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Abstract: Glutamate fermentation is inherently nonlinear, multi-phase and 

an aerobic fermentation process. As long measurement delays and 

expensive apparatus cost, on-line measurement of the product concentration 

is not necessarily available. The present fermentation process monitoring 

and quality prediction involve manual interpretation of highly informative, 

however, the concentrations of substrates, biomass and products are only 

low frequency off-line measurements. In this paper, we propose a novel 

Multi-Phase Support Vector Regression (MPSVR) based soft sensor model 

for online quality prediction of glutamate concentration. The glutamate 

fermentation process can be divided into a sequence of five phases by 

detecting the trend variation events (also termed as singular points or 

inflection point) of online measured O2 in the exhaust gas, the Inflection 

Point (IP) are easily identified through combining Moving Window (MW) 

with Pearson Correlation Coefficient (PCC). For each estimation phase, 

SVR soft sensor model are constructed and their performance is evaluated 

against fermentation data in a 5 L fermenter. The efficiency of the proposed 

soft sensor model for online product quality prediction has been 

demonstrated to be superior compared to that of reported techniques in a 5 

L glutamate fermentation process. 

 

Keywords: Multi-phase Quality Prediction, Glutamate Fermentation, 

Support Vector Regression, Soft Sensor 

 

Introduction 

Glutamate is commercially one of the most 

important amino acids produced mainly by 

fermentation process, its fermentative production 

amount exceeds 2.2 million tons annually (Xiao et al., 

2006; Khan et al., 2005). Glutamate are widely used 

for human and animal alimentation, as ingredients of 

pharmaceutical products, agrochemicals and some 

other industrial derivatives (Pal et al., 2016). 

Like other fed-batch processes, glutamate 

fermentation process requires a sophisticated operator 

involvement. In addition to run-to-run modifiability, this 

could result in abnormal situation, in which any 

deviation from desired operating regimes could lead to 

product quality change. This provides a strong incentive 

for automating operation supervision. During manual 

operation, a human operator is commonly responsible for 

setting points to regulatory controllers, performing 

control actions, process supervising and taking remedial 

measures when an abnormal condition is detected 

(Muthuswamy and Srinivasan, 2003). The batch-to-batch 

change may root in the variation in the raw material 

quality or the seed culture variations. Typically, during 

manipulation, the product quality and batch performance 

are desired to be controlled and monitored by way of 

offline laboratory assays of concentrations of the 

product, substrates and biomass, which might take up to 

2 h. These laboratory assays are high investment costs, 

manpower inputs and time consuming, are obtained at 

low frequencies and hence, may not necessarily acquire 

timely information about the fermentation status of the 

batch. Online measurements that are easily acquirable 

include temperature, pH, dissolved oxygen, agitation 

speed, exhaust CO2 and O2, whereas these measurements 

do not show direct state of the process (Doan et al., 
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2007). Consequently, this will lead to time delay to the 

quality control of product, since during this period of 

time, the fermentation process is without precise and 

continual information on the product quality (Ge et al., 

2011). Nevertheless, because of technical difficulty, high 

investment costs and large measurement delays, the 

laboratory assays apparatuses are limited use in practical 

plants. Furthermore, as we known, it requires a very 

significant effort to develop a first principles model for 

accurately depicting the fermentation process. Hence, in 

biochemical plants, soft sensors are used widely to 

estimate the primary quality variables that are difficult to 

measure online. An inferential model is constructed 

between objective variable which is difficult to 

measure online and process variables which are easy to 

measure online. (Facco et al., 2009; Kadlec et al., 

2009; Kaneko et al., 2009; 2011).  

To date, many soft sensor methods have been 
presented for quality prediction objective, including 
Artificial Neural Network (ANN), Partial Least Squares 
(PLS) and Support Vector Machine (SVM) (Acuña et al., 
2014; Facco et al., 2009; Wang et al., 2014). Recently, 
SVR, an extension of SVM, has also been receiving 
increasing attention to solve nonlinear estimation 
problems. It has been successfully applied in different 
problems of time series prediction (Kavousi-Fard et al., 
2014; Lu et al., 2009;  Santamaria-Bonfil  et al., 2016; 
Were et al., 2015). 

