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Abstract: This research work includes a combination of Fisher’s Linear 

Discriminant (FLD) analysis by merging Radial Basis Function (RBF) 

Network and Back Propagation Algorithm (BPA) for monitoring the 

combustion conditions of a coal fired boiler. The CCD Camera is used to 

capture the two dimensional flame images. The features such as images, 

average intensity, area, brightness and orientation etc., of the flame are 

extracted after pre-processing the images. The FLD is applied to reduce the 

n-dimensional feature size to 2 dimensional feature size for faster learning of 

the RBF network. Also video processing has been done to extract three 

classes of images corresponding to different burning conditions of the flames. 

For various flame conditions, the corresponding temperatures and flue gas 

emissions are obtained using analyzers and sensors. The combustion quality 

indicates the air/fuel ratio which can be varied automatically. The proposed 

feed forward control scheme presents an alternative for the existing set-up for 

measuring SOx, NOx, CO and CO2 emissions that are detected from the 

samples collected at regular intervals of time in the laboratory or by using gas 

analyzers. Further training and testing of Parallel architecture of Radial Basis 

Function and Back Propagation Algorithm (PRBFBPA) with the data 

obtained has been done and the performance of the algorithms is presented. 
 
Keywords: Flame Image, Radial Basis Function Network, Back Propagation 

Network, Fisher’s Linear Discriminant, Temperature Monitoring, Monitoring 

Flue Gas Emissions, Combustion Quality, Parallel Architecture 
 

Introduction  

The boiler converts the chemical energy available in 
the fuel (coal) into internal energy of steam, the working 
fluid. The boiler feed water pumps deliver feed water to 
the boiler drum from where water is directed into the 
down comers and the circulating pumps located at the 
bottom of the boiler. The circulating pumps deliver the 

feed water to the distribution headers beneath the furnace 
sections. The water rises in the circuits, which are the 
vertical enclosing walls of the furnace. During 
combustion, the water walls absorb radiant heat in the 
furnace (Sujatha et al., 2014) as shown in Fig. 1, boiling 
take place and a water-steam mixture (saturated steam) 

enters the drum, while the saturated water leaves the 
drum and enters the down comers (Sujatha,  2012).  

Burning takes place when fuel, most commonly a 

fossil fuel, reacts with the oxygen in the air to produce 

heat. The heat created by burning the fossil fuel is used 

in the operation of boilers, furnaces, kilns and engines. 

Along with the heat, carbon dioxide (CO2) and water 

(H2O) are created as by-products of the exothermic 

reaction (Sujatha,  2012). 

By monitoring and regulating some of the gases in 

the stack or exhaust, it is easy to improve the combustion 

efficiency, which conserves fuel and lowers operation 

cost (Er et al., 2002. Combustion efficiency deals with 

the calculation of how effectively the combustion 

process takes place. To achieve the highest levels of 

combustion efficiency, complete combustion should take 

place. Complete combustion occurs when all the energy 

in the fuel being burnt is extracted and none of the 

carbon and hydrogen compounds are left unburnt 

(Sujatha,  2012). Complete combustion will occur when 

proper amounts of fuel and air (fuel/air ratio) are mixed 

in correct proportion under the appropriate conditions of 

turbulence and temperature. 
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Fig. 1: Schematic diagram of a furnace 

 

Although theoretically stoichiometric combustion 

provides the perfect air to fuel ratio, which results in 

lowering the losses and extracting all the energy from 

the fuel, In reality, stoichiometric combustion is 

unattainable due to many factors that are varying with 

respect to time (Lu et al., 2005). Heat losses are 

inevitable thus making cent percent efficiency 

impossible. In practice, to achieve complete 

combustion, it is necessary to increase the amount of 

air so as to ensure the complete burning of all the fuel. 

The amount of air that must be added to make the 

combustion complete is known as excess air. In most of 

the combustion processes, some additional chemicals 

are formed during the combustion reactions. Some of 

the products as a result of combustion process are 

Carbon monoxide (CO), Nitric Oxide (NO), Nitrogen 

dioxide (NO2), Sulphur dioxide (SO2), soot and ash. 

These flue gas emissions should be minimized and 

accurately measured. The EPA has set specific 

standards and regulations for emissions of these 

products, as they are harmful to the environment. 

Combustion analysis is a vital step to properly operate 

and control any combustion process in order to obtain 

the highest combustion efficiency accompanied by low 

flue gas emissions (Sujatha, 2012). 

Previous Research 

The Maximum Posterior Marginal method (MPM) 

based on Hidden Markov Model (HMM) for 

recognition and classification of flame images were 

used to identify the complete combustion conditions. 

