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Abstract: Problem statement: Flutter derivatives are the essential parameters in the estimations of 
the flutter critical wind velocity and the responses of long-span cable supported bridges. These 
derivatives can be experimentally estimated from wind tunnel test results. Generally, wind tunnel test 
methods can be divided into free decay test and buffeting test. Compared with the free decay method, 
the buffeting test is simpler but its outputs appear random-like. This makes the flutter derivatives 
extraction from its outputs more difficult and then a more advanced system identification is required. 
Most of previous studies have used deterministic system identification techniques, in which buffeting 
forces and responses are considered as noises. These previous techniques were applicable only to the 
free decay method. They also confronted some difficulties in extracting flutter derivatives at high wind 
speeds and under turbulence flow cases where the buffeting responses dominate. Approach: In this 
study, the covariance-driven stochastic subspace identification technique (SSI-COV) was presented to 
extract the flutter derivatives of bridge decks from the buffeting test results. An advantage of this 
method is that it considers the buffeting forces and responses as inputs rather than as noises. Numerical 
simulations and wind tunnel tests of a streamlined thin plate model conducted under smooth flow by 
the free decay and the buffeting tests were used to validate the applicability of the SSI-COV method. 
Then, wind tunnel tests of a two-edge girder blunt type of Industrial-Ring-Road Bridge deck (IRR) 
were conducted under smooth and turbulence flow. Results: The identified flutter derivatives of the 
thin plate model by the SSI-COV technique agree well with those obtained theoretically. The results 
from the thin plate and the IRR Bridge deck validated the reliability and applicability of the SSI-COV 
technique to various experimental methods and conditions of wind flow. 
Conclusion/Recommendations: The SSI-COV was successfully employed to identify flutter 
derivatives of bridge decks with reliable results. It is a proven technique that can be readily applied to 
identify flutter derivatives of other bridge decks either by the free decay or the buffeting tests. 
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INTRODUCTION 
 
 Long-span cable-supported bridges are highly 
susceptible to wind excitation because of their inherent 
flexibility and low structural damping. Wind loads play 
an important role in the design of these structures. A 
wind-induced aerodynamic force can be divided into 
two parts: a buffeting force that depends on the 
turbulence of incoming flow and an aeroelastic force 
that originates in the interaction between the airflow 
and the bridge motion. The motion-dependent forces 
feed back into the dynamics of the bridge as 
aerodynamic damping and stiffness; the effect is termed 
‘aeroelasticity’ and is commonly described via ‘flutter 

derivatives’. The problems of aerodynamic stability 
including vortex-induced vibrations, galloping, flutter 
and buffeting, may have serious effects on the safety 
and the serviceability of the bridges. Among these, 
flutter is the most serious wind-induced vibration of 
bridges and may destroy the bridges due to diverging 
motions either in single or torsion-bending coupled 
mode. Notorious examples by the flutter phenomenon 
are the failures of the Brighton Chain Pier Bridge in 
1836 and the original Tacoma Narrow Bridge in 1940. 
The flutter derivatives depend primarily upon the 
conditions of wind, the cross-sectional shape and the 
dynamic characteristics of the bridges. Nevertheless, no 
theoretical values exist for these derivatives for various 
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bridge shapes except only for a simple thin plate 
section. A major research tool in these studies is, 
therefore, a wind tunnel test, in which a geometrically 
and aerodynamically representative scale model of a 
length of a bridge deck is mounted in a wind tunnel. 
The flutter derivatives are non-dimensional functions of 
wind speed, geometry and frequency of vibrations; 
therefore they can be applied directly to full-scale 
bridge in a piecewise manner.  
 The experimental method used for a determination 
of flutter derivatives can be grouped under two types, 
i.e. forced[1] and free vibration methods[2-5]. Having less 
emphasis on elaborate equipment, time and work; the 
free vibration method seems to be more tractable than 
the forced method. In the determination of flutter 
derivatives by free vibration method, the system 
identification method is the most important part 
required to extract these parameters from the response 
output of the section model. The free vibration method 
depends on system identification techniques and can be 
classified into two types, i.e. free decay and buffeting 
tests. In the free decay method, the bridge deck is given 
an initial vertical and torsional displacement. The flutter 
derivatives are based on the transient (i.e., free decay) 
behavior that occurs when the bridge deck is released. 
The buffeting test, on the other hand, uses only the 
steady random responses (i.e., buffeting responses) of 
bridge deck under wind flow without any initial 
displacement given to the model. Compared with the 
free decay method, the buffeting test is simpler in the 
test methodology, more cost effective and more closely 
related to real bridge behaviors under wind flow, but 
with a disadvantage that the outputs appear random-
like. This makes the parameters extraction more 
difficult and a more advanced system identification is 
required. 
 In most of the previous studies, flutter derivatives 
were estimated by deterministic system identification 
techniques that can be applied to the free decay method 
only. Examples of previous deterministic system 
identification that were applied to the free decay 
method included Scanlan’s method[2], Poulsen’s 
method[3], Modified Ibrahim method (MITD)[4] and 
Unified Least Square method (ULS)[5]. In these system 
identification techniques, the buffeting forces and their 
responses are regarded as external noises, the 
identification process then requires many iterations[3-5]. 
It also confronted with difficulties at high wind speeds 
where the initial free decay is drowned by buffeting 
responses[3-5]. Moreover, at high reduced wind speed, 
the vertical bending motion of the structure will decay 
rapidly due to the effect of the positive vertical 
aerodynamic damping and thus the length of decaying 

