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Abstract: The on-line control of glutamate fermentation process is 

difficult, owing to the typical uncertainties of biochemical process and the 

lack of suitable on-line sensors for primary process variables. A prediction 

model based on Gaussian Process Regression (GPR) is presented to 

predict glutamate concentration online. First, Partial Least Squares (PLS) is 

applied to extract the features of the input secondary variables to reduce the 

number of the variables dimension and eliminate the correlation, through 

variables selection to reduce model complexity and improve model tracking 

performance. Validation was carried out in a 5 L fermentation tank for 10 

batches glutamate fermentation process. Simulation results show that the 

proposed model outperforms the PLS and Support Vector Machine (SVM) 

model and the Root Mean Square Error (RMSE) are 1.59, 7.98 and 1.95, 

respectively. It can provide effective operation guidance for control and 

optimization of the glutamate fermentation process. 

 

Keywords: Glutamate Fermentation, Gaussian Process Regression, Soft 
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Introduction 

The history of the species Corynebacterium as 

amino acid producer started in the 1950s when Dr 

Kinoshita was the first to discover that 

Corynebacterium glutamicum is a superior amino acid 

producer (Hermann, 2003). From then on, glutamate 

is one of the most important amino acids yielded 

mainly by fermentation using Corynebacterium 

glutamicum, which occupies about 53% of the world’s 

amino acids market and its fermentative production 

amount exceeds 2.2 million tons per year (Khan et al., 

2005; Xiao et al., 2006). Glutamate is widely used in 

food, pharmaceutical and other industries, especially 

used as a flavor enhancer with huge market 

requirement in oriental countries (China, Japan, Korea, 

etc.) (Cao et al., 2013; Hasegawa et al., 2008).  

An accurate model is essential for further control and 

optimization of fermentation process. Generally, three 

type models are used for depicting the feature of 

fermentation process and for the purpose of process 

control and optimization: The unstructured dynamic 

model, the black box model and the fuzzy logic 

inference model (Zhang et al., 2005). As we all know, 

fermentation process is a strong nonlinear, time-variant 

and correlating process (Wang et al., 2010; Shi and Pan, 

2010). Therefore, it is necessary to grasp the status 

information of fermentation process timely. 

Unfortunately, some crucially primary variables, such 

as biomass, substrate or product concentration which 

are more complex and important, can not be measured 

on-line yet in practical fermentation process. This 

seriously influences the execution of optimization 

strategy (Gu and Pan, 2015). 

Soft sensor appeared as a reliable and helpful method 

to perform on-line observation of difficult to measure the 

primary variables in the past decades (Acuña et al., 

2014). It generally makes use of available process 

measurement data or prior knowledge on process 

mechanism to build predictive model for estimating the 

primary variables that cannot be easily measured by 

hardware based sensor in a real-time fashion (Kaneko and 

Funatsu, 2014; Chen et al., 2014; Shokri et al., 2015; 

Liu et al., 2015). Many soft sensor methods have been 

presented, including Partial Least Squares (PLS), 

Artificial Neural Networks (ANN), Support Vector 

Machine (SVM) and Gaussian Process Regression 

(GPR) (Baffi et al., 1999; Wang et al., 2014; Acuña et al., 

2014; Chen et al., 2014). 

Although the conventional PLS based soft sensors are 

efficient in handling high-dimensional process variables 
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collinearity, they are essentially linear models and thus 

may not interpret significant process nonlinearity. 

Though ANN is a powerful tool to characterize nonlinear 

relationships in process, it is liable to converging 

towards local minima and cannot undertake global 

optima while accessing nonlinear multi-peak functions. 

Additionally, it often suffers from the over-fitting 

question so that the model generalization capability can 

be very poor. Meanwhile, different machine learning 

techniques such as Support Vector Machine (SVM) has 

gained some success in soft sensor modeling and quality 

estimation. Compared to the traditional ANN approach, 

SVM method has excellent performance in handling 

small experimental data with strong forecast capability. 

Moreover, it can acquire the global optimal solution and 

efficiently avoid the issue of local minima for nonlinear 

processes (Yu, 2012). More recently, Gaussian Process 

Regression (GPR) appeared as a probabilistic tool for 

nonlinear regression in the late 90 s (Rasmussen and 

Williams, 2006; Grbić et al., 2013). Non-parametric 

probabilistic models such as a Bayesian framework for 

Gaussian Process Regression (GPR) have received 

remarkable attention in the field of machine learning. In 

comparison to ANN, Gaussian process is easier to 

understand and fulfill in practice (Pal and Deswal, 2010). 