Another method based on edge detection and pattern 

recognition to identify the combustion conditions is 

also available. Even though it is possible to detect the 

flame temperature these techniques do not give 

information regarding the CO2 and NOx emissions in 

flue gases thereby providing a poor control of air/fuel 

ratio (Sujatha and Kalavani, 2011).  
The main objective is to design a expert flame 

monitoring system with progressive cameras, along with 

artificial intelligence techniques to identify flame 

features (Sujatha and Pappa, 2011a) that can be 

correlated with air/fuel ratio, NOx, CO, CO2 emission 

levels, temperature, etc. The 3D temperature profiler is 

designed to provide control of furnace and flame 

temperature which also reduces the flue gas emissions 

which is the key in achieving high combustion quality 

(Sujatha and Pappa, 2011a). The system is also designed 
to provide guidance for balancing air/fuel ratio so as to 

ensure complete combustion. The goal ofon-line 

monitoring and controlled combustion is to address ever-

increasing demands for higher furnace efficiency, 

reduced flue gas emissions and improved combustion 

quality (Sujatha and Pappa, 2011a). These systems, are 
based on the latest optical sensing and digital image 

processing techniques (Sujatha and Pappa, 2011a), are 
capable of determining geometry (size and location), 

i.e., the geometry of the burner (fixed), luminous 

(brightness and uniformity) and fluid-dynamics 

parameters (temperature) of a flame. In the current set 

up, based on the oxygen content in the exhaust gas the 

air/fuel ratio of the ratio controller is varied manually 

in a feedback manner. The proposed scheme can be 

used to dynamically vary the air/fuel ratio based on 

the colour of the flame images (feed forward control). 

An intelligent feed forward control to adjust the 

air/fuel ratio and to minimize the flue gas emissions 

for ensuring complete combustion using flame image 

analysis was implemented. The systems have been 

evaluated on both laboratory and industrial scale 

combustion rigs under varied operating conditions. 

The features extracted are filtered (median filter, 

average filter and self adaptive filters) to enhance the 

flame images that are used for testing the performance 

of the Self-Organizing feature Maps (SOM) which 

classifies the flame images as proposed by Fan Jiang et al 

(2009). Advanced flame and temperature measurement 

techniques include Laser Raman (LR)/Laser Rayleigh 

Scattering (RS), Fourier Transform Infrared (FTIR) 

Spectroscopy and interferometry along with the traces 

of smoke, small particles, gas streams and bubbles 

were used to visualize combustion phenomenon 

(Sujatha and Pappa, 2011a).  
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Hypothesis 

The major findings from this research work are as 

follows: 
 
H1: The combustion quality in power station boilers can 

be determined from the intensity of the flame 
images  

H2: The colour of the furnace flame denotes whether the 
combustion is complete or incomplete 

H3: The colour of the furnace flame in turn denotes the 
flue gases at the exhaust. The core of the fire ball is 
yellowish white during complete combustion 

H4: Under complete combustion conditions the amount 
of flue gases like NOx, SOx, CO and CO2 emissions 
are within the tolerance limits 

H5: The gas analyzers (Offline) used for measurement 
of various flue gases can be replaced by intelligent 
algorithms (Online) 

H6: This image processing based flame monitoring 
system minimizes flue gas emissions at the furnace 
level thereby ensuring complete combustion 

 

Research Methodology 

The combustion takes place in the furnace when 
fuel and air get mixed up in proper ratio. The next 
monitoring point in the flue gas path is the temperature at 
the exit of the boiler. Flames are generated in the furnace 
when fuel and air from separated conduits are mixed up in 
a proper ratio. The flames generated are turbulent and can 
be looked straight and well-defined, which also refers to 
the flame oscillation. The temperatures of flame measured 
by thermocouples are the average values (Han et al., 
2006) and the images of the flame will give instantaneous 
temperatures. Table 1 gives the specifications of the boiler 
at Neyveli Lignite Corporation (NLC) Ltd. 

Also, combustion monitoring involves boiler 
performance and optimization. The necessity to 
condition monitor the flame is to control emissions of 
Nitrogen Oxide (NOx), Carbon monoxide (CO), 
Carbon dioxide (CO2), increased fuel efficiency and 
improved burner reliability to maintain required 
furnace temperature (Lipmann et al., 1987). When the 
air to fuel ratio is incorrect, NOx, CO2 and CO 
emissions will increase at the outlet which in turn 
influences the flame temperature. For efficient 
combustion of different fuels the quality of the flame 
must be maintained in order to reduce air pollution 
and fuel consumption. Burner imbalances in coal, oil 
and air which results in low combustion efficiency, 
elevated emissions of Nitrogen oxides (NOx), Carbon 
monoxide (CO), localized reducing conditions and 
promotion of slag formation. Differences from one 
burner to the next in combustion conditions are due to 
factors such as imbalances in air/fuel ratio and 
maintenance problems at individual burners. The 
existing set-up indicates only the presence or absence 
of the flame in the furnace (Han et al., 2006). 

