for i = 2):

minA; which is the ma,
-0.00521900206%,+0.0000001315120829
+0.1243309671 =0

with A;>0; A,<0

-0.00083909034,+0.0000000211439822
+0.036075807 = 0
with A;>0; A,<0

the"

Problem 8 (for i = 8):

minA; which is the mak,

S.t.
-0.00773001116%,+0.00773001116%,
+0.3323421734 =0

with A1>0; A2<0

Problem 9 (for i = 9):

minA; which is the mak,
s.t.
-0.00244686793,+0.000000616579@%,
+0.00516961698 = 0
with A;>0; A,<0
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The solutions of these problems can be tabulaed a o ] ) [ 0] [ o
Table 2. 1 -1 0 0

Depending on the step 8 of the original algorithm -0.2386 -0.31818 q 0.6205
we conclude that: 0 0 1 0

0 1 0 0

. Lower bound ofA;= max {A i i= 1,3,5} = -0.9887 1.3182 1 -0.3295

-15.46296066 1 ' PMO=1 5 9887| M| 0181 "] - PO 4 3505
* Upper bound ofA; = min {Ay, | = 2,4,6,7,8,9} = 1.5 15 0 -1

1.05637434 0 0 0 1
* Lower bound ofp; = max {A,, i = 2,4,6,7,8,9} = -1.499 0 -2 2.9

-4192.17724 -0.7499 1 2 -0.9499
* Upper bound of A,=min {Ay, i=1,2,3,5}= | 0 | | 0 | | 1] | o

-61361.0835

. . . _ G G, GA,
This implies that: 0z©®)=9, Ioga— +90, Ioga— +90, Ioga—
1 2 3

-15.462960664,< 1.05637434 A, CAs
-4192.1772444, <613641.0835 +0,10075 7+ 851006, + 8, log=p =

To satisfy the Note 2 part (a) we must observe tha +5,10g52% + 5,109 %4 4 5_log e
this means thatp, =c,-c, - ¢,=A,+¢,> 0 and this ; O, o
occur at A, >-2.419; therefore we replace the lower +35,,log Clao)\s +3,,log Cuds +3,,l09¢,

bound of A; from -15.46296066 to -2.419, but we 10 11

realize this value will effect on the upper bourfdie. o )

We evaluate, at the constraints in the problems 1,3  The value of the objective function can be
and 5 mentioned above and we select the minimurfivaluated as follow:

value ofA, ( facing toA; = -2.419) this implies that: > with (optimization):

-2.4194,<1.056374334- 0> ¢ <0.347537434
-4192.1772444,<1131285.17- 5,1 n( 1 j (1- 61).In( 1 ]
91804.822p76s, <122728.17 NLPsoly 5), 1-9,

In(10) In(10)

This will give the upper and lower bounds of the
coefficientc, .

63.In(0'1(63+64] 64.In[ 0.1 67] 66.In[65+67]
Example 2: ming,(x)=x, +%° + % 5 S
In(10) In(10) In(10)
Subject to: 5.+ 5.+ 5, +d
0108 + X, )X < 185% < 1 > 6"'”(667 %l =5, ) % s,
" X5 X6 7 = Xl - + i + 8 + 9
(X6 +X;1)X;151(X7+ X;2'9)X_2131 In(10) In(10) In(lO)
XeXX5 <1 801 [6“); 6“} 611.|n(e_’106_:r 0 “]
+ 10 X2 {,5.(1-8,)
X1y Xp, X3, X4y Xgy Xgy X7, Xg> 0 In(10) In(10)

Here d = 12-8-1 = 3. 0T, 000,070,070 10,

To find bn(O) setd; = & = & = 0 in the linear +0,+8,,=00.58,-8,-96,=0,0,+0 ,+
equations of the dual constraints,(t) can be obtained 9 ~8:.=0,~2.98,+3,,+ 28 ,= 0},
similarly by settingd; = 1, 8,= 8 = 0 ky(2) is the value assume nonnegee, maximize)
obtained by substituting; = 0, 8, = 1, 8 = 0. Finally
bm(3) will be obtained by substitutingy = 0,5,= 0,8, [0.36901663595333999,8
=1 where m=1,2,....12. So we get: [0, = 0.776945228258277830
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03 =0.15639129886847561,0
011 = 0.11529417638566357

0 = 0.086480172705934083,0
0, =0.1037906688075505330
0 =0.09798366106092626,8
0; =0.290488953113046455
03 =0.2907433864.034649,6
09 =0125507818972236702]

CONCLUSION

This study deals with geometric programming
problem where exponent matrix & of full rank, the
degree of difficulty is greater than zero and the
constraints at the case of less than inequalities we
made the changes in two coefficients of the objecti
function simultaneously. In the given examples we
show in Table 3 and 4 containing numerical restdts

But 62 = 1'61, 65 = 61 and612 = 64.
Again by applying the algorithm we will get:

-0.98907450335862 4,<0.446504009

0.0109259664174 & <1.4465 1.

-0.4465040094,< ¢, <0.98907450335862
0.55495990635¢, <1.9890745033586

2.
We have developed the formula of the increment

analysis for single coefficieft to multiple coefficients
as follow:

d n
da = [ k)i 16
Znu)kz_lqu RO ey @8
d = The degree of difficulty
n = Number of coefficients that we will change 4.

Finally, we tested the efficiency of our formulg b
making Matlab program and fettered the results by
Table 4.

DISCUSSION

In this study, we have proposed an original
algorithm associated to the geometric programming
problem (GPP) and signomial programming problem
(SPP) by changing two coefficients in their objeeti
function simultaneously to study the effect of riswgg
analysis of these algorithms without resolving the
algorithms again. The original algorithm given st
study has been proved both theoretically and
numerically by using high degree of difficulty test
problems.

487

test the effectiveness of our original algorithm.
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