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Abstract: In this study, we are interested in the newly observed endemic 
due to the ZIKA virus. In the absence of a full knowledge of the dynamics 
of the infection due to this virus, we consider a model of the closely related 
dengue virus when there are two species of mosquitoes, A. aegypti and A. 
albopictus mosquitoes who are both capable of transmitting the two 
viruses. We use a Susceptible-Infected-Recovered (SIR) model to 
describe the infection of the human populations. We obtain the basic 
reproduction ratio (R0) and show that if R0 is less than 1, the disease free 
equilibrium state is global asymptotically stable. If R0 is greater than 1, we 
use the Lyapunov function approach to find the conditions for the unique 
dengue endemic equilibrium state to be globally stable. We then point out the 
insights into the global stability of the ZIKA epidemic that can be gained by 
looking at the global stability of a model for the dengue infection in the 
presence of two species of mosquitoes that can transmit the disease.  
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Introduction 

The big scare in the world public health community 
right now (Janurary 2016) is the ZIKA virus WHO 
(2016). This virus was discovered in the Zika forest in 
Uganda, Africa. In the 2007 outbreak in the Federated 
States of Micronesia, 5000 ZIKA infections were 
reported in a population of 6700 Peterson et al. (2016) 
Since the virus at the time was thought to cause only a 
mild febrile fever Simpson (1964), not much attention 
was paid to the virus. However, in the recent outbreak in 
Brazil, some of the babies born to pregnant female 
patients developed microcephaly (a disease which causes 
the heads of newly born babies to be undersize and the 
brain to be malformed Mliakar (2016). The possible 
connection between the ZIKA virus and microcephaly 
was the reason for World Health Organization (WHO) 
on Feb. 1, 2016 to declare the possible ZIKA pandemic 
to be a global health emergency (Science News, 2016). 
On April 13, 2016, CDC (Center for Disease Control 
(USA)) announced that the ZIKA virus met the 
conditions for causality of microcephaly by the ZIKA 
virus Rasmussen et al. (2016). This new complication 

arising from this disease led the President (New York 
Times, 2016) of the USA to ask the US Congress for 1.8 
billion dollar to combat this disease and scientists to 
promise that a vaccine against this disease could be 
obtained in eighteen months. 

The virus belongs to the family Flavivindae genius 

Flavivirus. Another member of this family and genius is 

the dengue virus. The vectors of both of these viruses are 

mosquitoes of the Aedes family, the A. aegypti 

mosquitoes in urban areas Koenraadt et al. (2007; 

Chadee, 2004) and the A. albopictus mosquitoes in rural 

areas Hawley (1988; Mori and Wada, 1972). The 

(normal) symptoms caused by these two viruses are 

similar, i.e., mild fever, skin rashes, muscle and joint 

pains and headaches. In this paper we propose to gain 

some insights in the spread of the ZIKA virus in Brazil 

when the presence of both the A. aegypti and A. 

albopictus mosquitoes are taken into account Serpa et al. 

(2013). The reason for taking into account the presence 

of two species is due to difference in the effects of the 

different environments in the different parts of Florida, 

USA on the two species caused the pattern of the 
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infections to be different in the different parts of 

Florida Costanzo et al. (2005; Juliano et al., 2002). 

Since a full understanding of the ZIKA epidemic 

(how it is spread) is not known, we propose to look at 

the global stability of the solutions of a transmission 

model of the related disease, dengue fever Keeling and 

Rohani (2008; Diekmann and Heesterbeek, 2000) in 

which there are two species of mosquitoes transmitting 

the virus. Returning to the point raised in the first 

sentence, in order to model the transmission of a disease, 

it is necessary to know all the important factors that 

affect the transmission. As pointed out by Fauci and 

Morens (2016), the Zika virus is the last of the four 

recent arthropod-borne viral disease (Zika, dengue, West 

Nile and Chikungunya) in the Western Hemisphere in 

past twenty years. The Zika, Dengue and West Nile 

viruses are flavivi-ruses. The first two are also 

transmitted by same aedes mosquitoes. Fauci and 

Morens suggested that one uses common platforms for 

quick flaviviruses development, i.e., through the 

expression of immunogenic antigens of the newly 

emerging virus. For development of the Zika vaccine, 

this brings up the problem of Antibody-Dependent 

Enhancement (ADE) since the Zika infections are 

occurring in areas where the dengue epidemic is also 

occurring Pierson and Graham (2016). ADE caused by 

different serotype of the flavivirus causes the viremia 

and severity of the disease to increase Vaughn et al. 

(2000). It has been shown Priyamvada (2016) that the 

human antibodies due to dengue fever are highly cross 

reactive to the ZIKA virus. A in vitro study Bardina et 

al. (2017) found that enhancement of ZIKA pathogenesis 

infections by the preexisting antiflavivirus The ADE in 

this case was mediated through the IgG engagement of 

the Fcy receptors. Another study Littaua et al. (1990) 

found that the ADE leading to dengue hemorrhagic fever 

was the IgG to Fc receptor II. However, a newer study 

McCracken et al. (2017) using rhesus macaques did 

indicate that prior infection with a heterologous 

flaviviruses neither increase or decrease the ZIKA titers 

in these non human primates, Further investigations are 

needed to determine whether ADE should be included in 

a mathematic model for the transmission of the ZIKA 

disease. If it is, then the susceptible class must be 

divided into two classes, susceptible who have not been 

infected with the dengue virus and those who have not. 