Table 1: Boiler data-neyveli lignite corporation 

Parameters Specifications 

Type Radiant tower 
Circulation Natural 
Manufacture Ansaldo Energia 
Boiler Design Pressure 182 kg/cm2(a) 
Fuel  Lignite 
Start-up fuel Light Diesel Oil-Heavy Fuel oil 
Burners type Tangential Firing 
Number of burners 12 Lignite and 8 Fuel oil burners 
Mills type Ventilation Mill MB 3400/900/490 
Number of Mills 6 numbers 
SH Flow at outlet 540 t/hr 
Temperature SH at outlet 540 degree Celsius 
Lignite fired-Best 189 t/hr 
Lignite fired-Average 213 t/hr 
Lignite fired-worst 230 t/hr 

 

Hypothesis Testing 

Intelligent Flame Monitoring System 

The schematic diagram for the proposed work is 

shown in the Fig. 2. The images are extracted from the 

video. The features are extracted (Sujatha et al., 2014) 

from each image. Fisher’s linear discriminant function 

reduces the dimensions of extracted features (Sujatha and 
Pappa, 2011a) into 2 dimensions (Sujatha, 2012). The 

RBF (Sujatha and Pappa, 2010; Sujatha and Pappa, 

2011) is trained with the 4 feature vectors generated 

from 3 groups of images and similarly the BPA is also 

trained with remaining 3 feature vectors. The final 

output from these two networks is once again given as 

input to another network trained using RBF 

(Purushothaman, 2009). The target values are the 

temperature of each group of images, the measured CO, 

CO2, SOx and NOx values from the flue gas. In the test 

phase, the outputs of proposed algorithms are compared 

with the measured values of flue gas to decide if any 

adjustment in the air/fuel ratio is required for a burner. 

Conventional Vs Intelligent Flame Monitoring 

System 

The Table 2 shows the quality of coal supplied which 

is dependent on the moisture and ash content. The 

velocity of the pulverized coal/air/gas mixture at the 

burner nozzle outlet is 12-14.4 m/sec. The flame images 

are obtained from the control room of the thermal power 

plant boiler. Table 3a-c shows the samples of flame 

images and the corresponding measurements of flue 

gases and flame temperature. Totally 102 flame images 

gathered. Of this 51 images for training and 51 images 

for testing the proposed algorithm were taken into 

consideration. Class 1 (flame1 to flame 18), class 2 

(flame 19 to flame 38) and class 3 (flame 39 to flame 51) 

are of importance from the control room. Cropping of 

each image is done to the size of 30 x 30 pixels but any 

other size could also be chosen.  
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Fig. 2: Schematic diagram for flame image analysis and intelligent classification 

 

 
 (a) 

 

 
 (b) 

 
Fig. 3a: Existing arrangement for flame monitoring system at Neyveli Lignite Corporation (b) Proposed arrangement for intelligent 

flame monitoring system 

 
Table 2: Coal characteristics under normal operating conditions 

Parameters Average values 

Net Calorific Value 2350 kcal/kg 

Moisture (M) 52% 

Ash (A) 6% 
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Table 3a: Flame Images for combustion categories 

Combustion category Class 1 Class 2 Class 3 

Complete combustion    

Partial combustion    

Incomplete combustion    

 
Table 3b: Measurement data for different combustion categories 

  Temperature of superheated 

Combustion category SOx Emission mg/Nm3 steam in (degree Celsius) Combustion quality (%) 

Class1 Complete combustion 400 530 100 

Class 2 Partial combustion 600 240 50 

Class 3 Incomplete combustion 900 170 30 

 
Table 3c: Measurement data for different combustion categories 

   Flame temperature 

NOx mg/Nm
3 CO ppm CO2 Nm

3/hr in (degree Celsius) 

70 100 400 1250 

120 200 700 900 

200 300 1000 300 

 

The CO, NOx, CO2, SOx values and air/fuel ratio 

measured from the flue gas at the same instant were 

recorded from the existing set up as shown in Fig. 3b. 

The proposed system for online monitoring is shown in 

Fig. 3b. The existing set up at NLC is shown in Fig. 3a. 

The major components of the proposed flame monitoring 

system are listed here: 

 

• Infra-red camera placed inside a cooling jacket with 

servo-motor mechanism 

• CCTV set up placed in the control room 

• TV tuner for transferring the flame video from the 

CRT monitor on to the PC 

• Laptop connected to the TV tuner 

• The video file is split up into frames for further 

analysis 

• Image processing algorithms for analyzing the 

constituents of the flame 

• Intelligent control strategy to monitor and control 

the combustion quality  

• Validation of the developed system. 