time history available for system identifications will 
decrease. This causes more difficulties to the 
deterministic system identification techniques[4,5]. In 
case of turbulence flow, the presence of turbulence in 
the flow is equivalent to a more noisy-input signal to 
the deterministic system identification. This made the 
extraction process more complicated and most likely 
reduced the accuracy of the flutter derivatives 
identified[3,4]. In addition, due to test technique, the free 
decay method is impractical to determine flutter 
derivatives of real bridges in field. 
 On the other hand, the buffeting test uses random 
responses data of bridge motion from wind turbulence 
only. This mechanism is more closely related to a real 
bridge under wind flow and is applicable to real 
prototype bridges. The method costs less and simpler 
than the free decay since no operator interrupts in 
exciting the model. However, as wind is the only 
excited source, it results in low signal-to-noise ratio, 
especially at low velocity and therefore a very effective 
system identification is required. None of the 
aforementioned system identification techniques is 
applicable to the buffeting responses tests. System 
identification techniques can be divided into two 
groups, i.e., deterministic and stochastic. 
 If the stochastic system identification technique[6-9] 
is employed to estimate the flutter derivatives of a 
bridge deck from their steady random responses under 
the action of turbulent wind, the above-mentioned 
shortcomings of the deterministic system identification 
technique can be overcome. The reason is that the 
random aerodynamic loads are regarded as inputs rather 
than noises, which are more coincident with the fact. 
Therefore, the signal-to-noise ratio is not affected by 
wind speed and the flutter derivatives at high reduced 
wind speeds are more readily available. These aspects 
give the stochastic system identification methods an 
advantage over the deterministic system identification.  
 Many stochastic system identification methods 
have been developed during the past decades, among 
which the Stochastic Subspace Identification (SSI in 
short)[7,8] has proven to be a method that is very 
appropriate for civil engineering. The merit points of 
SSI are: (1) The assumptions of inputs are congruent 
with practical wind-induced aerodynamic forces, i.e. 
stationary and independent on the outputs; (2) 
Identified modes are given in frequency stabilization 
diagram, from which the operator can easily distinguish 
structural modes from the computational ones; (3) 
Since the maximum order of the model is changeable 
for the operator, a relatively large model order will give 
an exit for noise, which in some cases can dramatically 
improve the quality of the identified modal parameters; 
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(4) Mode shapes are simultaneously available with the 
poles, without requiring a second step to identify them. 
There are two kinds of SSI methods, one is data-driven 
and the other is covariance-driven. 
 In this study, the covariance-driven stochastic 
subspace identification method is used to estimate the 
flutter derivatives from random responses (buffeting) 
under the action of smooth and turbulent wind. Tests 
are also carried out with the free decay method (single 
and two-degree-of-freedom) in order to examine the 
robustness of the present technique that the results are 
not affected by test methods used. To validate the 
applicability of the present technique, first numerical 
simulations are performed then sectional-model tests 
of a quasi-streamlined thin plate model, which is the 
only section that theoretical flutter derivatives exist, 
are performed under smooth flow. Encouraged by the 
success in the evaluation process, the flutter 
derivatives of a real bridge are determined. The two-
edge-girder type blunt section model of Industrial-
Ring-Road Bridge (IRR in short), a cable-supported 
bridge with a main span of 398 m in Samutprakan 
province, Thailand, was tested both in smooth and 
turbulence flow. Tests were conducted in TU-AIT 
Boundary Layer Wind Tunnel in Thammasat 
University, the longest and the largest wind tunnel in 
Thailand.  
 