This may present some difficulties since the majority of 

dengue and ZIKA infected patients are asymptotic cases, 

i.e., they do not exhibit any clinical symptoms. 

Also evidence has been building that sexual 

transmission of the ZIKA virus is possible Musso et al. 

(2015; D’Ortenzio et al., 2016). Sexual transmission by 

women is possible since the ZIKA virus has been found 

in the vaginal fluids Turmel et al. (2016; Davidson et al., 

2016). So far, only a few cases of sexual transmission 

have been reported in the West. There have been no 

reports of a secondary ZIKA infection resulting from 

STD ZIKA patient and so it is too early to include this 

into a disease transmission model. 

The present authors have already established the 

conditions for local asymptotic stability of a dengue 

model in which two species of mosquitoes are present 

Sungchasit et al. (2013). In that paper, the authors 

showed that when there were seasonal variations in the 

rates at which of the dengue infections are transmitted 

from the two species to the human, limit cycle was seen 

n the trajectories of the two mosquitoes populations and 

that the endemic equilibrium state was locally 

asymptotically stable when the basic reproduction 

number is greater than one. We use the same parameter 

values used in that paper which lead to the fraction of A 

aegypti mosquitoes oscillating between 0.261 and 

0.04587 and the fraction of A. albopictus oscillating 

between 0.010246 and 00002. In this paper, we wish 

to establish the global stability of this model using the 

Lyapunov approach. The aim is to gain insights into 

the stability of an illness caused by the related ZIKA 

virus whose nature or means of transmission are not 

completely known. 

Li and Muldowney (1995) have studied the global 

stability of the solutions of the SEIR (susceptible-

exposed-infected-recovered) model commonly used in 

epidemiological modeling. They showed that the 

endemic equilibrium which is locally asymptotically 

stable when the contact number (defined in their paper) 

σ≤1 and becomes globally asymptotically stable when 

σ>1. Beretta and Capasso (1986) found the conditions 

needed for the endemic equilibrium of a SIR model with 

constant population size to be globally stable. At the 

present stage of knowledge of the ZIKA epidemic, it is 

not known if there is an exposed stage in the humans so 

we will use a simpler model to describe the dynamics of 

this disease in humans, the SIR model. We will be 

looking at a similar model except that there will be two 

species of mosquitoes present. In this paper, we use a 

generalized Lyapunov function to analysize the global 

dynamic of the eigth – dimensional model of dengue 

disease of the human population and different Aedes 

mosquitoes (Aedes aegypti and Aedes albopictus), where an 

infected human can be one who was infected by a bite of an 

A. aegypti  mosquitoes or by an A. albopictus mosquitoes. 

We will prove the global stability of the equilibrium states 

using Lyapunov functions LaSalle and Lefschetz (1961). 

Discussion and conclusion are given in the last section. 
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Model Formulation and Stability Analysis 

We use the Susceptible–Infected–Recovered (SIR) for 

human and Susceptible–Infected (SI) for both species of the 

Aedes mosquitoes. In fact, there has been no report of which 

species of the mosquitoes is involved in the 

transmission of the ZIKA virus. We consider the 

presence of the two (the A. aegypti and A. albopictus 

mosquitoes) since both are present in Brazil. One of the 

reasons for mentioning only the first specie is that the 

alarm is centered in the urban areas of Brazil. The 

initial outbreak was in the city Recife in northeastern 

Brazil. Evidence has been accumulating that A. albopictus 

has adapted itself so that it can thrive in urban environments 

Benedict et al. (2007). The great fear is that it will spread to 

Rio de Janeiro, the site of the 2016 Olympics where many 

people from the rest of the world will come. Cancelling the 

Olympics is out of the question. There are studies which 

show that both species of the mosquitoes are present in 

parts of Brazil (Costanzo et al., 2005) and if we are to look 

at the transmission of the diseases in Brazil, we should take 

into account the presence of both species. 

The dengue virus Gubler (1998) is spread by the bite 

of adult female Aedes mosquitoes only, since the female 

needs the blood to complete the ovigenesis cycle. Only 

in the viraemic period which ranges from 2 to 12 days 

with an average of 4-5 days, is an infected person 

capable of transmitting the virus. During this period, a 

dengue-infected person is capable of transmitting the 

dengue virus to the two species (A. aegypti and A. 

albopictus) of vectors when they are bitten by the 

mosquitoes Guga-Sapir and Schimmer (2005). During 

the blood meal, the females ingest the dengue virus from 

an infectious human where the virus goes into the gut of 

the mosquitoes. The dengue virus then undergoes an 

extrinsic incubation period (of approximately 8-12 days 

in the Aedes mosquitoes) before the mosquitoes become 

infectious and can transmit the virus to the humans. 

The presence of the incubation period causes a time 

which we ignore since it has not been established that 

this occurs with the ZIKA virus. If the temperature is 

low enough, the incubationperiod can be longer then 

the life time of the mosquitoes, in which case no 

transmission of the virus will occur. 