GPR models are closely related to SVM as a result of the 

use of kernel functions. Compared with other kernel-

based regression models, GPR not only provides the 

estimated value of a variable of interest, but also the 

variance of computation which can be interpreted as a 

level of confidence of the model. Though it has some 

attractive properties beyond ANN and SVM, only 

recently have a limited number of soft sensor 

applications of GPR been reported (Chen et al., 2014; 

Liu et al., 2015; Yu, 2012; Pal and Deswal, 2010; 

Grbić et al., 2013; Ge et al., 2011). Due to its virtue for 

nonlinear system modeling, in this study, we are trying 

for the first time to use GPR to construct a soft sensor 

modeling of product concentration in glutamate 

fermentation process. 

However, it is well known that a soft-sensor's 
satisfactory estimation performance is likely to be 
achieved if only those secondary variables that are most 
sensitive to the primary variables are used. In fact, the 
inappropriate choice of estimator inputs may lead to 
numerical problems, such as singularity and over-
parameterization (Zamprogna et al., 2005), or the 
computational load increases remarkably. Therefore, 
suitable input variables have to be selected. Although 
the inputs should be selected using process knowledge, 
it is difficult to see the effect of each input on outputs 
when the number of variables becomes large. Further 
more, in fermentation process, its physical phenomena 
has not been clarified yet, to select inputs of a soft-
sensor based on physical knowledge is especially hard 
(Fujiwara et al., 2012). 

This study aims to build GPR model based soft 

sensors for prediction production concentration in 

glutamate fermentation. For dimension compression of 

process data and also to deal with correlations between 

different input secondary variables, conventional PLS 

method can be performed, PLS is used to extract the 

characteristic components of the input secondary variables 

to reduce the number of the variables dimension and 

eliminate the redundant information, which means the 

GPR model will be constructed upon score variables of 

the PLS model. Results of predictions are compared with 

experiment data in 5 L fermenter for glutamate 

fermentation process as well as SVM to validate 

effectiveness of the proposed soft sensor method. 

Materials and Methods 

Microorganism and Fermentation Conditions 

Corynebacterium glutamicum S9114, kept by the 

key laboratory of industrial biotechnology, Jiangnan 

University, was used throughout this study (Zhang et al., 

2005). The seed microorganism was grown in a shaker 

at 32°C and 200 rpm for 8-10 h in liquid medium 

containing (in g/L): Glucose 25, K2HPO4 1.5, 

MgSO4 0.6, MnSO4 0.005, FeSO4 0.005, corn slurry 

25 and urea 2.5 (separated sterilization). Initial pH 

was adjusted to 7.0-7.2. 

C. glutamicum S9114 was cultivated for glutamate 

production at about 32°C in a 5L fermenter (BIOTECH-

5BG, Baoxing Co., China) containing about 3.4 L 

medium. Fermentation medium contained (g/L): Glucose 

140, K2HPO4 1.0, MgSO4 0.6, MnSO4 0.002, FeSO4 

0.002, thiamine 0.00005, corn slurry 15 and urea 3.0 

(separated sterilization). Concentrated glucose was 

added to fermenter based on requirement to ensure the 

substrate concentration above a suitable level (15 g L
−1

) 

throughout the fermentation period. pH was controlled at 

7.1±0.1 by automatic addition of 25% (w/w) ammonia 

water which also supplied the nitrogen source required 

for glutamate synthesis. Dissolved Oxygen (DO) was 

controlled at various levels by automatically or manually 

controlling the agitation speed according to particular 

necessities. The CO2 and O2 concentrations (partial 

pressure) in the inlet and exhaust gas were measured 

online by a gas analyzer (LKM2000A, Lokas Co. Ltd., 

Korea). Glutamate fermentation apparatus is shown in 

Fig. 1 (Dong, 2008). 

Among the state variables in glutamate fermentation 

process, only physical variable and chemical variable , 

such as fermentation time (t), temperature (T), pH, 

fermentation tank pressure (P), fermentation volume 

(V), agitation rate (AG), ammonia water consumption 

rate  (AR),  CO2  Evolution Rate  (CER) and O2 

Uptake Rate (OUR), Dissolved Oxygen Concentration 

(DO), etc., can be measured on-line (Ding et al., 2012). 
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Fig. 1. Glutamate fermentation apparatus  (1-Defoamer; 2-Glucose; 3-Ammonia water; 4-Electronic balance; 5-Peristaltic pump; 6-

pH electrode; 7-DO electrode) 
 
However the biomass concentration, substrate 

concentration and glutamate concentration cannot be 

measured on-line by hardware sensors. In general, the three 

variables can merely be assay off-line every two hours. 