MATERIALS AND METHODS 
 
 Theoretical formulation of covariance-driven SSI: 
The dynamic behavior of a bridge deck with two 
Degrees-Of-Freedom (DOF in short), i.e., h (bending) 
and α (torsion), in turbulent flow can be described by 
the following differential equations[9,10]: 
 

2
h h h se b

2
se b

m h(t) 2 h(t) h(t) L (t) L (t)

I (t) 2 (t) (t) M (t) M (t)α α α

 + ξ ω + ω = + 

 α + ξ ω α + ω α = + 

&& &

&& &
 (1) 

 
Where: 
m and I = The mass and mass moment of inertia of 

the deck per unit span, respectively 
ωi = The natural circular frequency 
ξi = The modal damping ratio (i = h, α) 
Lse and Mse = The self-excited lift and moment, 

respectively 
Lb and Mb = The aerodynamic lift and moment 
 
 The self-excited lift and moment are given as 
follows[11]: 
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Where: 
ρ = Air mass density; B is the width of 

the bridge deck 
U = The mean wind speed at the bridge 

deck level 
ki = ωiB/U = The reduced frequency (i = h, α) 
Hi

* and Ai
*  = The so-called flutter derivatives, 

(i = 1, 2, 3, 4)  which can be regarded as the implicit 
functions of the deck’s modal 
parameters 

 
 The alternate form of self-excited forces is as Eq. 
2 but without the factor 1/2[3]. 
  The aerodynamic lift and moment can be defined 
as[10]: 
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Where: 
CL, CD and CM = The steady aerodynamic force 

coefficients 
C′L and C′M = The derivatives of CL and CM with 

respect to the attack angles, 
respectively 

u(t) and w(t) = The longitudinal and vertical 
fluctuations of wind speed, 
respectively 

χL and χM = The lift and moment aerodynamic 
admittances of the bridge deck 

 
 By moving Lse and Mse to the left side and merging 
the congeners into column vectors or matrices, Eq. 1 
can be rewritten as follows: 
 

e e[M]{y(t)} [C ]{y(t)} [K ]{y(t)} {f (t)}+ + =&& &  (4) 
 
Where: 
{y(t)} = {h(t) α(t)} T = The generalized buffeting 

response 
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T
b b{f (t)} {L (t)M (t)}=  = The generalized aerodynamic 

force 
[M] = The mass matrix 
[Ce] = The gross damping matrix, i.e., 

the sum of the mechanical and 
aerodynamic damping matrices 

[K e] = The gross stiffness matrix 
 
 The fluctuations of wind speed u(t) and w(t) in Eq. 
3 are random functions of time, so the identification of 
flutter derivatives of bridge decks can be simplified as a 
typical inverse problem in the theory of random 
vibration and thus can be solved by the stochastic 
system identification techniques. Let: 
 

c 1 e 1 e

c

I I
[A ]
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[C ] [I O]

− −

 
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 (5) 

 
and 
 

y
{x}

y

 
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 (6) 

 
then Eq. 4 is transformed into the following stochastic 
state equations: 
 

c

c
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= +

&
 (7) 

 
 The discrete form of Eq. 7 can be written as: 
 

k 1 k k

k k k

{x } [A]{x } {w }

{y } [C]{x } {v }

+ = +

= +

&
 (8) 

 
where, [Ac]4×4, [Cc]2×4 and {x} are known as state 
matrix, output shape matrix and state vector, 
respectively; {wk} and {vk} are the input and output 
noise sequences, respectively. Subscript *k denotes the 
value of * at time k∆t, where ∆t means the sampling 
interval. O and I are the zero and identity matrices, 
respectively.  
 It is assumption of stochastic model that {xk}, {w k} 
and {vk} in Eq. 8 are mutually independent and hence: 
 
E(xkwk

T) = 0    E[xkvk
T] =0 (9) 

 
Defining: 
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and combining Eq. 9 and 10 we obtain the following 
Lyapunov equations for the state and output covariance 
matrices: 
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 From (8) and (9), it can be deduced: 
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and 
 

i 1
i CA G−Λ =  (14) 

 
 Defining a block Toeplitz T1|i as: 
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one can infer from the definition of covariance matrix 
that T1|i can be expressed as the product of two block 
Hankel matrices Yf and Yp: 
 
