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A Fast Series Active Filter using Sliding Mode Conbl to Correct and
Regulate Unbalance Voltage in Three-Phase System
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Abstract: Problem statement: A Sliding Mode Controller (SMC) with fast referencmltage
generation to correct and regulate unbalance weltag three-phase system was proposed.
Approach: The compensation algorithm was not based on threwnetrical component
decomposition so the controller can yield a faspomse that was essential in such a critical nee t
control work. The reference voltages were fed ®3MC, which was a robust closed loop controller.
Results: The proposed algorithm and control scheme of saigise filter could correct and regulate
unbalance voltage in three-phase system underramspifault conditions of the utility supply.
Conclusion: A design example and its simulation results protieel concept and validated the
proposed algorithm.
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INTRODUCTION controller can yield a fast response that is essleint
such a critical real time control work. Three SM&ls

Power quality in ac three-phase system could b&€mployed to shape the actual load voltage according
analyzed by IEEE std. 1159-1995, for example; gaita to the reference voltage. SMC is a robust closeg lo
unbalance, voltage sags, voltage swells, partiabia controller, which basically performs better thare th
loss of one or more phases. Voltage unbalance cagpnventional open-loop feed forward technique. The
occur due to an incomplete transposition ofSAF employed for the compensation is composed of a
transmission lines, unbalanced loads, open deltthree-phase PWM voltage source inverter injecting
transformer  connection, disconnected three-phasgompensation voltages through three separatg 1-
capacitor bank and the proliferation of nonlinead a transformers. The output of the inverter is coneect
large single-phase loddls Voltage unbalance worsens to a second order filter to eliminate high frequenc
the operation of AC electric machines. The negativeaysed by the switching action of the inverter. The
sequence component in voltage unbalance causes largecondary winding of each transformer is conneisted

transienlt current that leads to reduction]qf the negeries with each phase of the power supply as shown
torque, increase in losses and temperatur&'rigdese in Fig. 1
ir 1.

poor power qualities can degrade or damage th
electrical equipment connected to the system.

The method to improve the power qualities can be
done by using a three-phase series active filthichwv N
can correct the unbalance voltage ardulate to the
desired level. Power

At present, a number of algorithms and principles
are proposed in the literat{ité. By the way, most of
them are open loop control by using the decompuositi
of the three symmetrical components. e

This study proposed a compensation algorithn Z§ F 4@ Ripple fiter
using a Series Active Filter (SAF) associated viite i Ll
sliding mode controller to correct and regulate the 3phase PWMYVST H
unbalance voltage in three-phase system. The plénci dodetndse
of proposed voltage correction is not based onethre ) ) o
symmetrical component decompositon so theFig- 1: Diagram of proposed series active filtehgp
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MATERIALS AND METHODS

Principle of voltage correction:
Reference voltage generationThe phasor diagram of
a balanced voltage of utility three-phase linetisven
in Fig. 2. The vectors formed by,w Vhc and v,
represent the line-to-line voltages whilg v, and v
represent the phase voltages.

Under fault condition, the voltage in each phase o
Fig. 2 is unbalance. The instantaneous voltagenase
A with amplitude \4 and phase angke can be written Fig. 2: Phasor diagram of a balanced voltage dityuti

as shown in Eq. 1: three-phase line
v, (t) =V, sin(wt + @) (1) Ve - ? ® (ome L2
+ S—
. . Load phase-:
This voltage can be derived by Eq. 2: oiﬂﬁ:;:a Gatine
i ating Three-phase
Vi - € uy1) . “ voltage
Va(t) = Vab(t) -V ca(t) (2) . SMc Signal —1/] souree
Load Phase-B Generator mvertet
. . voltagy
where, y, and v, represent the instantaneous line-to- ° af
. - . VTE C - € <
line voltages shown in Fig. 2. © 5 )
The amplitude, Y can be calculated from dataina |_, *
phase-c

short time window using two samples of the signg) v voltage
as shown in Eq.'3:
Fig. 3: Sliding mode controller block diagram

v = V2 V00~ 2V age 1Y aqCOSOTIP® @) . The variable structure control law of SMC is given

@ sin(T,) y:
Where: u(t) = —p sgr( s(t) (6)
Vas)and g = The phase-A voltage at instagt.q

and { Respectively or
Ts = Sampling period equal t@.-tg
_|-p ifs(x,t)>0
The reference voltages for the SMCs are calculateéj(t)_{ p ifs(x,t)<0 ()
as given in Eq. 4 and 5:
Where:
Vier (1) =Mxva(t) (4) p = Sliding gain
Va sgn( ) = The signum or the sign function

Vew| 11 10 The switching function s(t) is defined by:

Viety :T 1o a|vg )

Viete 3 1 a o]0 s(x,t)=e (8)
Where: where, e is tracking errer load phase voltagezy
Viaea = Rated amplitude of load voltage
a =€ = Phase-shift operator PWM gating signal generation: The gating signals

of the inverter are generated by comparing therobnt

Sliding Mode Controller (SMC): The reference  command, u(t) in Eq. 7 with a triangular waveform
voltage generated from Eq. 4 and 5 are fed to MES whose frequency is kept constant at 6 kHz as shiown
as shown in Fig. 3. Fig. 4.
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Fig. 4: Gating signal generation diagram

Unbalance utility
distribution system

Measurement of utility
line-to-line voltages

!