Parameters of Model 

Let NT, Nva and Nvb represent the total number of 

human. In this paper, the total number of population is to 

be constant for each category. The human population of 

sizes NT consists of susceptible humans (S), infected 

humans due to a bite of an A. aegypti (Ia) mosquito or of 

an A. albopictus (Ib) mosquito and Recovered Human 

(R), i.e., = + + +
T a b

N S I I R . For vector population of 

sizes Nva, is total number of an adult A. aegypti mosquito 

which consist of the susceptible (Sva) and infectious 

mosquitoes (Iva), i.e., = +
vb vb vb

N S I .. Nvb is the total 

number of A. albopictus mosquitoes, i.e., = +
vb vb vb

N S I  

and Svb is susceptible mosquito, Ivb is infectious 

mosquito. Note that µh and µd are the average constant 

natural death rate of human population and death rate of 

human population due to the disease, µva and µvb are the 

average constant death rate in A. aegypti and A. 

albopictus mosquitoes, respectively. As we have 

mentioned earlier, the seasonal variation is simulated by 

introducing sinusoidal dependence into the rates of 

transmission of the virus to the humans and not into the 

death rates as is done by most researchers. The reason 

for this was given earlier. 

The other parameters are defined as follows: κ is the 

birth rate of human population, Nh is the total human 

population at time t. ωa and ωb are the biting rates of 

Aedes aegypti population and Aedes albopictus 

population, λa and λb are the measure of influence on the 

transmission process from human population to Aedes 

aegypti and Aedes albopictus, αha and αhb are the 

recovery rate of human population who be infected by an 

A. aegypti and A. albopictus mosquitoes. It is well 

known that a person infected with one serotype of the 

Dengue virus cannot be re infected by the same serotype 

but can be infected by a different serotype which may 

result in death causing illness. For vector population, it is 

assumed a constant recruitment rate Qa and Qb of A. 

aegypti and A. albopictus, λva and λvb are the measure of 

influence on the transmission process from A. aegypti 

and A. albopictus, respectively to human population, βva 

and βvb are the transmission probability of dengue 

disease from vector populations (A. aegypti and A. 

albopictus) to human population, as well as the number 

of infectious and susceptible of each species. In reality, 

the rate at which the adult mosquitoes are recruited 

depends on how many eggs are laid, on whether the eggs 

hatch and how many of the larvae survive the 

metamorphosis process to become adults. For our 

simple model, we ignore all of this and insert the 

sinusoidal dependence into the rates of transmission 

since these depend on the number of bites the 

mosquitoes must make to obtain the necessary amount 

of blood needed for the ovigenesis cycle. Our model 

equations are shown in the next section. 

Equations of Model 

In this paper, we study the transmission of dengue 

disease in a human population where there are two 

species of mosquitoes, A. aegypti and A. albopictus 

mosquitoes. We assume that there is only one type of 

dengue virus present, even though there are four serotypes; 

DEN1, DEN2, DEN3 and DEN4. Infection by one type 

confers life-long immunity to further infection by that type. 
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There is no immunity to infection by the others. 

However, infection by a different serotype opens up the 

possibility an allergic reaction to the antibodies of the 

first type, resulting in a more severe form of the disease, 

dengue hemorrhagic fever. Figure 1 the monthly 

incidence of dengue fever in Thailand in the period 2003 

to 2011 MOPH (2011). The figure does not show a 

systematic yearly increase of the disease. The incidences 

can be larger or smaller year to year. They all show a 

sinusoidal behavior. We have therefore included 

sinusoidal dependence in the rates of transmission of the 

virus to the humans from an infectious mosquito of 

either species and of the transmission of the virus to 

either specie of mosquito from an infected human. The 

rates of transmissions between a human and mosquito 

usually contains factor giving the number of contacts 

between the two. If there is no contact, the rates of 

transmission would be zero. Other studies Fisman (2007; 

Greenfell et al., 1995) have introduced a sinusoidal 

dependence in the death rates, reasoning that when the 

weather gets cold enough, the mosquitoes will die. Our 

choice of where to introduce the sinusoidal dependence is 

based on the fact that the Ades mosquitoes breeding habits 

are different from the other mosquito genius. The females 

of the Ades mosquitoes lay their eggs above the water line 

of the breeding pond. The eggs will hatch only after they 

are inundated with water from a new rain fall. If there is no 

new rain fall, there will be more mosquitoes unless humans 

replenish the water by artificially spraying the area.  

The flow chart for the transmission of the dengue 
virus when there are two species of mosquitoes present 
is shown in Fig. 2. 