T1|i = YfYp

T (16) 
 
where, Yf and Yp are composed of the ‘future’ and 
‘past’ measurements, respectively: 
 

i i 1 i j 1 0 1 j 1

i 1 i 2 i j 1 2 j
f p

2i 1 2i 2i j 2 i 1 i i j 2

y y y y y y

y y y y y y1 1
Y Y

j j
y y y y y y

+ + − −

+ + +

− + − − + −

   
   
   = =
   
   
      

L L

L L

M M M M M M M M

L L

 (17) 



Am. J. Engg. & Applied Sci., 2 (2): 304-316, 2009 
 

308 

 Next, applying the factorization property to T1|i by 
the singular value decomposition yields: 
 

T
1T T1

1 2 1 1 11 i T
2

S 0 V
T USV (U U ) U S V

0 0 V
≈

  
= =   

  
 (18) 

 
Where: 
U, S and V = Orthonormal matrices 
S = A diagonal matrix containing positive 

singular values in descending order 
 
 The number of nonzero singular values indicates 
the rank of the Toeplitz matrix. The reduced diagonal 
matrix S1 is obtained by omitting the zero singular 
values from the matrix S. Matrices U1 and V1 are 
obtained by omitting the corresponding columns from 
the matrices U and V respectively. Now realizations of 
the system matrices are almost achieved. Matrix A is 
realized by using factorization of a shifted Toeplitz 
matrix T2|i+1 that has similar structure as of T1|i but 
consists of covariance from lag 2-2i. In a manner 
similar to the classical Eigensystem Realization 
Algorithm (ERA in short), one can find: 
 

1/2 T 1/2
i i N N2 i 2 iA O T S U T VS+ − −= ζ =  (19) 

 
where, N is model order, i.e., the maximum number of 
modes to be computed. Thus, the modal parameters can 
be determined by solving the eigenvalue problem of the 
state matrix A. By now, the theoretical formulation of 
covariance-driven SSI has been achieved. 
 According to Eq. 16-19, a different combination of 
i, j and N will give a different state matrix and thus a 
different pair of modal parameters. Therefore, modal 
parameters should be derived from a series of 
combinations, rather than a single combination. In the 
process of identification, N or i should be given in 
series for certain values of j in order to obtain a 
frequency stability chart. Solving the eigenvalue 
problem of the state matrix A by the pseudo-inverse 
method yields: 
 

1
dA

C

−= ΨΛ Ψ
Φ = Ψ

 (20) 

 
Where: 
Ψ = The complex eigenvector matrix 
Φ = The mode shape matrix 
Λ = A diagonal matrix composed of the complex poles 

of the system 
 
 Different combinations of i, j and N are employed 
to derive the modal parameters statistically[3,6]. 

 Once the modal parameters are identified, the gross 
damping matrix Ce and the gross stiffness matrix Ke in 
Eq. 4 can be readily determined by the pseudo-inverse 
method: 
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where the superscript*denotes the complex conjugate of 
the corresponding term. Let: 
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where, C0 and K0 are the ‘inherent’ damping and 
stiffness matrices, respectively. Thus, the flutter 
derivatives can be extracted from the following 
equations: 
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Numerical simulation tests: In order to validate the 
applicability of the covariance-driven SSI technique in 
flutter derivatives estimation of bridge decks, numerical 
simulations of signals from different test methods are 
first carried out. The numerical tests included two 
syntheses but well controlled cases: two uncoupled 
degrees of freedom and two coupled degrees of 
freedom (simulated response including the motion 
induced aeroelastic terms). Both cases are first excited 
in the transient (i.e., free decay) motion and then by a 
white noise loading process. Measurement noises are 
also added by a white noise process with a standard 
deviation equal to 10% of the standard deviation of the 
original responses, in order to investigate the effect of 
measurement noise. 
 Two uncoupled degrees of freedom; free decay: 
Transient responses time-series were obtained by direct 
calculations of the displacement values for N = 4096 
discrete    time    stations,   with   ‘sampling’   interval 
∆t = 0.02 sec (fs = 50 Hz). Structural modal properties 
used in this simulation were chosen from the previously 
tested sectional model of the Great Belt Bridge[12]. The 
modal matrices are given per unit length as: 



Am. J. Engg. & Applied Sci., 2 (2): 304-316, 2009 
 

309 
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0.3616 0 397.0573 0
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0 0.0072 0 24.7315
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0 0.0189