 

The following stages are involved in the proposed 

flame video analysis is as shown in Fig. 3b: 

 

Step 1: The video file is further processed by splitting 

into frames using any video splitter 

Step 2: The flame images are pre-processed for noise 

removal 

Step 3: The features are extracted 

Step 4: Features are reduced  

Step 5: Classification using AI techniques 

Step 6: Validation of the algorithms with performance 

measures 
 

Pre-Processing 

Pre-processing is done to remove noise. The frame 

size considered for filtering was 30×30. It is sufficient 

that the 30×30 portion of the image is taken for further 

analysis. The extracted flame images if corrupted with 

noise, then filtering needs to be done. Filtering was 

done using Image J. The various filters available are the 

unsharp mask filter, Maximum filter, Minimum filter, 

Variance filter. Figure 5 shows the output for various 

filters listed above and it is evident that median 

filtering yields better results. It is inferred that the 

performance of median filter on noise removal was 

good when compared with the other filters (Sujatha et al., 

2011). The mean filter also performs filtering to a 

certain extent but the clarity of the filtered image is 

slightly low when compared with the median filter. The 

other filter types are not suitable because the basic 

information present in the original image is lost. Hence it 

is better to use a median filter for noise removal 

pertaining to this situation. 

Edge Detection 

The colour images are converted into corresponding 

gray scale images to extract the features which are the 

basic identity of an image. The edge detection based on 

the threshold is done in order to segregate the region of 

interest. The gray scale conversion and thresholding was 

done for all the 51 images. The results of which are 

shown below in the Fig. 4. 
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 (a) (b) 

 
Fig. 4: Edge detection using Sobel operator (a) Gray Scale image (b) After edge detection 

 

         
 (a) (b) (c) (d) 

 

           
 (e) (f) (g) (h) 
 
Fig. 5: Effect of different filtering techniques on the corrupted flame image (a) Original image (b) Corrupted image (c) Unsharp  

mask  filter (d) Maximum filter (e)Variance filter (f) Minimum filter (g) Mean filter (h) Median filter 

 

Feature Extraction 

The features are the basic pattern that gets distributed 
along various directions in an image. They represent the 
characteristics of the images. The features extracted are 
centroid x and centroid y of the flame in the image, 
orientation of the flame, average intensity of the flame 
image, area (Sujatha et al., 2014) of the flame and the 
discriminant vectors Φ1 and Φ2 (Sujatha et al., 2013). 
The target outputs are the temperatures, measured for 
set of images, the CO emissions measured in ppm, NOx 
in mg/Nm

3
, CO2 in Nm

3
/hr, SOx in mg/Nm

3
, in the rate 

of air supply in t/hr and the fuel supplied in t/hr 
(Sujatha et al., 2014). 

Classification 

The classification was done using RBF and various 

parallel architecture of BPA and RBF. The Back 

Propagation Algorithm (BPA) is a neural network is 

constructed by highly interconnected processing units 

(nodes or neurons) which perform simple 

mathematical operations. Neural networks are 

characterized by their topologies, weight vectors and 

activation function which are used in the hidden layers 

and output layer. The topology refers to the number of 

hidden layers and connection between nodes in the 

hidden layers. The activation functions that can be used 
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are sigmoid, hyperbolic tangent and sine 

(Purushothaman and Srinivasa, 1998). The network 

models can be static or dynamic. Static networks include 

single layer perceptrons and multilayer perceptrons. A 

perceptron or Adaptive Linear Element (ADALINE) 

refers to a computing unit. This forms the basic building 

block for neural networks. The input to a perceptron is 

the summation of input pattern vectors by weight 

vectors. Information flows in a feed-forward manner 

from input layer to the output layer through hidden 

layers   (Sujatha and Pappa, 2011b; Fisher, 1936). The 

number of nodes in the input layer and output layer is 

fixed. It depends upon the number of input variables and 

the number of output variables in a pattern. In this work, 

there are seven input variables and one output variable. 

The number of nodes in a hidden layer is fixed by trial 

and error. In this application, the network parameters 

such as the number of nodes in the hidden layers and the 

number of hidden layers are found by trial and error 

method. In most of the applications one hidden layer is 

sufficient. As the name implies Back Propagation 

Algorithm (BPA) the weight updation takes place in the 

reverse order i.e., from the output layer to input layer 

(Sujatha and Pappa, 2010). 