The Mathematical Representation of the Flow Chart 

The mathematical representation of the model is given 

by the following system of ordinary differential equations: 

( )

( )

1 sin

1 sin

κ ω λ η µ µ ω

λ η

= − + − − −

+

h a a va d h b

b vb

dS
N t I S S S

dt

t I S

 (1) 

 

( )1 sin
a

a a va d a h a ha a

dI
t I S I I I

dt
ω λ η µ µ α= + − − −   (2) 

 

( )1 sinω λ η µ µ α= + − − −
b

b b vb d b h b hb b

dI
t I S I I I

dt
  (3) 

 

d h ha a hb b

dR
R R I I

dt
µ µ α α= − − + +   (4) 

 

( )1 sin
va

a va va va a va va

dS
Q t S I S

dt
β λ η µ= − + −   (5) 

 

( )1 sin
va

va va va a va va

dI
t S I I

dt
β λ η µ= + −   (6) 

 

 ( )1 sinβ λ η µ= − + −
vb

b vb vb vb b vb vb

d S
Q t S I S

dt
  (7) 

 

( )1 sin
vb

vb vb vb b vb vb

dI
t S I I

dt
β λ η µ= + −  (8) 

 

All parameters in our model are non- negative. We 

will now show that the solutions to the equations given 

by (1) – (8), in the non–negative octant 8
R

+
 are positive 

invariant (where 8
R

+
denotes the non–negative region). 

With respect to system (1) – (8), we have the following 

results.

 

 
 
Fig. 1. Reported cases of Dengue disease per 100,000 population in Thailand during 2003 and 2011 (month - by - month) [Division 

of Epidemiology, 2002-2011] 
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Fig. 2. SIR model 

 

Proposition 1 

Let 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) , , , , , , , )
a b va va vb vb

S t I t I t R t S t I t S t I t be the 

solution of (1) – (8) with the initial condition 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )(0 , 0 , 0 , 0 , 0 , 0 , 0 , 0)
a b va vb vb vb

S I I R S I S I  and 

the compact set: 
 

( ) 8

1

2 3

, , , , , , , ,

, ,

κ

µ µ µ µ

+

 ∈ ≤
 

Ω =  
= ≤ = ≤ = 

+ 

a b va va vb vb T

a
h a b

va vb

d h va vb

S I I R S I S I R W N

N Q Q
W N W N

 

 
Then, under the flow described by (1) – (8), Ωa is a 

positively invariant set that attracts all solutions in 8
R

+
. 

Proof 

We choose the Lyapunov function: 
 

( ) ( )( )

( )
1 2 3
( ), , ( )

, ,

=

= + + + + +
a b va va vb vb

W t W t W t W t

S I I R S I S I

 

 

to be positive definite on 8
R

+
 and we have: 

 

( )( ) ( )

( )

( )( )

1 2 3
, ,

, ,

, ,

, ,

κ µ µ µ

µ

κ µ µ µ µ

 
=  
 

 
= + + + + + 
 

 − + + + + − +
 =
 − + 

= − + − −

a b va va vb vb

h d h a b a va va va

b vb vb vb

h d h T a va va b vb vb

dW dW dW dW

dt dt dt dt

dS dI dI dR dS dI dS dI

dt dt dt dt dt dt dt dt

N S I I R Q S I

Q S I

N N Q N Q N

 

We used the fact that ,

h a

T va

d h va

N Q
N N

κ

µ µ µ
= =

+

 and 

µ

b

vb

b

Q
N

v
 . 

With this in mind, it is not difficult to show that: 

 

( ) 1

1

1
0,

κ
κ µ µ

µ µ
= − + ≤ ≥

+

h

h d h

d h

dW N
N W forW

dt
  (9) 

 

2

2 2
0,µ

µ
= − ≤ ≥

a

a va

va

dW Q
Q W for W

dt
  (10) 

 

3

3 3
0,µ

µ
= − ≤ ≤

b

b vb

vb

dW Q
Q W for W

dt
  (11) 

 

From the above equations (9) – (11) one has that 

0
Wd

dt
≤  which implies that Ωa is a positively invariant 

set. In other words, by solving (9) – (11), we obtain: 
 

( )( )

( )

( )
( )

( )

1 2 3

1

2

0 ( ), , ( )

/ ( )

0 , ( / ) ,

(0) , ( / ) 0

µ µ

µ µ

κ µ µ

µ

µ

− +

− −

≤

 +
 
 

≤ + + 
 

+ 
 

d h

va vb

h d h

t

a va

t t

b vb

W t W t W t

N

W e Q

W e Q W e

 

 

where, W1(0),W2(0) and W3(0) are respectively, the 

initial conditions of W1(t), W2(t) and W3(t). Thus, as 

t→∞, 0≤(W1(t), W2(t), W3(t)) ≤ (κNh /µd +µh , Qa /µva, 

Qb/µvb) = (NT, Nva, Nvb) and one can conclude that Ωa is 

an attractive set. 
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Equilibrium Points 

From equations (1) – (8), we set the right hand side 

of all equations to zero. We obtain two equilibrium 

points:   

 

• (I) If R0≤1, the only equilibrium is the disease free 

equilibrium point: 

 

( )1

1

, , , , , ,

,0,0,0, , , ,0 .

a b va va vb vb

h a b

va a

d h va vb

J S I I R S I S I

N Q Q
J I

κ

µ µ µ µ

 
= = ∈Ω 

+ 

 

 

• (II) If R0>1, there is the endemic equilibrium point: 

 

( )* * * * * * * *

2
, , , , , , , ∈Ω

a b va va vb vb a
J S I I R S I S I  

 

where, * * * * * * * *
, , , , , , , 0

a b va va vb vb
S I I R S I S I >  satisfy: 

 

( ) ( )( )( )
( )( )

( )( )