Gaussian Process Regression 

Suppose that we are given a training set D of n 

observations, D = {( xi, yi) | i = 1,…,n }, where x denotes 

an input vector of dimension D and y denotes a scalar 

output or target (dependent variable); the column vector 

inputs for design matrix all n cases are aggregated in the 

D×n design matrix X and the targets are collected in the 

vector y, so we can write D = (X, y). Consider the 

regression model with Gaussian noise: 
 

(x)y f ε= +  (1) 

 

where, white Gaussian noise 2~ (0, )
n

Nε σ  with variance 
2

n
σ and the vector of regress xi from operating space R

D
. 

A Gaussian process is fully described by its mean 

function and covariance function. We define mean 

function m(x) and the covariance function k(x, x′) of a 

real process f(x) as: 
 

(x) [ (x)],

(x,x ) [( (x) (x))( (x ) (x ))],

m E f

k E f m f m

=

′ ′ ′= − −
 (2) 

 
Then the Gaussian process can be written as: 

 
2~ ( (x), (x,x ) )n ijy GP m k σ δ′ +  (3) 

 

where, δij is a Kronecker delta which is one if i = j and 

zero otherwise. Assuming additive independent 

identically distributed Gaussian noise ε with variance 
2

n
σ , the prior on the noisy observations becomes: 

 

 2cov(y) ( , )
n

K X X Iσ= +  (4) 

 
We can write the joint distribution of the observed 

target values and the function values at the test locations 

under the prior as: 
 

2

*

* * * *

y ( , ) ( , )
~ 0,

( , ) ( ,

nK X X I K X X
N

f K X X K X X

σ  + 
         

 (5) 

 

We arrive at the key predictive equations for 

Gaussian process regression: 

 

* * * *
| , y, ~ ( ,cov( )),f X X N f f  (6)  

 

Where: 

 
2 1

* * * *
[ | , y, ] ( , )[ ( , ) ] y,

n
f E f X X K X X K X X Iσ −= = +  (7) 

 

* * *

2 1

* *

cov( ) ( , )

( , )[ ( , ) ] ( , )n

f K X X

K X X K X X I K X Xσ −

=

− +
 (8) 

 
This equation can also be regarded as a linear 

combination of n kernel functions, each one centered on 

a training point, by writing: 
 

* *

1

(x ) (x ,x )
n

i i

i

f kα
=

=∑  (9) 

 
Where: 
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2 1( ) y
n

K Iα σ −= +  

 

The Laplace approximation to the marginal 

likelihood can be obtained in the same way as for the 

binary case, yielding: 
 

11 1
log( (y | , )) y y lg lg 2

2 2 2

T

y y

n
p X K Kθ π−= − − −  (10) 

 

where, 2

y f nK K Iσ= + is the covariance matrix for the 

noisy targets y (and Kf is the covariance matrix for the 

noise-free latent f).  

A common choice for the covariance function is the 

radial basis kernel: 
 

2

0

1

(x ,x ) [ (x ), (x )]

1
exp ( )

2

i j i j

D
d d

d i j ij

d

C Cov f f

x xυ ω δ υ
=

=

 
= − − + 

 
∑

 (11) 

 

where, D is the dimension of the input space of vector x 

and Θ = [ω1;⋅⋅⋅;ωD;υ;υ0]
T
 is a vector of parameters called 

hyper-parameters ( Ažman and Kocijan, 2007). 

To set the hyper-parameters by maximizing the 

marginal likelihood, we seek gradient the partial 

derivatives of the marginal likelihood w.r.t. the hyper-

parameters, we then obtain: 

 

1 1 11 1
y y

2 2

T

j j j

K K
K K tr K

θ θ θ
− − −

 ∂ ∂ ∂
= −   ∂ ∂ ∂ 

 (12) 

 

Soft Sensor Modeling Based on GPR 

The prediction model of soft sensor based on GPR 

for glutamate concentration is shown in Fig. 2. 