Besides the inherently non-linear behavior, as we all 

known, biomass growth undergoes a series of phases in a 

fermentation process: Lag phase, exponential phase, 

stationary phase, decline phase (Khan et al., 2005). The 

metabolism in each stage is different and each stage may 

have its special nature, using a single model will not be 

capable of entirely get the dynamic characteristic of the 

fermentation process. A straightforward method is to 

divide the fermentation process into different operation 

phases on the basis of the changes in variable cross-

correlations and model each stage separately. 

Furthermore, minimize off-line sampling is desirable for 

the concomitant risk of contamination, at the same time, 

we need to obtain enough information on product 

formation and nurture uptake on-line. As a result, it is of 

critical importance to on-line identification of phases in 

fermentation process, phase partition is a crucial 

procedure before multi-phase modeling. The effectiveness 

of a multi-phase model is problematical without a proper 

phase division (Doan et al., 2007; Sun et al., 2011; 

Yao and Gao, 2009; Luo et al., 2016).  

In recent years, many phase identification methods 

have been developed by way of online analytical 

measurements of important bioprocess parameters such 

as the biomass concentration, or broth composition 

measurements, including use of ion chromatography, 

Near Infrared (NIR) and HPLC. These systems can 

provide analysis of product concentration, nutrient 

compositions and other metabolites (Alford, 2006). 

However, these methods suffer from the aforementioned 

disadvantages. Another class of approach has focused on 

using the routinely available online data to qualitatively 

identify fermentation phases, this class most common 

methods include process knowledge, process analysis 

and the process data. A formal framework for inferring 

process trends from the online variables was exploited 

(Cheung and Stephanopoulos, 1990) and applied to 

fermentation process data (Stephanopoulos et al., 1997; 

Doan et al., 2007). Another method for detecting phase 

change uses singular points detection based only on 

online measurements (Maiti et al., 2009; Régis et al., 

2008). The reader can find more multi-phase analysis 

methods in (Yao and Gao, 2009; Camacho et al., 2008; 

Doan et al., 2007; Luo et al., 2016), which give different 

kinds of phase identification methods. Knowledge based 

phase identification fails when the process prior 

knowledge is not enough to divide processes into phases 

legitimately and difficult to customise for diverse 

fermentation processes. Process analysis based phase 

identification works well when certain required process 

features are known. Finally, process data based methods 

carry out phase partition by detecting variation in 

process data. Compared with the aforementioned two 

methods, data-driven methods are easier to perform 

because of their data-driven property. However, their 

phase partition results obtained by data-driven methods 

may or may not always consistent with actual operation 

phases (Sun et al., 2011; Luo et al., 2016).  

In this paper, a novel phase partition method and a 

Multi-Phase SVR (MPSVR) modeling strategy are 
presented for online estimation and prediction of 
glutamate concentration. Glutamate fermentation 
process goes through a number of phases based on 
serial cell growth, substrate uptake and product 
formation. Besides, The production of glutamate is an 

aerobic process, the glutamate fermentation 
performance and the metabolic flux distribution are 
affected drastically by the concentrations of dissolved 
oxygen in the liquid phase in fermenter or oxygen 
concentrations in exhaust gas (Golobič and Gjerkeš, 
1999; Xiao et al., 2006), the fed-batch process can be 

divided into 5 phases based on the detection of 
Inflection Point (IP) by online measured O2 in the 
exhaust gas, the IP are easily identified through 
combining Moving Window (MW) with Pearson 
Correlation Coefficient (PCC). The phase division 
result agrees well with actual fermentation process, it 

depends only on on-line measurements and 
fermentation processes can be easily automated to 
work. Then, for each estimation phase, SVR soft sensor 
models are designed for online prediction of glutamate 
concentration and their performance is evaluated against 
glutamate fermentation data in a 5 L fermenter. Also, a 
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comparison with Neural Networks (NN) based 
prediction approach in the literature is presented. 