*

*

2 *

γ γ

γ γ

µ µ µ κ α µ µ µ

γ µ γ µ µ µ

γ µ γ µ µ µ µ µ

+ + + +
=

 + + +
 
  + + +
 

va a AA va vb h BB hb d h vb

BB va HB b d h vb a AA BB

HB b vb HA b vb d h va vb

I N
S

Q I

Q Q

 (12) 

 

( )( )

*

2 * 2

*

2

*

( )

( )

( ) ( ) /

( )

( ( ) )

( ( )

γ γ κ µ γ µ

α µ µ

µ µ µ γ γ µ µ µ µ

γ α µ µ

µ γ µ µ µ

γ γ µ γ µ µ µ µ µ

 +
 
− + + 

 
+ + + + 

=  
 + + 
  
 + +  
      + + + +   

h BB HB b va a AA va

hb d h

d h va a AA HA a d h va vb

b

BB hb d h

va BH b d h vb

a AA BH b va BA a vb d h va vb

N Q I

I Q
I

Q

I Q Q

 (13) 

 

( )

)

2

2

*

*

( )

( )( )

( )

( )
( )

( ) (
/

γ γ α µ µ µ γ

α γ γ κ µ µ α µ µ µ

µ γ γ α µ µ µ

γ µ γ µ
γ α µ µ

µ µ µ µ

γ γ κµ γ µ α µ µ

α

 − + + −
 
 + + + +
 
 + + + 

 + +
+ + +  = + 

+ − + +

BB HB b ha d h va BB

ha h AA HA a d h hb d h vb

vb AA HA a hb d h vb

HB b va HA a vb

AA ha d h

d h va vb

h BB HB b va a AA va hb d

hb

Q

N Q

Q

Q Q

R

N Q I

( )

( )

2

2 *

2

*

)

( ) ( ( )

( )( ( ( ) )
/

( )

µ

µ µ µ γ γ µ µ µ

α µ µ µ γ µ µ µ

γ γ µ γ µ µ µ µ µ

 
 
 
 
 
 
  
   
  
  
    
    

   + + + +     
   + + + + +
   
  + + +    

h

vb

d h va a AA HA a d h va

hb d h va HB b d h vb

a AA HB b va HA a vb d h va vb

I Q

Q

I Q Q

{ }/ ( )γ µ µ+
BB d h

   (14) 

 

 *

*
γ µ

=

+

a

va

a AA va

Q
S

I
 (15) 

 
*

*

* 2

γ

γ µ µ
=

+

a AA a

va

a AA va va

I Q
I

I
  (16) 

( )

( )

( )( )

2 **

*

( )

( )

( )

/ ( ) ( )

α µ µ

µ γ µ µ µ γ

γ µ γ µ µ µ µ µ

γ µ γ µ γ κ α µ µ µ

 + +
 
  + + +=
  
  + +  

+ + + +

hb d h

va HB b d h vb a AAvb

HB b va HA a vb d h va vb

HB va a AA va h BB hb d h vb

Q IS

Q Q

I N

 (17) 

 

( )

( )( )

*

2*

2

*

*

( )

( )
( )

( )

/ ( ) ( )

γ γ κµ γ µ

µ µ µ

α µ µ µ
γ γ µ µ µ

γ µ γ µ µ γ κ α µ µ µ

 +
 

 + =
 − + + 
  + + +  

+ + + +

h BB HB b va a AA va

d h vavb

hb d h vb

a AA HA a d h va

HB va a AA va vb h BB hb d h vb

N Q I

I

I Q

I N

(18) 

 

)

2

* 2

2

( )

( )( )

( )

/ ( )
( ) )

γ γ α µ µ µ γ

γ γ κ µ µ α µ µ µ

µ γ γ α µ µ µ

γ µ γ µ
γ γ α µ µ

µ µ µ µ

− + + −

 = − + + + +
 
  + + + 

  +
 + +    + +  

BB HB b ha d h va BB

a h AA HA a d h ha d h va

vb AA HA a hb d h vb

HB b va HA a vb

AA BB ha d h

d h va vb

Q

I N Q

Q

Q Q

  (19) 

 
And: 

 

( ) ( )

( ) ( )

1 (sin ) , 1 (sin )

1 (sin ) , 1 (sin )

γ ω λ η γ ω λ η

γ β λ η γ β λ η

= + = +

= + = +

HA a a HB b b

AA va va BB vb vb

t t

t t

 

 

The basic reproduction number for system (1) – (8), 

is given by: 

 

( )
)(

0
2

( )

( ) ( )

γ γ µ γ κ α µ µ µ

γ α µ µ µ γ µ µ µ

+ + +

=

+ + + +

AA HA a va h BB hb d h vb

BB hb d h va HB b d h vb

Q N
R

Q
 

 

Global Stability of the Disease Free Equilibrium 

We study the global behavior of the disease free 

equilibrium state for the system defined by equations (1) 

– (8). We define new time dependent components of the 

death rate of the mosquitoes infected with the virus as: 

 

 

( )( ) ( )

( )( ) ( )

( )( )
( )

( )