 

 
 
Fig. 2. Prediction model for glutamate concentration  

Before soft sensing modeling, the secondary 
variables that are related with the primary variable are 
determined based on PLS and technologic analysis of 
fermentation process. In soft sensors, the secondary 
variables are used to act as the inputs of the soft 
sensing model and the primary variables such as 
glutamate concentration is employed to act as the 
output of soft sensor model. 

Preparation of Training Dataset 

There are 10 batches experimental data of 
glutamate fermentation in 5L fermenter are used, 
fermentation period of 34 h, each batch includes 18 
sample points, the batches data are divided randomly 
into two subsets, 9 batch used for training and the 
other one batch for testing. All the input variables and 
output variables are rescaled to the interval [−1, 1] by 
using the following equations: 
 

* min

max min

2 ( )
1

x x
x

x x

⋅ −
= −

−
 (13) 

 

* min

max min

2 ( )
1

y y
y

y y

⋅ −
= −

−
 (14)  

 
where, (x, y) are the original values of input variables 
and output variables, (x

*
, y

*
) are normalized values of 

inputs and outputs. 

Select of Input Variables Based on PLS 

During the process of building a production 
concentration model for glutamate fermentation, the 
secondary variables are chose as input variables of GPR 
by using PLS. PLS provides a bilinear decomposition of 
the secondary variables X and primary variable Y 
matrices into a number of rank-one matrices in a similar 
mode to that of Principal Component Analysis (PCA) for 
a single data matrix. The kernel of the PLS procedure is 
the Non-linear Iterative Partial Least-Squares (NIPALS) 
arithmetic (Baffi et al., 1999; Park et al., 2010). This 
arithmetic unceasingly extracts each pair of 
corresponding latent variables as a linear combination of 
the secondary and primary variables (Equation 15 and 16 
respectively, prior to matching the inside linear 
regression (Equation 17) and then assessing the linear 
prediction of the output scores (Equation 18): 
 

1

x
M

j m mj j

m

t Xω ω
=

= =∑  (15) 

 

1

K

j k kj j

k

u y c Yc
=

= =∑  (16) 

 

, 1,2, ,

T

j j

j T

j j

u t
b j a

u u
= ⋯  (17) 

 
ˆ , 1,2, ,j j ju t b j a= = ⋯  (18) 
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 (A) (B) 

 
Fig. 3. The selection result of input variables by Partial Least Squares (PLS). (A) Regression coefficient chart by using Partial Least 

Squares (PLS), (B) Variance interpretation of principal component 

 

The input and output loadings vectors are calculated 

from the least-squares regression of the X matrix on tj 

and the Y matrix on ˆ
ju : 

 

, 1,2, ,

T

jT

j T

j j

t X
p j a

t t
= = ⋯  (19) 

 

ˆ
, 1,2, ,

ˆ ˆ

T

jT

j T

j j

u Y
q j a

u u
= = ⋯  (20) 

 

The final step in the iterative procedure is to deflate 

the X and Y matrices: 

 

, 1,2, ,T

j jE X t p j a= − = ⋯  (21) 

 

ˆ , 1,2, ,T

j jF Y u q j a= − = ⋯  (22) 

 

A detailed specification of the algorithm can be 

found in Geladi and Kowalski (1986) and  

Hӧskuldsson (1988). 

The selection result of input variables using PLS is 

shown in Fig. 3, from Fig. 3A, we can see that 

fermentation time t, fermentation temperature T, OUR 

and CER are important secondary variables to 

interpret glutamate concentration, these input 

variables have a large influence on output variable. As 

shown in Fig. 3B, Variance interpretation of the top-

scored  four principal  component  reaches  upwards 

of 95%. 

According to glutamate fermentation technique, 

fermenter pressure (P) and fermentation volume (V) 

changes are little during the entire fermentation 

period, besides, there is coupling between agitation 

rate (AG) and dissolved oxygen concentration (DO), 

therefore, the fermenter pressure (P), fermentation 

volume (V) and agitation rate (AG) are neglected as 

secondary variables in soft sensor model (Ding et al., 

2012). Mapping relationship of the secondary 

variables to the primary variable, i.e., y = f(t, T, OUR, 

CER), is implemented by GPR prediction model. 