   
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   

 
=  
 

 

 
i.e.,  fho = 1.9472 Hz,  fθ0 = 5.7573 Hz,  ξh0 = 0.0053, ξθ0 

= 0.0056, where damping ratios, ξ, are representatives 
for the range of small amplitudes. The damping ratios 
were then multiplied in turn with 5, 10, 20 and 40, in 
order to cover the values of total damping (structural + 
aerodynamic) which could be presented in vibration of 
model section under wind flow. Values as high as ξ = 
0.2 could be expected for the vertical degree of freedom 
under wind flow. 
 Frequency and damping ratio estimates are 
practically identical to the preset values (less than 0.5% 
for the highest damping case). The system matrices are 
also excellent even for the short useful signal case with 
only a few cycles of vibration motion. In the case where 
10%-measurement noises were added, identified 
frequencies were changed at lesser than 0.8%. Damping 
ratios were changed at most by 2% except in the case of 
the lowest damping case which was 5.4%. The diagonal 
terms of the estimated system matrices (frequency and 
damping matrices) are also identical to the preset 
values. Estimates of diagonal terms are distorted within 
1% except only for the case with lowest damping case 
in which values are within 2.82%. 
 Two coupled degrees of freedom; free decay and 
buffeting responses: The next step in the simulation was 
a simulation test with full effective stiffness and 
damping matrices (i.e., coupled degrees of freedom) 
and with lift and moment forces of the white noise type, 
as assumed in the SSI-method. For the mean-wind 
speed of 10.26 m sec−1 and the aerodynamic derivatives 
assumed according to the values reported for a similar 
bridge cross-section[12], the effective structural matrices 
were pre-set at: 
 

e e

0

8.9308 0.0799 420.1002 59.1805
C , K ,

0.4345 0.0386 1.7552 19.6652

2.6526 0
M

0 0.0189

− −   
= =   
   

 
=  
 

 

 
 The response time-series were simulated for both 
free decay and buffeting responses under turbulence 
wind with 10% turbulence intensity; then measurement 
white noises were superimposed on the simulated 
response. The free decay response time-series were 
computed by constant acceleration method and samples 
are as shown in Fig. 1. The SSI-COV method, applied 

to these responses data, returned the effective structural 
matrices with the deviation from the pre-set ones (C 
and K) in percentage as: 
 

% %

0.66 3.00 0.14 0.05
C , K

0.16 0.26 4.26 0.08

− − −   
∆ = ∆ =   − −   

 
 
 Superimposing 10% measurement white noise on 
the simulated response made the structural matrices 
differed from those of the noise-free cases within 3%. 
The response time-series were also simulated for the 
case of buffeting responses where wind turbulence is 
the only excited source. The effective stiffness and 
damping matrices were taken as in the case of 
transients; examples of response time-series are as 
shown in Fig. 2. Buffeting responses required longer 
data records (20,000 data points in the present study) as 
compared to that in the free decay case (4096 data 
points) to yield acceptable results. Estimates of the 
frequencies and damping ratios agree well with preset 
values where precisions are within 0.5 and 2%, 
respectively. The diagonal terms in stiffness and 
damping matrices also agree well with preset values 
where the differences are less than 1% except for the 
C11 (related to vertical damping) where the difference is 
around 2.5%. The most differences in the off-diagonal 
terms are K21 and C21 which are related to A4

* and H2
*, 

respectively. In the case of 10%-measurement noise 
added, the deviation of the reconstructed matrices from 
the pre-set ones, in percentage, is: 
 

% %

8.55 27.86 2.23 0.38
C , K

0.28 0.5 11.17 0.03

− −   
∆ = ∆ =   − − −   
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Fig. 1: Example of vertical (top) and torsional (bottom) 

transient responses simulated under wind flow 
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Fig. 2: Example of vertical (top) and torsional (bottom) 

buffeting responses simulated under wind flow 
 

 
 
Fig. 3: IRR bridge model and grids to generate 

turbulent flow in wind tunnel 
 
Wind tunnel tests: To evaluate further the applicability 
of the present method in flutter derivatives estimation 
of bridge decks, wind tunnel tests of a quasi-
streamlined thin plate model and a two-edge girder type 
blunt bridge section model are performed. 
 
Outlined of wind tunnel tests: The wind tunnel tests 
were performed in TU-AIT wind tunnel in Thammasat 
University. The working section of the wind tunnel has 
a  width  of  2.5 m, a height of 2.5 m and a length of 
25.5 m. The required turbulent flow was generated by 
grids, as shown in Fig. 3. A hot-sphere anemometer was 
applied to measure the mean wind speed of the flow and 
a hot-wire anemometer was used to measure the 
fluctuations of wind speed. The longitudinal and vertical 
turbulence intensities are both less than 0.05% in case of 
smooth flow and about 8% in turbulence flow.  