The classification was also performed with Radial 

Basis Function (RBF) classifier. A Radial Basis 

Function (RBF) is a real-valued function, whose value 

depends only on the distance from the origin. If a 

function ‘h’ satisfies the property h(x) = h(||x||), then it 

is a radial function. A Gaussian RBF monotonically 

decreases with distance from the centre. RBF networks 

have traditionally been associated with radial functions 

in a single-layer network. The input layer carries the 

value of φ1 and φ2. The distance between these values 

and centre values are found and summed to form linear 

combination before the neurons of the hidden layer 

(Sujatha et al., 2015).  

These neurons are said to contain the radial basis 

function with exponential form. The outputs of the 

RBF activation function is further processed 

according to specific requirements. The activation 

function which is used to train the ANN is the 

Gaussian function (Wojcik, 2008). 

The Parallel architecture of Radial Basis Function 

Network and Back Propagation Algorithm 

(PRBFBPA) was proposed, since the convergence and 

the classification performance for the single 

intelligent networks are not satisfactory the parallel 

architectures of intelligent classifier are proposed in 

this study. The outputs of BPA and RBF of the first 

stage are combined and given as inputs to a second 

RBF network for final classification of the flame 

images. The block diagram for PRBFBPA is shown in 

Fig. 6 below. Similiar structures were used to identify 

the various flue gas emissions like CO, CO2, SOx and 

NOx along with air/fuel ratio and flame temperature. 

The features obtained from flame images are given as 

the input to the BPA and RBF initially (Fisher, 1936). 

The architecture for various combinations of the 

intelligent network is shown in Fig. 6. 

Performance Evaluation 

The classification performance of the intelligent 

classifiers is evaluated using precision and recall. 

Precision is defined as the ratio of number of all the 

images retrieved to number of all the relevant images 

retrieved. Recall is defined as the ratio of number of all 

the relevant images retrieved to the number of all the 

images in each group (Sujatha, 2013). 
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 (b) 

 

 
 (c) 

 
Fig. 6: Various combination of the intelligent classifiers (a) Architecture for multiple BPA (b) Architecture for multiple RBF (c) 

Architecture for combined of BPA RBF 

 

Results and Discussion 

Results 

The Fig., 7a-c show the histogram analysis for each 

class of images. The histogram for class 1 images has 

high frequency of occurrence corresponding to the 

intensity value of 255 when compared to class 2 and 

class 3 images. The Fig. 8a-c show the surface plot for 

all the three categories discussed earlier. The surface plot 

for complete combustion in Fig. 8a shows that the entire 

surface lies near the intensity value 255 about the Z-axis 

whereas for the other two categories as shown in Fig. 8b 

and c the entire surface lies near the intensity of 150 and 

20 approximately. Image J was used to obtain the 

histogram and surface plots (Jiang et al., 2009). 

By the process of FLD, ϕ1 and ϕ2 discriminant 

vectors given in Table 3 are obtained by using three 

categories of flame images. The classification 

performance of FLD is given in Table 4. The 

distribution of the 2D patterns by FLD is shown in 

Fig. 9 above for all the three classes. This distribution 

is also obtained taking various 30×30 pixels of the 

flame image. It is was found that any 30×30 pixels 

considered for further analysis will not affect the 

classification performance (Hong and Yang, 1991). 
Similar type of results as shown in Fig. 9 is 

obtained when considering the different portions of 
the flame image. The targets are the values of the 
various flue gas emissions, combustion quality and 
flame temperature. The normalized values of the 
features are used for obtaining results from the 
various intelligent classifiers. For normalization each 
value of the feature divided by the maximum value of 
that feature is used as the formula so as reduce the 
computational complexity (Foley, 1972). 
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Table 4: Classification by FLD 

 Number of images Number of Number of 

Class used for testing images classified images misclassified 

1 18 17 1 

2 20 18 2 

3 13 13 0 

 

Table 5: Network Parameters for BPA, RBF and PRBFBPA 

Network parameters BPA RBF PRBFBPA 

No. of nodes in the input layer  3 4 2 

No. of nodes in the hidden layer 6 9 7 

No. of nodes in the output layer 1 1 1 

No. of patterns for training 51 51 51 

No. of patterns for testing 51 51 51 

Mean Squared Error 0.019 0.0391 0.0443 

Activation function sigmoid Gaussian and Linear  Gaussian and Linear 

 

   
 (a) (b) 

 

 
(c) 

 
Fig. 7: Histogram Analysis for flame images (a) Complete Combustion (b) Partial Combustion (c) Incomplete Combustion 

 

  
Count:  76800                   Min: 120 

Mean:  250.114                Max:  255 
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StdDev:  36.659               Mode:  255 (60934) 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 8: Surface Plot of the flame for complete, partial and incomplete combustion (a) Complete combustion Category (b) Partial 

combustion Category (c) Incomplete combustion Category 
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Fig. 9: Distribution of two dimensional patterns of Class 1, Class 2 and Class 3 images for choosing 30×30 pixels at different portion 

of the image 

 

 
 (a) 

 

 
 (b) 
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 (c) 

 

 
 (d) 

 

 
 (e) 
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 (f) 

 

 
 (g) 

 

 
 (h) 

 
Fig. 10: Outputs for parallel architecture of BPA and RBF with four features as input to BPA and three features as input to RBF (a). 