*

*

*

*

1 sin ,

1 sin ,

1 sin ,

1 sin

µ ω λ η

µ ω λ η

β λ η
µ µ

β λ η



 = +



= +


+
+ =

+

va a a

vb b b

va va va

d h

vb vb vb

t t S

t t S

t S

t

t S

  (20) 

 

Then Equations (1), (5) and (7) reduce to: 

 

'( ) '( )

(1 sin ) (1 sin )

κ µ µ

µ µ ω λ η ω λ η

= −

= + + + + +
a b

h h h

h a a va b vbv v

dS
N t S where t

dt

t I t I

 (1’) 
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( )

' '
( ) ( )

1 sin

µ µ

µ β λ η

= −

= + +

va

a va va va

va va va a

dS
Q t s where t

dt

t I

 (5’) 

 
And: 
 

' '( ) ( )

(1 sin )

µ µ

µ β λ η

= −

= + +

vb

b vb va va

va va va a

dS
Q t S where t

dt

t I

 (7’) 

 
with the rest of the equations remaining the same. 

Theorem 1 

When R0≤1, the disease free equilibrium J1 is 

globally asymptotically stable on Ωa.  

Proof 

Working now with the new set of equations to 

construct the Lyapunov function on Ωa., we get: 
 

*

* *

( ) ( ln )

( ln ) ( ln )

ψ = − + + +

+ − + + −

a b

va va va va vb vb vb vb

t S S S I I R

S S S I S S S I
 

 
The derivative with respect to time yields: 

 
* *

*

*

( )
1 1

1

(1 sin )( )
1

(1 sin )

(1 sin )

ψ

κ ω λ η µψ

µ ω λ η

ω λ η µ µ

  
= − + + + + −  

   

 
+ + − + 

 

 − + −  
= −   − − +   

+ + − −

a b va va

va

va vb vb vb

vb

h a a va d

h b b vb

a a va d a h a

d t dS S dI dI dR dS S

dt dt S dt dt dt dt S

dI dS S dI

dt dt S dt

N t I S Sd t S

dt SS t I S

t I S I I( )

( )

( )

( )( )

( )

)(

*

*

(1 sin )

1 sin 1

(1 sin )

(1 sin ) 1

(1 sin )

α

ω λ η µ µ α

µ µ α α

β λ η µ

β λ η µ

β λ η µ

β λ η

−

+ + − − −

+ − − − −

 
+ − + − − 

 

+ + −

 
+ − + − − 

 

+ +

ha a

b b vb d b h b hb b

d h ha a hb b

va

a va va va a va va

va

va va va a va va

vb

b vb vb vb b vb vb

vb

vb vb vb b

I

t I S I I I

R R I I

S
Q t S I S

S

t S I I

S
Q t S I S

S

t S I( )µ−
vb vb
I

 

 

Rearranging the terms in the above expression, we 

get: 
 

( )

( )

* * *

*

*

( )
1 1 1

(1 sin )

(1 sin )

ψ
κ

ω λ η µ

ω λ η µ

    
= − + − + −    

     

+ + −

+ + −

va vb

h a b

va vb

va a a va

vb b b vb

d t S S S
N Q Q

dt S S S

I t S

I t S

 

( )

( )

*

*

* *

* *

* *

* *

(1 sin ) ( )

(1 sin ) ( )

1 1

1 1

β λ η µ µ

β λ η µ µ

µ µ

µ µ µ µ

+ + − +

+ + − +

   
+ − + −   

   

   
+ − + − − −   

   

a va va va d h

vb vb vb d h

h d

va vb

va va vb vb d h

va vb

I t S

t S

S S
S S

S S

S S
S S R R

S S

 (21) 

 

Using the new equilibrium states obtained from 

Equation (1’), (5”) and (7’) * *
,

κ

µ µ µ
= =

+

h a

va

d h va

N Q
S S  and 

*

µ
=

b

vb

vb

Q
S , expression becomes: 

 
* * *

* *

* *

* *

* *

( )
1 1 1

1 1

( ) 1 ( ) 1

ψ
κ

µ µ

µ µ

µ µ

    
= − + − + −    

     

   
+ − + −   

   

   
+ − + −   

   

− −

va vb

h a b

va vb

h d

va vb

va va vb vb

va vb

d h

d t S S S
N Q Q

dt S S S

S S
S S

S S

S S
t S t S

S S

R R

  (22) 

 

( ) ( )

( )

* *

* *

*

*

2 2
* *

* *

2
*

*

( )
2 2

2

( )

ψ
κ

µ µ

ψ
κ

µ µ

  
= − − + − −  

   

 
+ − − − − 

 

− −
= − −

−
− − −

va va

h a

va va

vb vb

b d h

vb vb

va va

h a

va va

vb vb

b d h

vb vb

d t S S S S
N Q

dt S S S S

S S
Q R R

S S

S S S Sd t
N Q

dt S S S S

S S
Q R R

S S

  (23) 

 

We can see that all terms in (23) are always non-

positive. Using the LaSalle’s extension to Lyapunov’s 

theorem, we have 
( )

0
ψ

≤
d t

dt
 and so the function 

( )ψd t

dt
 

is seen to be negative definite. The limit set of each 

solution is contained in the largest invariant set for 

which * * *
, ,= = =

va va vb vb
S S S S S S  and R

n 
= 0 which is the 

singleton {J1}. Then, the LaSalle’s invariant principle 

implies that the disease free equilibrium J1 is globally 

asymptotically stable on Ωa.  