 
 
Fig. 4: Suspension device of the model 
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Bridge Sectional Model
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L

e
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Fig. 5: Top view of the test setup 
  
 The model was suspended by eight springs outside 
the wind tunnel (Fig. 4). To simulate a bridge section 
model with 2DOFs, i.e. vertical bending and torsion, 
piano wires were used to prevent the motion of the 
model in longitudinal direction; this can be shown from 
Fig. 5, the schematic diagram of the top view of the test 
setup. Two piezoelectric acceleration transducers were 
mounted at the mid length of the model to capture the 
acceleration signals. The responses of the models were 
captured by the acceleration transducers and then the 
vertical and torsional responses can be respectively 
obtained by: 
 

1 2 1 2x x x x
h ,

2 l

+ −= α =  (24) 

 
where, x1 and x2 are the measurements of transducers 1 
and 2, respectively; l is the space between transducers. 
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RESULTS AND DISCUSSION 
 
Case 1: Thin plate model under smooth flow: A quasi-
streamlined thin plate (Fig. 6) was first selected for 
wind tunnel test. The width to height (thickness) ratio 
of the plate is about 22.5. Table 1 shows the main 
parameters of the model. 
 The extraction of flutter derivatives of the thin plate, 
using the SSI-COV technique, were performed on results 
from three types of tests, namely, (a) Single-Degree-Of-
Freedom (SDOF) motion tests[2], (b) free decay coupled-
motion test (2DOFs) and (c) buffeting coupled-motion 
test (2DOFs). Typical test results showing responses 
from the bridge model are in Fig. 7 and 8. The 
responses for the free decay and the buffeting tests are 
sampled  at  the  rates of 1000 and 200 Hz, respectively. 
 

 
 
Fig. 6 Cross-section of the streamlined thin plate 
 
Table 1: Main parameters of the thin plate model 
Parameter Mark Unit Value 
Length L m 2.3000 
Width B m 0.4500 
Height H m 0.0200 
Mass per unit length M kg m−1 6.7391 
Inertial moment of mass unit−1 length Im kg m2 m−1 0.1183 
Inertial radius R m 0.1325 
First bending frequency fh, n1 Hz 1.6500 
First torsional frequency fα, n2 Hz 2.7300 
First torsion-bending frequency ratio ε  1.6500 
 

 
 
Fig. 7: Vertical (top) and torsional (bottom) free decay 

acceleration   responses  of   the  thin  plate  at 
8.1 m sec−1 wind speed under smooth flow. 
(Unit in g) 

The results are then removed trend and re-sampled at 
250 and 50 Hz, respectively. The covariance-driven SSI 
technique is applied to identify modal parameters from 
these data and a pseudo-inverse method is applied to 
estimate the stiffness and damping matrices. The flutter 
derivatives are estimated by Eq. 23 and reported in the 
form of Eq. 2 but without the factor 1/2. 
 
Comparisons between SDOF and 2DOF-coupled-
motion tests: free decay method: Figure 9 and 10 
compare the flutter derivatives of the thin plate that are 
estimated by the SSI-COV technique using the above 
mentioned three test methods together with the 
Theodorsen’s theoretical values[13]. Unless otherwise 
noted, at any wind speed, H1

*, H4
*, A1

* and A4
* which 

are associated with the vertical motion were calculated 
using the frequency n1 (lower). In addition, the 
derivatives H2

*, H3
*, A2

* and A3
*  which are associated 

with the torsional motion were calculated using the 
frequency n2 (higher).  
 The direct flutter derivatives H1

* and H4
* as found 

from the single-degree-of-freedom vertical-motion tests 
and A2

* and A3
*  as found from the single-degree-of-

freedom torsional-motion tests are also plotted and 
compared with those from the coupled-motion tests. 
The results are shown in Fig. 9 and 10. The near perfect 
match shows that the direct-flutter derivatives are 
indeed not affected by the motion along the other 
degree of freedom, as predicted by theory i.e., those 
flutter derivatives associated with h motion are not 
affected by α motion and vice versa. It also 
demonstrates the reliability of both the coupled-motion 
tests and the system identification method (SSI-COV). 
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Fig. 8: Part of vertical (top) and torsional (bottom) 
buffeting acceleration responses of the thin plate 
at 5.6 m sec−1 wind speed under smooth flow. 
(Unit in g) 
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Fig. 9: Flutter derivatives (Hi