Materials and Methods 

Experimental Methods 

C. glutamicum S9114 was used in the present 

study, it was kept by the laboratory of industrial 

biotechnology, Jiangnan University. The fermentation 

conditions and the compositions of medium were the 

same as those ahead reported (Zhang et al., 2005; 

Xiao et al., 2006; Ding et al., 2012; Cao et al., 2013; 

Zheng and Pan, 2016).  

C. glutamicum S9114 was cultured for glutamate 

production in a 5 L bioreactor. PH was controlled in 7.0-

7.2 by feeding 25% (v/v) ammonia water. The O2 and 

CO2 concentrations in the exhaust gas were measured 

on-line by a gas analyzer (LKM2000, Lokas Co., Korea), 

Dissolved Oxygen (DO) was controlled at various levels 

by automatically or manually controlling the agitation 

speed, O2 Uptake Rate (OUR) and CO2 Evolution Rate 

(CER) were computed accordingly. Temperature was 

controlled at about 32°C. Electronic balances, which was 

connected to a PC via RS232, was used to compute the 

glucose and ammonia consumption rates (Zhang et al., 

2005; Xiao et al., 2006; Ding et al., 2012; Cao et al., 

2013; Zheng and Pan, 2016).  

Support Vector Regression 

The SVR aims to provide a nonlinear mapping 

function to map the training data {xi, yi; i = 1,…n} to 

a high dimensional feature space (Kavousi-Fard et al., 

2014). Then, the nonlinear relation can be represented 

as follows: 

 

( ) ( )
T

f x w x bφ= +   (1) 

 

where, w and b are the efficients to be adjusted, ϕ(x) 

denotes a mapping function of the feature space. The 

empirical risk can be defined as following: 
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where, 
ε

Θ  denote the ε-insensitive loss function and is 

described as follows: 
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Then, an optimum hyper plane can be acquired by 

utilizing the function. With the help of hyper plane, the 
training data were divided into two linear separable 

subsets with maximum separation distance. As it is, SVR 
is an optimizing problem with objective function is:  
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where, C is the regularization parameter. The constraint 

conditions of this optimization problem are as follows: 
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By solving the above describing optimization problem, 

the coefficients of Equation (1) can be got as below:  
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where, βi is the Lagrangian coefficients. The SVR 

regression function can be described as below: 

 

*

1
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i
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=

= − +∑  (7) 

 

where, K(xi, x) denotes the Kernel function, it can be 

described as follows in the feature space: 

 

( , ) ( ) ( )
i j i j

K x x x xφ φ= ⋅  (8) 

 

In this study, the RBF Kernel function is utilized, it 

can be expressed as:  

 
2

2

( , )

i jx x

i jK x x e σ

− −

=  (9) 

 

where, σ denotes the width of the RBF.  

Phase Partition Technique 

The statistical model used in this approach is  

 

t t
Y a bt ε= + +   (10) 

 

where, 1 ≤ t ≤ n, so t represents the time with the initial 

time taken as minute 1, b is the slope, it indicates the 

current variation trend of the O2 with fermentation time t, 

a is the intercept and ε are random errors. The errors are 

assumed to be identically distributed and independent. 

When working with the online measured O2 data, this 

postulation may not be valid. Whereas, this assumption is 

more likely to be satisfied if time average is used as the 

response variable (Li et al., 2013; Hess et al., 2001). 
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After taking time averages, the regression coefficients 

are estimated by using the least squares method. Thus the 

estimates of the intercept and slope are given by: 

 

 
2

( )( )
ˆ

( )

t t Y Y
b
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  (11) 

 

 ˆâ Y bt= −     (12) 

 

where, t and Y are the arithmetic means for ti and Yi . 

