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Abstract: The process of identifying the state of an object in a video 
sequence is referred as visual tracking. It is mainly achieved by using the 
appearance information from a reference image to recognize the similar 
characteristics from the other images. Since a digital image is built-up with 
rows and columns of pixels that are represented with finite set of digital 
values, the appearance information is measured with a mathematical 
formulation that is known as image intensity. The problem of 
distinguishing the intensity of the object of interest from the other objects 
and the surrounding background is always the main challenge in visual 
tracking. In this study, a novel invariant feature descriptor model is 
introduced to address the aforesaid problem. The proposed framework is 
inspired by the theoretical model of local features that has been widely-
used for image recognition. From the large number of diversified scenarios 
in the surveillance applications, the performance of the proposed model is 
demonstrated with the benchmarked dataset of single-target tracking. The 
experiment results shown the advantage of our proposed model for tracking 
non-rigid object in the changing background as compared to other state-of-
the-art visual trackers. In addition, the important aspects of the proposed 
model are analyzed and highlighted as well in the experimental discussions.  
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Introduction  

Visual tracking is a process that imitates the visual 
perception of a human eye to observe the dynamic 
configuration of an object or target in the real-world. In 
order to perceive the dynamic configuration of a target 
from a sequence of video frames, an object of interest 
from the captured scenario is monitored closely to 
determine its state changes, such as position, color and 
shape (Hartley and Zisserman, 2004). The appearance 
information from the object of interest is used as a 
reference image to recognize the similar characteristics 
from the other images. The characteristics are extracted 
directly from the digital value of the image pixels, 
which can be denoted as image intensity.  

Meanshift algorithm is one of the state-of-the-art 
visual trackers that uses the image intensity to compute 
the color probability distribution of a target. It applies a 
non-parametric approach, which iteratively seek the 
mode or local maxima from the probability distribution 
(Fukunaga and Hostetler, 1975). Bradski has modified 
the algorithm into a continuously adaptive meanshift 

(Camshift) algorithm. The simpler implementation of 
Camshift algorithm and its flexibility to track a varying 
target size have overtaken the popularity in visual 
tracking. A computationally efficient face tracker for 
games’ and graphics’ controls are demonstrated in 
Bradski (1998). Both algorithms are highly dependent on 
the color histogram that is computed from the intensity 
of the reference image. The mixture of foreground and 
background colors in the reference image may leads to 
an incorrect mode-seeking result. If the target is non-
rigid or articulated, the reference image (bounded in a 
rectangle) includes some colors from the background 
area, as shown in Fig. 1. Mostly of the reference 
images in Fig. 1 contain higher percentage of intensity 
that belongs to the background rather than the object 
of interest. Although foreground detection can be 
carried out by using segmentation method, but the 
consistent performance is limited to the video 
sequences captured from a static camera. Thus, a 
successful visual tracker has to be non-sensitive to the 
multiple colors of reference image and is applicable in 
the video sequence with changing background.  
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 (a) (b) (c) (d) 
 

Fig. 1. Samples of non-rigid or articulated reference images: (a) dinosaur (b) diving (c) bolt (d) motocross 

 
Instead of using the intensity of the reference image 

as a whole, the characteristics can be extracted from the 
distinctive appearance information resides in the 
reference image, which is also known as local features. 
A local feature is a special structure of image properties 
that is distinguishable among images. The local features 
ranging from point, edge, boundary, color, corner and 
motion have been commonly used for tracking object 
since decades ago (Dhome, 2009). A set of descriptor 
can be formulated by using the image pattern from the 
region surrounding a local feature in the reference image 
(Tuytelaars and Mikolajczyk, 2008). The set of 
descriptor formulated from the multiple local features are 
treated as the identity representation for tracking the 
object of interest in a sequence of video frames.  

This paper presents a novel model that formulates an 
invariant feature descriptor from the local features 
(corner). Some preliminary results of this model have 
been published in Ong et al. (2014). A more detailed 
description of the proposed model will be described 
thoroughly in this study. From the large number of 
diversified scenarios in the surveillance applications, the 
performance and analysis of the proposed model is 
demonstrated with single-target tracking. The detailed 
experimental analysis and comparison are conducted 
with six benchmarked video sequences. Additional 
experiments are extended for investigating the properties 
and limitation of the proposed model.  

The following section introduces the role of visual 
tracker and describes the research works done on 
different types of visual tracking. The existing 
algorithms that inspired the design and development of 
our proposed theoretical framework are also highlighted 
in the next section.  