Calculation of
phase-A instantaneous voltage

!

Caleulation of
phase-A voltage amplitude

!

Generation of
reference voltages

}

Comparisonbetween reference voltages
and actual load phase voltages

I

Fig. 5: Voltage Correction and regulation flowchart

Table 1: Design example

|

Command output generation from
sliding mode controllers (SMCs)

|

PWM gating signal generation
sent to 3-phase voltage source inverter

l

| Measuremment of load phase voltages

I

Utility supply frequency
Rated load phase voltage
Load power factor

Series transformer turn ratio

DC link voltage

Invert switching frequency
Filter inductance
Filter capacitance

Power circuit implementation: As shown in Fig. 1,
the power circuit of the series active filter catsiof a
three-phase PWM voltage source
separate Ip transformers and a second order passive
filter. The circuit design for the implementatioancbe

found id”, hence it is not included here.

Voltage correction and regulation flowchart: The
procedure to correct and regulate the unbalandaege|

is shown in a flowchart (Fig. 5).

Design example:In order to prove and validate the
concept of the proposed algorithm, a design exaisple
done in accordance as the procedure illustrate eabov

The design parameters are shown in Table 1.

inverter, three

RESULTS AND DISCUSSION

The proposed algorithm has been verified by
simulation. The results are given into 5 categoiies
accordance as the arbitrary imposed supply comdgitio
as shown in Fig. 6-10. In each case, the compensato
begins to operate at 40 m sec.

In order to quantify the degree of unbalance & th
voltages, an unbalance factor must be defined. The
unbalance factor, UF is the ratio between the séim o
zero sequence and negative sequence voltagies
and the positive sequence voltage v

UF=YoV2 (9)
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Fig. 6: (a): Load phase voltage, compensating gelta
and source phase voltage in case of balance
voltage sags with |MF| = 0.60; (b): The
corresponding UF and MF of load phase
voltage
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Fig.7: (a): Load phase voltage, compensating veltagd source phase voltage in case of balancegeotaells
with [MF| = 1.40: (b): The corresponding UF and bfHoad phase voltage
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Fig. 8: (a): Load phase voltage, compensating geltand source phase voltage in case of unbalartzgesags
with |UF| = 0.20 and [MF| = 0.63 (b): The corresping UF and MF of load phase voltage
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Fig. 9: (a): Load phase voltage, compensating gel@nd source phase voltage in case of unbalafizgeswells
with |UF| = 0.12 and [MF| = 1.31; (b): The corresing UF and MF of load phase voltage
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(a): Load phase voltage, compensatuodfage and source phase voltage in case of leploas with

|[UF| = 0.58 and |MF| = 0.66; (b): The correspondifgand MF of load phase voltage

Similarly, the error between the load voltage andthe

sliding mode controller. The simulation results

the required rated voltage can be quantified uging show a very good performance of the proposed
magnitude factor. The magnitude factor, MF, is thealgorithm and control scheme under arbitrary fault

ratio between the positive sequence voltage aradedl r
line-to-line voltage required by loadg;

MF:L
Vv

(10)

rated

conditions of the utility supply.
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Case 1: Balance voltage sags with [MF| = 0.60
Case 2: Balance voltage swells with |[MF| = 1.40
Case 3: Unbalance voltage sags with |UF| = O&td

IMF| =0.63 =
Case 4: Unbalance voltage swells with |UF| = 04rd
IMF|] =1.31

Case 5: 1-phase loss with |UF| = 0.58d |[MF| = 0.66

The poor quality power supply was imposed to the
load in arbitrary cases, which possible occurseal r
situation. The above results show good performarice
the filter in dealing with all cases of the poorwaw
supply, which were quantified by two factorss; Mita
UF. The filter could bring the load phase voltages
their normal condition after the compensating \gd&
were injected into the system within 2 msec. As lsan
seen in the UF and MF curves, they were eventually
brought to the normal value at 0 and 1 respectively

CONCLUSION 3

In this study, a sliding mode controller with fast
reference voltage generation to correct and regulat
unbalance voltage in three-phase system is prakente
and analyzed. The algorithm avoids the computakiona
burden from three-symmetrical component
decomposition. It was successfully implemented with
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