Since glutamate fermentation is a continuous process, 

b changes continuously and smoothly relative to Y 

(O2), we then employ Pearson Correlation Coefficient 

(PCC) to identify the Inflection Point (IP) of variation 

trend b. The PCC was developed by Karl Pearson 

from a related idea introduced by Galton in the late 

19th century, it is a well-established measure of 

correlation and has range of -1 (perfect but negative 

correlation) to +1 (perfect correlation) with 0 denoting 

the short of a relationship (Adler and Parmryd, 2010).  
PCC (r) is given as follows: 
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where, b  and T is the means for bi and Ti . Fig. 1 gives 

the phase partition procedure. 

As the glutamate fermentation continues, the 

fermentation characteristics will change over time, the 

Moving Window (MW) technology can be used for 

tracking O2 changes. It is essential to discard the old 

data and add the newest data to the model. In fact, the 

most challenging thing lies in the selection of the 

window length, enough information can be included 

to detect the real change trend of parameter via setting 

suitable window size. If the window size is too small, 

the variation trend will be disturbed by the process 

noises and phases recognition may be lagged when the 

window size is too long (Yuan et al., 2016). The 

window length of t is set to be 180 by trial-and-error, 

while the window length of b is set to be 60. Fig. 2 

shows the recognition process of inflection point, the 

profile of the online measured O2 is shown in Fig. 2A. 

As shown in Fig. 2B, the r changes sharply at 

transition point of two different phases. 

Glutamate fermentation experiences about five 
phases: Growth phase, transition phase, initial and 
middle production phases, late production stage, end 
of fermentation phase. Nevertheless, according to offline 
measurements and analysis, the growth of the cells 
passes through 5 phases: Lag phase, accelerate phase, 
decelerate phase, stationary phase and decline phase. 

      

        

 
Fig. 1. Phase partition procedure 

 

A key challenge for exploiting such a multi-phase 

partition is finding a appropriate b in normal 

fermentation process, analysis and experiments of the 

fermentation data for all the normal batches revealed that 

b1 is set to b1<0, while (b1/10) <b2<0, (b1/3) <b3<b2, b4>0 

and b5>b4 (b1, b2, b3, b4 and b5 denotes phase 1, phase 2, 

phase 3, phase 4 and phase 5, respectively). 

Quality Prediction Based on Multi-phase SVR 

The prediction model based on Multi-Phase SVR 

(MPSVR) for glutamate concentration is shown in 

Fig. 3. 
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 (A) (B) 

 
Fig. 2. Recognition process of inflection point 

 

 

 
Fig. 3. Prediction model structure of multi-phase SVR 

 
Table 1. Input and output variables of the prediction model 

Input variables Output variable 

t  

T  

pH  

DO Glutamate concentration 

AG 

OUR 

CER 

AR 

 

In soft sensors, the secondary variables are used to 

act as the inputs of the soft sensor model and the 

primary variables such as glutamate concentration is 

employed to act as the output of soft sensor model. 

The online measurement variables, such as 

fermentation time (t), fermentation Temperature (T), 

pH, Dissolved Oxygen Concentration (DO), Agitation 

Rate (AG), O2 Uptake Rate (OUR), CO2 Evolution 

Rate (CER) and ammonia water consumption Rate 

(AR) were chose as input variables. Table 1 shows the 

inputs and outputs configuration of the prediction 

model. There are 10 batches data for modeling and 

testing, 9 batch used for training and the other one for 

testing (Zheng and Pan, 2016).  

In order to evaluate the prediction performance, Root 

Man Square Error (RMSE) and coefficient of 

determination (R
2
) are computed as: 

 

2

1

1
ˆ( )

n

i i

i

RMSE y y
n

=

= −∑   (14) 

 
2

1 1 12

2 2

2 2

1 1 1 1

ˆ ˆ

ˆ ˆ

n n n

i i i i

i i i

n n n n

i i i i

i i i i

n y y y y

R

n y y n y y

= = =

= = = =

 
− 

 =
     
  − −          

∑ ∑ ∑

∑ ∑ ∑ ∑

 (15) 

 

where, yi is the offline measured value; ˆ
i
y is the 

prediction value and n is the number of samples. 