Related Work  

Visual tracking algorithm is specifically designed to 
identify the state of a target throughout the video 
sequence in different types of video surveillance 
applications, such as robot navigation, traffic detection, 
sport analytics, gesture recognition and animal behavior 
analysis (Baltzakis et al., 2012; Diop et al., 2016; 
Linares-Sánchez et al., 2015; Mei and Ling, 2011; 

Santiago et al., 2011; Shvarts and Tamre, 2012). In the 
large number of diverse surveillance applications, visual 
tracking is generally divided into two categories, which 
are single-target tracking and multiple-target tracking. 
During the single-target tracking, the camera is actively 
following and monitoring a specific target from the 
beginning till the end of the video sequence. Therefore, a 
single-target visual tracker should be able to 
continuously detect the location of a specific target in the 
changing background, no matter how the motion and 
appearance changes happen to the target. On the other 
hand, multi-target tracking focuses on observing the state 
of a selected group of targets in the scene, such as 
people, vehicle or animal. A static camera is usually used 
to record a class of targeted entities that is entering and 
leaving the scene. Multi-target tracking algorithm 
discovers the existence of each entity with unique 
labeling, as well as registering their moving paths in the 
video sequence. Nevertheless, the responsibility of both 
visual trackers is focused on determining the position of 
the target in the video sequence.  

To begin visual tracking, a Region Of Interest 
(ROI) is extracted from the reference image to obtain 
the intensity information. This information is 
normally processed as color probability distribution to 
assist the visual tracker to seek the most likely 
position of the target in the subsequent frames. The 
mixture colors from the foreground and background 
areas remains as the challenge for using color feature 
in a visual tracker. A series of continuous effort on the 
segmentation methods has been reported to eliminate 
the background disturbance from the reference image 
(Friedman and Russell, 1997; Pong and Bowden, 
2001; Lee, 2005; Pnevmatikakis and Polymenakos, 2006; 
Hoseinnezhad et al., 2013; Kumar and Yadav, 2016). 
These methods can be successfully applied if the reference 
image is capturing in a static background with little 
changes of illumination and partial occlusion. However, this 
ideal situation is not always happening in the real-world 
surveillance. The tracking task becomes even 
complicated when the tracked target is non-rigid or 
articulated, such as human body parts.  
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Meanshift algorithm is the best known state-of-the-
art visual tracker. The original meanshift algorithm is 
introduced as a non-parametric approach to solve the 
data clustering and noise filtering in the pattern 
recognition process. Due to the ability of meanshift 
algorithm to compensate noise and eliminate distractors 
(outliers) from the vision data, Camshift algorithm has 
modified it into a computationally efficient face tracker 
(Bradski, 1998). Camshift algorithm begins by 
computing the color histogram distribution from a ROI at 
the selected initial location. The ROI is dynamically 
located based on the changes of the color histogram 
distribution while the position of the target varies in 
time. An adaptive window size function has been 
suggested and proven to track human face efficiently. 
Yet, the Camshift algorithm still lacks of flexibility to 
accommodate the ROI for other non-rigid or articulated 
objects with non-specific color (Artner, 2008).  

Instead of modeling the appearance information of 
the reference image as a whole, the ROI can be separated 
into smaller regions, where each region describes a part 
of the ROI with its own set of local descriptor. Figure 2 
shows some samples of local descriptors that are 
formulated from the detected corner points in the ROI. 
Numerous part-based visual trackers become more 
popular partially due to their favorable property of 
adaptable ROI for various non-rigid or articulated 
objects (Adam et al., 2006; Nejhum et al., 2008; 
Izadinia et al., 2012; Liu et al., 2015). Part-based 
trackers can be generated from the simplest image pixels 
and image patches, as well as using the higher level 
interpretation from region descriptors. Region 
descriptors are selected from the smaller regions around 
the interest points within the ROI. These descriptors are 
distinguishable even though the foreground and 
background intensities are having a similar color 
distribution. In addition, descriptors can be used to 
dynamically adapt the ROI size for non-rigid or articulated 
objects (Lim and Kang, 2011).  

The remaining of the paper is prepared as follows: 
Section 2 describes the algorithm of the proposed 
invariant feature descriptor for visual tracking. In 
Section 3, comparative experiments with the state-of-the-
art visual trackers are reported and analyzed. Additional 
experiments are conducted to further investigate the 
properties of the proposed model. Concluded remarks 
are highlighted in the last section.  