Prediction of CO emissions by PRBFBPA (b). Prediction of CO2 emissions by PRBFBPA (c). Prediction of Combustion 

quality by PRBFBPA (d). Prediction of SOx emissions by PRBFBPA (e).Prediction of Flame Temperature by PRBFBPA (f). 

Prediction of NOx emissions  by PRBFBPA (g). Prediction of Air supplied  by PRBFBPA (h).  Prediction of Fuel supplied  

by PRBFBPA 
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 (g) 

 

 
 (h) 

 
Fig. 11: Effect of changing the feature inputs to the PRBFBPA with 3 features as input to BPA and 4    features as input to RBF (a) 

Prediction of NOx emissions (b) Prediction of NOx emissions (c) Prediction of SOx emissions (d) Prediction of flame 

Temperature (e) Prediction of Fuel supplied (f) Prediction of CO2 emissions (g) Prediction Combustion quality (h) 

Prediction of Air supplied 

 

The inputs for PRBFBPA are trained with 7 

features as inputs. A set of final weights are obtained 

by training PRBFBPA with desired target values 

(temperature, combustion quality, SOx, CO2, NOx, CO, 

rate of air and fuel supply). The effect of changing the 

feature set is illustrated in Figure 10 and 11. 

Discussion 

The analysis of various combinations of features as 
inputs to the parallel architecture of RBF and BPA are 
also done. It is inferred that the classification 
performance was comparatively good when three 
features are given as inputs to BPA and remaining four 
features are given as inputs to RBF. The Table 6 

denotes the precision and recall values for various 
intelligent algorithms. Table 7a and 7b shows the 
classification performance for the feature combinations 
for the feature set (3, 4). 

The misclassification was high when compared with 
the other combinations of the features (two features as 
inputs to BPA and five features as inputs to RBF, two 
features as inputs to RBF and five features as inputs to 
BPA). When only one feature was given as input to BPA 
and remaining six features as input to RBF the networks 
did not converge. Similarly an analysis was made by 
using parallel architecture of dual RBF with combination 
of two, three, four and five features as inputs to the first 
RBF network and five, four, three and two features as 
inputs to the second RBF network. The outputs for dual 
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RBF considering four features as input to RBF1 and three 
features as input to RBF2 also yields results which are 
misclassified. Likewise the outputs for dual RBF 

considering three features as input to RBF1 and four 
features as input to RBF2 show that almost all the 
patterns are misclassified. 

 

Table 6: Performance measures for classification by FLD, RBF and PRBFBPA 

 Precision   Recall 

Type of ------------------------------------------------------------ ------------------------------------------------------ 

algorithm Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

FLD 0.94 0.900 1.000 1 1 1 

RBF 1.00 0.900 0.076 1 1 1 

PRBFBPA 1.00 0.894 0.850 1 1 1 

 
Table 7a: Effect of changing the input features to the parallel architecture of BPA and RBF 

 No. of images classified correctly for CO emissions 

Parallel architecture of BPA and RBF with 3 and 4 -------------------------------------------------------------- 

features as inputs respectively Class 1 Class 2 Class 3 

Feature set Centroid X, centroid Y and orientation as inputs to 18 16 13 

BPA with Φ1, Φ2, average intensity and area as input to RBF network 18 16 13 

 18 16 13 

Feature set Centroid X, centroid Y and area as inputs to BPA with Φ1, 14 0 0 

Φ2, average intensity and orientation as input to RBF network 0 18 0 

 0 13 0 

Feature set Centroid X, centroid Y and average intensity as inputs to 12 0 2 

BPA with Φ1, Φ2, orientation and area as input to RBF network 0 13 2 

 10 0 3 

Feature set Φ1, Φ2 and area as inputs to BPA with centroid X, 12 0 2 

centroid Y, average intensity and orientation as input to RBF network 3 8 1 

 0 11 0 

Feature set Φ1, Φ2 and orientation as inputs to BPA with centroid X, 10 2 1 

centroid Y, average intensity and area as input to RBF network 5 5 0 

 1 6 2 

Feature set Φ1, Φ2 and average intensity as inputs to BPA with centroid 9 5 2 

X, centroid Y, orientation and area as input to RBF network 2 5 2 

 2 4 3 

 
Table 7b: Effect of changing the input features to parallel architecture of BPA and RBF 