*) of the thin plate by SDOF test and coupled test by free decay and buffeting 
responses under smooth flow 
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Fig. 10: Flutter derivatives (Ai

*) of the thin plate by SDOF test and coupled test by free decay and buffeting 
responses under smooth flow 
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Comparisons of coupled-2DOF motion tests between 
the free decay and the buffeting tests: The flutter 
derivatives found from both the free decay and the 
buffeting tests for the coupled-2DOF cases are 
compared in Fig. 9 and 10. The results show good 
agreement between the two methods. This validates the 
ability of the system identification method (SSI-COV) 
to apply with both the free decay and the buffeting tests 
although it was developed from a stochastic model (i.e., 
white noise loading assumption). However, when a 
relatively heavy model is excited at a very low reduced 
wind velocity, i.e., low wind energy, it becomes more 
difficult to extract the flutter derivatives from the 
buffeting responses. 
 The results also show that identified flutter 
derivatives agree well with the theoretical ones. The six 
important flutter derivatives H1

*~ H3
*and A1

*~ A3
*  

identified by SSI from different tests match well with 
theoretical values. The H4

*derivatives are generally 
agreed in trend with theoretical values. However, the 
A4

*, in turn, found from buffeting responses are more 
scattered compared to those from free decay responses. 
The impacts of the H4

* and A4
* derivatives, however, 

seem to be less significant when compared to those of 
other derivatives. This was the reason why H4

*  and A4
* 

were usually neglected in previous studies[2,3,5,10]. 
 
Case 2: Section model of IRR Bridge: Encouraged by 
the success in the thin plate model, the flutter 
derivatives of IRR Bridge, a cable-supported bridge 
with 2-edge girder, as shown in Fig. 11, were estimated 
by the SSI-COV technique. The IRR Bridge has a main 
span of 398 m. The deck consists of a concrete deck 
slab and a web of steel girders. The deck is supported 
by two cable planes at outside edge girders. A 2-edge-
girder bridge section with A-shape pylons has good cost 
performance, but at the same time the bridge cross-
section is known to be aerodynamically unstable at high 
wind speed. Table 2 shows the main parameters of the 
prototype bridge and the section model. Tests were 
conducted under smooth and turbulence wind flow.  
 Using the SSI-COV technique, the flutter 
derivatives of the IRR Bridge were estimated for 
2DOFs responses under smooth flow by both the free 
decay and the buffeting tests and under turbulence flow 
by the buffeting test only. 
 
Comparisons of test method; Smooth flow: Figure 12 
and 13 show the identified flutter derivatives of the 
bridge deck by free decay and buffeting responses 
under smooth flow and by buffeting responses under 
turbulent flow. The flutter derivatives are estimated by 
Eq. 23 and reported in the form of Eq. 2 but without the 
factor 1/2. 

Table 2: Main parameters of the IRR Bridge model 
Parameter Mark Unit Prototype Model 
Length L m - 2.2600 
Width B m 35.9 0.3990 
Height H m 3.20 0.0350 
Mass per unit length M kg m−1 43000 5.6801 
Inertial moment of Im kg m2 m−1 4.11×109 0.1726 
mass unit−1 length 
First bending frequency fh, n1 Hz 0.376 2.1300 
First torsional frequency fα, n2 Hz 0.850 4.7300 
First torsion-bending- ε  2.260 2.2200 
frequency ratio 
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Fig. 11: (a): Three dimensional view of IRR Bridge; 

(b): Schematic cross-section of IRR Bridge; 
(c): IRR Bridge sectional model in wind 
tunnel 

 
 Generally, the flutter derivatives of the bridge in 
smooth flow identified by the SSI method from both the 
free decay and the buffeting tests are in good agreements. 
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Fig. 12: Flutter derivatives (Hi

*) of the IRR Bridge by free decay and buffeting responses under smooth and 
turbulence flow 
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Fig. 13: Flutter derivatives (Ai

*) of the IRR Bridge by free decay and buffeting responses under smooth and 
turbulence flow 
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The difference of A4
* identified from both tests, seems 

to be negligible as effect of this derivative is usually 
considered to be less significant. In smooth flow, the 
most important derivative A2

* are steadily increased 
(more negative) up to the reduced wind velocity around 
3 and then started to decrease. This sign reversal is the 
primary factor toward the SDOF-torsional instability 
(“stall flutter”) for bluff type sections. The torsional 
flutter was found at the reduced wind speed around 4.7. 
 