Results and Discussion 

The phase partition results of glutamate 
fermentation process are shown in Fig. 4, comparisons 
of multi-phase partition and offline measurements 
method are shown in Fig. 5. It can be seen that the 
phase partition results are well consistent with the 
physiological states of the real process by offline 
measurements and analysis method. The phase 
partition approach can be applied to other 
fermentation processes where minimal process 
information concerning phase shifts is available. 
Moreover, it can be used as a guide online in making a 
decision about the timing of off-line sampling. Note 
that in Fig. 4, range of variables has been stretched 
processing for clear show of each curve. 

Once the phase recognition of fermentation process 
has been determined, the proposed MPSVR prediction 
models are therefore built for online product quality 
prediction of glutamate fermentation base on the phase 
partition results. For comparison, the SVR, NN and 
Multi-Phase NN (MPNN) models are equally 
constructed to predict production concentration with the 
same fermentation batches. 
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For the NN, Functions included to automatically 
train and test standard 1-layer neural networks using 
the MATLAB functions "train" and "sim". The number 
of hidden neurons is cross validated. For the SVR, 
standard support vector implementation for regression 
and function approximation using the Libsvm toolbox. 
Prediction values comparisons of different models are 
shown in Fig. 6. 
 

 
 
Fig. 4. Phase partition results of glutamate fermentation process 
 

Table 2. Quality prediction results of different models 

Models                 RMSE R2 

NN 7.2582 0.9694 

SVR 3.7979 0.9942 

MPNN 7.8957 0.9145  

MPSVR 2.8653 0.9908 
 

 
 
Fig. 5. Comparisons of multi-phase partition and offline 

measurements method 

 
 (A)  (B) 

 
Fig. 6. Prediction values comparisons of different models. (A) Overall simple models, (B) Multi-phase models 

 

  
 (A) (B) 

 
Fig. 7. Prediction residuals comparisons of different models. (A) Overall simple models, (B) Multi-phase models 
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 (A) (B) 
 

Fig. 8. Residuals boxplot comparisons of different models. (A) Overall simple models, (B) Multi-phase models 
 

Prediction residuals and residuals boxplot 
comparisons of different models are shown in Fig. 7 
and 8. It can be seen that the best prediction result has 
been obtained by the multi-phase SVR (MPSVR) 
model based soft sensor. The maximum residuals 
reaches 7.32 at fermentation time of 12 h. The reason is 
that it is decelerate phase, the bacteria activity becomes 
stronger at fermentation time of 12 h. Meanwhile, From 
Fig. 6-8, we can see that the MPSVR based prediction 
model exhibits better tracking performance than that 
by NN, SVR and MPNN models. Quality prediction 
results of different models are shown in Table 2, as can 
be seen that MPSVR has got the best prediction 
performance, since it has the minimum Root Mean 
Square Error (RMSE) 2.8653 among all prediction 
models, however, RMSE of SVR model is 3.7979. 
Furthermore, R

2
 of the MPSVR is 0.9908.  

Conclusion 

In this paper, a soft sensor prediction model based on 
Multi-Phase SVR (MPSVR) was proposed for online 
quality prediction in glutamate fermentation process. 

The states detection and partition is based on the 
detection of inflection points of the online measured O2 
variations using Moving Window (MW) and Pearson 
Correlation Coefficient (PCC). The phase identification 
result agrees well with the physiologic phase changing 
of the glutamate fermentation process. Hence this 
method can help to automatically control and optimize 
the glutamate fermentation process. As the phase 
identification merely lies on the process data, it can be 
applied to other fermentation processes where minimal 
process knowledge regarding phase shifts is available. 
Besides, the phase partition approach can be used as a 
guide online in making decisions about the timing of 
off-line sampling. 

The performance comparisons among SVR, NN, 
Multi-phase NN and Multi-phase SVR are implemented. 
Through glutamate fermentation process case study, the 
feasibility of the proposed MPSVR soft sensor has been 
conformed, the MPSVR model exhibits excellent 

prediction performance, it can provide effective 
information for monitoring and operation of glutamate 
fermentation process. 
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