 No. of images classified correctly for NOx  

 emissions and combustion quality 

Parallel architecture of BPA and RBF with 3 and 4 ------------------------------------------------------- 

features as inputs respectively Class 1 Class 2 Class 3 

Feature set Centroid X, centroid Y and orientation as inputs to BPA 18 16 13 

with Φ1, Φ2, average intensity and area as input to RBF network 18 16 13 

Feature set Centroid X, centroid Y and area as inputs to BPA with Φ1, 11 0 0 

Φ2, average intensity and orientation as input to RBF network 0 0 0 

Feature set Centroid X, centroid Y and average intensity as inputs to 11 0 0 

BPA with Φ1, Φ2, orientation and area as input to RBF network 1 0 0 

Feature set Φ1, Φ2 and area as inputs to BPA with centroid X, 9 5 0 

centroid Y, average intensity and orientation as input to RBF network 6 3 0 

Feature set Φ1, Φ2 and orientation as inputs to BPA with centroid X, 10 4 0 

centroid Y, average intensity and area as input to RBF network 5 2 0 

Feature set Φ1, Φ2 and average intensity as inputs to BPA with 10 2 2 

centroid X, centroid Y, orientation and area as input to RBF network 3 1 2 



Kesavan Sujatha et al. / American Journal of Applied Sciences 2018, 15 (1): 95.115 

DOI: 10.3844/ajassp.2018.95.115 

 

112 

Table 8a: Choice of the parallel architecture based on Flame image classification for CO, CO2 and SOx emissions 

 No. of images classified for CO, CO2 and SOx emissions 
Various combinations of Intelligent Classifier with variations ------------------------------------------------------------------- 
in feature set for combustion quality and flue gas monitoring Class 1 Class 2 Class 3 

Parallel architecture of BPA and RBF with 3 and 4 18 16 13 
features as inputs respectively 18 16 13 
 18 16 13 
Parallel architecture of BPA and RBF with 4 and 3 9 5 2 
features as inputs respectively 2 5 2 
 2 4 3 
Parallel architecture of multiple BPA with 4 and 3 4 10 2 
features as inputs respectively 5 10 1 
 5 6 1 
Parallel architecture of multiple BPA with 3 and 4 4 10 2 
features as inputs respectively 5 10 1 
 5 6 1 
Parallel architecture of multiple RBF with 4 and 3 6 7 0 
features as inputs respectively 6 7 0 
 4 8 0 
Parallel architecture of multiple RBF with 3 and 4 5 4 0 
features as inputs 5 4 0 
 3 5 0 
Single RBF Classifier 0 3 0 
 0 3 0 
 0 3 0 

 
Table 8b: Choice of the parallel architecture based on Flame image classification for NOx emissions and combustion quality 

 No. of images classified for NOx  
 emissions and combustion quality 
Various combinations of Intelligent Classifier with variations ------------------------------------------------ 
in feature set for combustion quality and flue gas monitoring Class 1 Class 2 Class 3 

Parallel architecture of BPA and RBF with 3 and 4 features as inputs respectively 18 16 13 
 18 16 13 
Parallel architecture of BPA and RBF with 4 and 3 features as inputs respectively 9 4 2 
 7 9 3 
Parallel architecture of multiple BPA with 4 and 3 features as inputs respectively 5 8 1 
 2 3 4 
Parallel architecture of multiple BPA with 3 and 4 features as inputs respectively 5 8 1 
 2 3 4 
Parallel architecture of multiple RBF with 4 and 3 features as inputs respectively 5 3 0 
 5 3 0 
Parallel architecture of multiple RBF with 3 and 4 features as inputs 5 5 0 
 2 4 2 
Single RBF Classifier 0 3 0 
 0 3 0 

 
Table 9: Classification performance metrics for intelligent classifiers 

CO, CO2, SOx and NOx emissions 
---------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Flue gas emissions Category Precision Recall 

Single RBF Class1 0.0390 1 
 Class2 0.0196 1 
 Class 3 0.0000 1 
Multiple RBF Class1 0.0789 1 
 Class2 0.1960 1 
 Class 3 0.0392 1 
Multiple BPA Class1 0.0390 1 
 Class2 0.1176 1 
 Class 3 0.0196 1 
RBF+BPA Class1 1.0000 1 
 Class2 0.8940 1 
 Class 3 0.8500 1 
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Table 10a: Temperature, Combustion quality, CO and CO2 measurement 

Combustion  Flame Temperature CO emission CO2 Emission 

quality/category Image (deg Celsius) in (ppm) Nm3/hr 

Class1 Complete combustion  1250 120  430 

Class 2 Partial combustion  750 150  740 

Class 3 Incomplete combustion  370 220 1100 

 
Table 10b: Combustion quality, % excess O2 and NOx measurement 

 NOx emission SOx emission Temperature of superheated Excess O2 

Combustion quality/category mg/Nm3 mg/Nm3  steam in (deg Celsius) emissions (%) 