Effect of turbulence: Most of the prototype bridges are 
submerged in turbulent wind, therefore, detailed 
investigations of the effects of turbulence on the flutter 
derivatives is significant. Almost all the wind tunnel 
tests for flutter derivatives have been generally carried 
out in smooth flow. Although few researchers have 
studied the problem using wind tunnel tests, results and 
the identification methods were individually 
proposed[4,14] and the results are still debatable and 
inconclusive. For streamlined section, tests showed 
little effect[4,14], while tests on a rectangular box girder 
bridge showed galloping in smooth flow[15].  
 From Fig. 12 and 13, it can be found that the 
influence of flow type on H4

* and A3
*, i.e., flutter 

derivatives related to direct aerodynamic stiffness, 
seems to be negligible. Though, the value of H4

* from 
turbulence flow is somewhat lesser than that in the 
smooth flow case, it affected only the second decimal 
digit of the frequency value. The influence also has 
negligible effect on H1

*and H2
* i.e., direct and cross 

derivatives related to vertical and torsional aerodynamic 
dampings, respectively. On the other hand, the more 
important A1

* A2
* and H3

*, show rather noticeable 
deviations from those in smooth flow, especially at high 
reduced wind speeds. The most important effect is that 
the reduced wind speed corresponding to the reversed 
sign of the torsional aerodynamic damping A2

*  
increased in turbulent flow. It shows that turbulence 
tends to make bridges more aerodynamically stable by 
delaying torsional flutter. The deviations of flutter 
derivatives may reveal the fact that for those bridges with 
bluff type sections similar to IRR Bridge, the effects of 
turbulence can be significant. Hence, the wind tunnel 
tests of such bridges for flutter derivative estimation 
should be carried out in turbulent flow as well. 
 

CONCLUSION 
 
 A theoretical model based on the covariance-driven 
SSI technique was proposed to extract the flutter 
derivatives of bridge deck sectional models from 
coupled two-degree-of-freedom system by free decay 
and buffeting responses. An advantage of the adopted 

SSI-COV technique is that it considers the buffeting 
forces and responses as inputs instead of as noises as 
typically assumed. The conclusions of this study are as 
follows: 
 
• Numerical simulations of bridge deck responses 

confirmed that the SSI-COV technique can be used 
to estimate flutter derivatives from buffeting and 
free decay responses with reliable results. This 
shows the applicability of the SSI-COV method 
with various test techniques, though it was 
developed from a stochastic model 

• For the thin plate model under smooth flow, wind 
tunnel tests showed that flutter derivatives 
identified by the SSI technique from both the free 
decay and the buffeting tests matched well with 
theoretical values. Although there are some 
variations in the values of A4

* obtained from the 
buffeting test, this derivative is considered as 
insignificant and is usually neglected in most of the 
previous studies 

• When apply to the bluff section model of the IRR 
Bridge under smooth flow, the flutter derivatives 
estimated from the buffeting test agreed with those 
obtained from the free decay test. This result 
allowed focusing on applying the SSI-COV 
technique to the buffeting test method. There are 
variations in the values of the A4

* derivative as 
obtained from the two test methods but they agree 
in trend. We also observed the sign reversal of the 
A2

*  derivative as the reduced wind speed reached 
the value of 4.7. This indicates that this bridge 
section is susceptible to flutter instability at high 
wind speed 

• The test result of bluff section model of the IRR 
Bridge under turbulence wind revealed that the 
most important and positive effect of the 
turbulence is that it tends to make the bridge more 
aerodynamically stable by delaying the sign 
reversal of the aerodynamic damping A2

*. This 
may help explain that for those bridges with bluff 
type sections similar to the IRR Bridge, the effects 
of turbulence can be significant. Hence, the wind 
tunnel tests of such bridges for flutter derivatives 
estimation should be carried out in turbulent flow 
as well 

 
 Applying the proposed SSI-COV technique to the 
buffeting test yields a straightforward, cost effective 
and reliable system identification process that can be 
used to identify flutter derivatives of various bridge 
decks. It, however, has some limitations. For example, 
it becomes more difficult to extract the flutter 
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derivatives from the buffeting responses in the situation 
when a relatively heavy model is excited at a very low 
reduced wind velocity, i.e., low wind energy. In this 
case, using the SSI-COV technique with the free decay 
method will yield more accurate results.  
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