Next, we consider the global property of the endemic 

equilibrium of (1)-(8). 

Theorem 2 

If R0 >1, the endemic equilibrium state 

( )* * * * * * * *

2
, , , , , , ,

a b va va vb vb a
J S I I R S I S I ∈Ω exists and is globally 

asymptotically stable on Ωa . To see this, we now 
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redefine the time dependent components of death rates, 

Equation (20), as: 

 

( )

( )
*

*

( ) (1 sin )

( ) (1 sin )

( )( ) (1 sin )

( )( ) (1 sin )

µ ω λ η

µ ω λ η

µ µ α β λ η

µ µ α β λ η

 = +

 = +

 + + = +


+ + = +

va a a h

vb b a h

d h ha va va va

d h hb vb vb vb

t t N

t t N

t Q t S

t Q t S

  (24) 

 

Proof 

The Lyapunov function is in the form: 
 

( )

( )

*

*

* *

1 2

* *

1 2

*

* *

1 2

* *

1 2

( ) ( )ρ

µ µ α α

µ µ α α

µ µ α α

µ µ α α

= − + +

 + + +
+ − 

+ 

 + + +
+ 

+ 

 + + +
+ − 

+ 

 + + +
+ 

+ 

a b

d h ha hb

va va va

va vb

d h ha hb

va

va vb

d h ha hb

vb vb vb

va vb

d h ha hb

vb

va vb

t S S InS I I

S S InS
A S A S

I
A S A S

S S InS
A S A S

I
A S A S

  (25) 

 

With: 

 

1 a a

2 b b

A (t) (1 sin t)

A (t) (1 sin t)

ω λ η

ω λ η

= +

= +
 

 
Its derivative along the trajectories of (1)-(8): 

 
*

* *

1 2

*

* *

1 2

*

* *

1 2

1

( )
1

1

1

ρ

µ µ α α

µ µ α α

µ µ α α

µ µ α α

 
= − + + 

 

 + + +
+  

+ 

   + + +
− +   

+   

   + + +
+ −   

+   

+ + +
+

a b

d h ha hb

va vb

va va d h ha hb va

va va vb

d h ha hb vb vb

va vb vb

d h ha hb

v

d t dS S dI dI

dt dt S dt dt

A S A S

dS S dI

dt S A S A S dt

dS S

A S A S dt S

A S
* *

2

 
 

+ 

vb

a vb

dI

A S dt

  (26) 

 

( )

( )

*

* *

1 2

(1 sin )( )
1

(1 sin )

(1 sin )

(1 sin )

(1 sin )

κ ω λ ηρ

µ µ ω λ η

ω λ η µ µ α

ω λ η µ µ α

β λ ηµ µ α α

µ

 − +  
= −   − − − +   

+ + − − −

+ + − − −

− + + + +
+ 

+ − 

h a a va

d h b b vb

a a va d a h a ha a

b b vb d b h b hb b

a va vad h ha hb

va vb va a

N t I Sd t S

dt SS S t I S

t I S I I I

t I S I I I

Q t

A S A S S I

*

1
  

−   
  

va

vava va

S

SS

 

( )
* *

1 2

*

* *

1 2

* *

1 2

(1 sin )

(1 sin )
1

(1 sin )

µ µ α α
β λ η µ

β λ ηµ µ α α

µ

β λ ηµ µ α α

 + + +
+ + − 

+ 

 − +   + + +
+ −     + −    

+ + + +
+ 

+ − 

d h ha hb

va va va a va va

va vb

b vb vbd h ha hb vb

va vb vbvb b vb vb

vb vbd h ha hb

va vb vb b

t S I I
A S A S

Q t S

A S A S SS I S

t

A S A S S I µ

 
  
 vb vb

I

 (27) 

 

Since we assume that total number of populations are 

constants, so we have κNh = NT (µd + µh), Qa = 

Nva µva = µva (Sva + Iva) and Qb = Nvb µvb = µvb (Svb + Ivb ). 

Then above equation become: 
 

( )

( )

( )

( )

*

* *

*

*

*

*

( )
1

1 1

(1 sin )

(1 sin )

(1 sin ) ( )

(1 sin ) (

ρ
µ µ

µ µ

ω λ η µ

ω λ η µ

β λ η µ µ α

β λ η

 
= + − 

 

   
+ − + −   

   


+ + − 




+ + − 



+ + − + +

+ + −

d h T

va vb

va va vb vb

va vb

va

va a a h va

va

vb

vb b b h vb

vb

a va va va d h ha

b vb vb vb

d t S
N

dt S

S S
Q N Q N

S S

S
I t N Q

S

S
I t N Q

S

I Q t S

I Q t S( ))µ µ α+ +
d h hb

   (28) 

 

when
* *

1 2

µ µ α α + + +
=  

+ 

d h ha hb

va vb

Q
A S A S

. 