Performance Index 

In this study, Root Mean Square Error (RMSE) and 

coefficient of determination (R
2
) are used as index of 

accuracy and the predictive ability of soft sensor model 

and were defined as: 

 

 
2

1

1
ˆ( )

n

i i

i

RMSE y y
n =

= −∑  (23) 

 
2

1 1 12

2 2

2 2

1 1 1 1

ˆ ˆ

ˆ ˆ

n n n

i i i i

i i i

n n n n

i i i i

i i i i

n y y y y

R

n y y n y y

= = =

= = = =

 
− 

 =
      − −          

∑ ∑ ∑

∑ ∑ ∑ ∑
 (24) 

 

where, yi is the off-line measured value; ˆ
iy  is the 

prediction value and n is the number of samples. 

Results and Discussion 

The simulations are implemented in MATLAB 

running on an laptop with 2.2GHz processor and 8GB 

RAM. 

In order to evaluate the performance of the soft 

sensor modeling based on GPR, the conventional PLS 

and SVM models are equally constructed to predict 

production concentration with the same fermentation 

data. The input secondary variables number of PLS 
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model is selected as 8; the Gaussian kernel is used in 

SVM, the hyper-parameters of SVM are tuned by grid 

search, c = 45.255, γ = 0.1768, ε = 0.01, whereas 

hyper-parameters of GPR are logΘ = [2.5187, 6.2309, 

4.7544, 5.9008, 3.4810, 1.0961]
T
, both of which can 

get the best prediction performance. 

Soft sensors based on PLS, PLS-SVM and PLS-

GPR are constructed through training data. Prediction 

residuals and predicted values by PLS-GPR for 

glutamate concentration are shown in Fig. 4-5, it can 

be seen that most of the residuals range is between -

2~2, the maximum residuals reaches 3.775 at 28 h, 

this is because it is production phase at the moment. 

Predicted values of the soft sensor based on PLS and 

PLS-SVM for glutamate concentration are shown in 

Fig. 6-7, respectively. Prediction error comparison of 

three different methods are shown in Figure 8, to 

make this clearer, the error bar for each real values are 

shown in Fig. 9. From Fig. 5-9, we can see that 

prediction by PLS-GPR exhibits better tracking 

performance than that by PLS and PLS-SVM, the 

testing samples by PLS-GPR have been well fitted, 

The prediction results of all soft sensors are shown in 

Table 1, as can be seen that GPR has got the greatest 

prediction performance, since it has the smallest Root 

Mean Square Error (RMSE) 1.32 among all soft 

sensors, the RMSE of PLS-GPR model increases to 

1.59 compared to the GPR without inputs selection by 

PLS, however, the number of input secondary 

variables is down from eight to four by 50%, R
2
 is 

down from 0.997 to 0.996, it also has better tracking 

performance. Meanwhile the prediction performance 

of PLS-SVM model is clearly relatively superior to 

SVM model, such as RMSE is down from 3.65 to 1.95 

by about 46.58% and R
2
 is up from 0.989 to 0.996. 

Table 1 also shows the same R squared values for 

PLS-SVM and PLS-GPR models, since PLS-GPR 

model has smaller Root Mean Square Error (RMSE) 

1.59, but PLS-SVM model is 1.95, PLS-GPR is 

superior to PLS-SVM model. 

 

 
 

Fig. 4. Prediction residuals by PLS-GPR for glutamate concentration 

 

 
 

Fig. 5.  Prediction results by PLS-GPR 
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Fig. 6. Prediction results by Partial Least Squares (PLS) 

 

 
 

Fig. 7. Prediction results by PLS-SVM for glutamate concentration 

 

 
 

Fig. 8. Prediction error comparison of three different methods 
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Fig. 9. Prediction errorbar comparison of three different methods 

 
Table 1. The prediction results of all soft sensors 

Models                 RMSE R2 

PLS 7.98 0.912 

SVM 3.65 0.989 

GPR 1.32 0.997 

PLS-SVM 1.95 0.996 

PLS-GPR 1.59 0.996 

 

Conclusion 

Glutamate fermentation process is a kind of 

complicated batch process which is severely nonlinear 

and time-varying. In this study, a soft sensor prediction 

model based on Gaussian Process Regression (GPR) for 

glutamate fermentation was proposed to predict 

production concentration. 

The prediction performance of the soft sensor is 

mainly impacted by the input secondary variables of 

GPR model. First, the correlation analyses of the input 

variables are carried out by PLS to reduce model 

complexity and dimensionality of input variables. 

The performance comparison among GPR, PLS and 

SVM method is implemented. Simulation results show 

that the GPR based soft sensor performs better than other 

traditional soft sensors, PLS-GPR exhibits better 

tracking performance, it can provide effective operation 

guidance for control and optimization of glutamate 

fermentation process. 
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