Class1 Complete combustion 75 410 530 4 

Class 2 Partial combustion 130 620 240 10 

Class 3 Incomplete combustion 240 950 170 16 

 

For the outputs for a single RBF with all the seven 

features as inputs the images in class 3 corresponding 

to incomplete combustion category were 

misclassified. Similarly choosing two BPA networks 

were also not suitable as there is much of deviation 

between the target and the actual values. For this 

combination of the intelligent network also the 

various combination of features as inputs were also 

tried. The results obtained were not promising. Hence 

it was finally decided to operate the intelligent 

parallel architecture with three features as input to 

BPA and remaining four features as input to RBF and 

finally the outputs of this combination was given as 

input to the RBF in the second stage to classify the 

patterns based on the combustion quality. 

The Table 8a and 8b illustrate that the number of 

images misclassified for various combinations the 

parallel architectures yield very less number of images 

to be classified correctly. The Table 9 gives the 

classification performance metrics for the 

combination of various intelligent classifiers 

considering three features and four features as inputs 

to BPA and RBF respectively. Similarly the 

performance metrics for various combinations of the 

intelligent classifiers with the feature set (2, 5), (4, 3), 

(5, 2) as inputs to BPA and RBF was calculated and is 

found to be below the admissible limit. The 

combination of network 1 as BPA and network 2 as 

RBF with the final network, RBF combining the 

outputs of the BPA and RBF and the inputs as three 

features to BPA and four features to RBF in the first 

stage yields better results.  

Validation of the Parallel Architecture using 

BPA and RBF 

The validation of parallel architecture of BPA and 

RBF using three features as input to BPA and remaining 

four features as input to RBF was done. Table 10a and 

10b given below shows the data collected from NLC at 

some other period of time. 

Conclusion and Future Scope 

There is a further scope to extend the work by 

considering the spectrum of the flame images in the 

set of extracted features. This work is carried out by 

collecting the flame images pertaining to only three 

different combustion conditions like complete, partial 

and incomplete combustion conditions. The 

intermediate combustion conditions (like less partial, 

highly partial, less incomplete and highly incomplete) 

apart of complete condition can also be added to the 

source data so as to make the combustion condition 

and flue gas emission analysis more efficient. The 

integration of these simulation results with the DCS in 

real time for online monitoring of the flue gas 

emissions and combustion quality can also be carried 

out. Then the proposed intelligent algorithms can be 

used for the automation of the power plant. The 

inferred parameters are displayed in the centralized 

control room (cost effective solution).  

The results in Table 11 support that the parallel 

architecture of the intelligent classifiers are beneficial for 

combustion quality monitoring in power stations since 

the training and testing results are very close to the 

validation results. The precision and recall for all the 

three classes are shown in Table 11. 

In this work, 102 flame images collected (51 for training 

and 51 for testing) from the control room for a boiler in the 

power station and forty nine images out of them were 

identified to be correct. The images are pre-processed and 

features are extracted. The extracted features are the 

input to Fisher’s linear discriminant function to 

transform the n-dimensional feature size into 2D vectors.
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Table 11: Comparison of performance criteria for testing and validation 

 Recall    Precision 

Comparison --------------------------------------------------------- ----------------------------------------------------- 

Testing/Validation Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

Testing results 1 1 1 1 0.894 0.85 

Validation results 1 1 1 1 0.8358 0.8 

 

Training of RBF and BPA was done with 51 images 
taken from class 1; class 2 and class 3 images and 
finally the outputs from these networks are combined 
and given as the input to another RBF so as to obtain 
the final output. Testing and validation results shown 
in Table 11 indicate that PRBFBPA gives maximum 
classification performance when compared to FLD, 
RBF and PRBFBPA. Classification performance can 
be improved by further pre-processing of the acquired 
images. Depending on the quality of combustion 
corresponding to the colour of the flame images 
necessary action is taken to increase or decrease the 
air supply so as to ensure complete combustion. In 
this work by continuously monitoring the flame 
images, combustion quality was inferred 
(complete/partial/incomplete combustion). From the 
combustion quality the air/fuel ratio can be 
automatically varied. Moreover in the existing set-up 
measurements like SOx, NOx, CO and CO2 are 
inferred from the samples that are collected 
periodically or by using gas analyzers (expensive). 
The proposed algorithm can be integrated with the 
Distributed Control System (DCS) that is used for 
automation of the power plant. The inferred 
parameters can be displayed in the centralized control 
room (cost effective solution). To conclude with there 
is a further scope to extend the work by considering 
the spectrum of the flame images. 
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