Substituting conditions (24) into (28), we have: 
 

( )( )

( )( )

*

* *

1 *

* *

2 *

*

( )
( ) 1

1 1

1 1

(1 sin )

(1 sin )

(1 sin ) (

ρ
µ µ

µ

µ

ω λ η µ

ω λ η µ

β λ η µ

 
= + − 

 

   
+ − + − −   

   

   
+ − + − −   

   

+ + −

+ + −

+ + − +

d h T

va va va

va va

va va va

vb vb vb

vb vb

vb vb vb

va a a h va

vb b b h vb

a va va va d

d t S
N

dt S

S S S
Q S Q

S S S

S S S
QS Q

S S S

I t N

I t N

I Q t S

*

)

(1 sin ) ( )

µ α

β λ η µ µ α

+

+ + − + +

h ha a

b vb vb vb d h hb b

I

I Q t S I

  (29) 

 
In Ωa, we have Q1 = IvaQµva and Q2 = IvbQµvb. The 

above equation (29) becomes: 
 

*

* *

1 *

* *

2 *

( )
( ) 1

( ) 1 1

( ) 1 1

ρ
µ µ

µ

µ

 
= + − 

 

   
+ − + − −   

   

   
+ − + − −   

   

d h T

va va va

va va

va va va

vb vb vb

vb vb

vb vb vb

d t S
N

dt S

S S S
Q t S Q

S S S

S S S
QS t Q

S S S
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( )( )

( )( )
*

*

(1 sin ) ( )

(1 sin ) ( )

(1 sin ) ( )( )

(1 sin ) ( )( )

ω λ η µ

ω λ η µ

β λ η µ µ α

β λ η µ µ α

+ + −

+ + −

+ + − + +

+ + − + +

va a a h va

vb b b h vb

a va va va d h ha a

b vb vb vb d h hb b

I t N t

I t N t

I Q t S t I

I Q t S t I

  (30) 

 
* 2

*

* 2 * 2

1* *

* 2 * 2

2* *

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

ρ
µ µ

µ

µ

−

= − +

− −

− −

− −

− −

d h T

va va va va

va va

va va va va

vb vb vb vb

vb vb

vb vb vb vb

d t S S
N

dt SS

S S S S
Q t S Q

S S S S

S S S S
QS t Q

S S S S

  (31) 

 

( )

*

*

* *

1* *

* *

2* *

( )
( ) 2

( ) 2 2

2 2

ρ
µ µ

µ

µ

 
= + − − 

 

   
+ − − + − −   

   

   
+ − − + − −   

   

d h T

va va va va

va va

va va va va

vb vb vb vb

vb vb

vb vb vb vb

d t S S
N

dt S S

S S S S
Q t S Q

S S S S

S S S S
QS t Q

S S S S

  (32) 

 

We use the LaSalle’s invariant principle to show 

that
( )ρd t

dt
≤0 for all * * * * * * * *( , , , , , , , )∈Ω

a b va va vb vb a
S I I R S I S I  and 

the strict equality 
( )

0
ρ

=

d t

dt
 holds only for 

* * * * * * *
, , , , , ,= = = = = = =

a a b b va va va va vb vb
S S I I I I R R S S I I S S  and 

*
=

vb vb
I I . Then, the equilibrium state J2 is the only 

invariant set of solutions of the equations (1)–(8) 

contained entirely in 
* * * * * * * * * * * *

* * * *

( , , , , , , , ), , , , ,

, ,

 = = = = 
 

= = = =  

a b va va vb vb a a b b

va va va va vb vb vb vb

S I I R S I S I S S I I I I R R

S S I I S S and I I

and hence the asymptotic stability theorem, the positive 

endemic equilibrium state J2 is global asymptotic 

stability in Ωa. 

Discussion and Conclusion 

Let: 

 

( )
( )0 2

( )

( ) ( )

γ γ µ γ κ α µ µ µ

γ α µ µ µ γ µ µ µ

+ + +

=

+ + + +

AA HA a va h BB hb d h vb

BB ha d h vb HB b d h vb

Q N
R

Q
 

 

be the threshold parameters. Then, we define 
0 0

R R=  

as the basic reproductive number of disease. Also, it 

represents the average number of secondary cases 

produced from susceptible population. We consider 

human and vector (A. aegypti and Aedes albopictus) 

populations. It depends on the transmission rate of 

dengue virus.  

In this paper, we have studied a mathematical model 

of dengue disease in which the virus is being transmitted 

by two different species of the Aedes mosquitoes by 

looking at the global stability of our model. The global 

stability of transmission of dengue disease in human and 

vector (Aedes aegypti and A. albopictus) was determined 

been by using Lyapunov functions. If R0≤1, then to the 

disease–free equilibrium state is globally asymptotically 

stable. In the feasible region and the disease dies out of 

population. If R0>1, then there is the unique endemic 

equilibrium state which is globally asymptotically stable 

in the interior of feasible region and the disease is 

present. If the disease is present in the population, then it 

will persist. Nothing in the model depends directly on 

the dengue virus directly except for the use of a 

sinusoidal variation of the transmission rates which were 

inferred by the behavior seen in Figure 1. Since the 

ZIKA epidemic has only been around for less than a 

year, there has not been enough time to observe what 

the seasonal dependence is. When that information 

becomes available, the present work can be modified 

so that it can be applied to possible ZIKA pandemic 

which might arise in the near future. 
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