Proposed Invariant Feature Descriptor Model  

An overview of the designated tasks in the proposed 
model is illustrated in Fig. 3. The model begins with a 
selected region of interest that contains a single target. 
Initially, distinctive feature points are detected from the 
ROI for the latter process, where a set of descriptor is 
formulating around the region of each feature point. 
Each set of descriptor is utilized to find the most likely 
position of the target in the consecutive frames. The 

following sections describe the methodology of each 
phase in the proposed model: Feature points detection, 
descriptor formulation and features matching.  

Feature Points Detection  

In the human visual system, corner point has been 
recognized as an important local feature to represent the 
context of an object in a scene. Experiments have been 
presented that human failed to recognize an object in a 
scene when the corner points are eliminated rather than 
removing the straight edges from the object (Biederman, 
1987). A corner point in an image is defined as a pixel 
with the intensity value that appears to be different from 
its closest neighborhood. Corner is usually found at the 
edge (boundary between two regions) with a rapid 
change of intensity. Since decades ago, corner detection 
has been an attractive research topic for digital image 
processing (Rosenfeld and Johnston, 1973; Moravec, 
1980; Shi and Tomasi, 1994; Harris and Stephens, 1988; 
Smith and Brady, 1997; Rosten and Drummond, 2006; 
Jian et al., 2015). This is due to the repeatability of the 
corner features in the same scene despite the changes of 
viewpoint. The massive increase of computing power to 
process live video streams also motivates the utilization 
of corner detection in visual tracking.  

In order to determine a suitable corner detector, 
repeatability and efficiency are two of the important 
requirements to produce the same feature points 
correspond to multiple viewpoints within the video 
sequence. FAST detector has been proven to fulfill both 
requirements after comparing its performance with other 
popular corner detectors (Rosten and Drummond, 2006; 
Miksik and Mikolajczyk, 2012; Senst et al., 2012). 
FAST detector concludes a corner point if the intensities 
of the circular neighborhood pixels are significantly 
higher or lower than the intensity of the central point. 
A fixed radius of 16-pixels circulating a central point 
is illustrated in Fig. 4. The intensities of the pixels are 
selected from the location of north (1), south (9), east 
(5) and west (13) in a circle and compared with the 
intensity of the central point. The central point is 
deduced as a corner point if there are more than two 
of the selected pixels brighter or darker than the 
central point. Otherwise, the test criterion is continued 
on the remaining pixels until it satisfies the n ≤ 12 
contiguous pixels in the circle.  

The performance of FAST detector by using different 
n values, ranging from 7 to 12 are depicted in Fig. 5. 
Test criterion is carried out on the n contiguous pixels 
before finalizing a corner point. The number of corner 
points are reducing whenever the n value increases 
because more contiguous pixels have to fulfill the test 
criterion. For the case of n≤8, FAST detector begins to 
respond strongly to edges and consumes greater 
processing time. FAST detector with 9≤n≤12 shows an 
acceptable number of corner points and processing time 
for feature points detection task.  
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 (a) (b) (c) (d) 
 
Fig. 2. Samples of local descriptors that are formulated from the detected corner points of non-rigid or articulated reference images 

for (a) dinosaur (b) diving (c) bolt (d) motocross 

 

 
 

Fig. 3. Proposed framework of invariant feature descriptor model 

 

 
 

Fig. 4. Illustration of the circular neighborhood pixels of FAST detector 

 
Since corner is a point defined in geometry without 

spatial extent, it would be difficult to localize various 
features in a video frame (Tuytelaars and Mikolajczyk, 
2008). To provide an implicit spatial extent for each 
feature point, the intensity of local neighborhood is 
normally extracted and used as the identification for 

feature matching across video frames. The process of 
feature descriptor formulation has to determine the 
location, size and shape of the local neighborhood for 
each feature point. The next section describes the 
methodology to extract a set of descriptor for each 
feature point.  
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Fig. 5. The performance of FAST detector by using different 

 
Feature Descriptor Formulation  

A video frame is a static image taken from a video 
sequence. Note that a digital image is composed of a 
finite set of pixels, where each pixel contains the 
value of intensity at a set of spatial coordinates (x, y). 
Although a corner point is invariant against 
illumination and transformation, but it is lack of 
distinctive information content that is recognizable for 
feature localization in the consecutive frames. The 
ideal way to provide a salient description for each 
feature point is by extracting the informative content 
enclosed in the local neighborhood around the feature 
point (Tuytelaars and Mikolajczyk, 2008).  

A salient descriptor has to provide an implicit spatial 
extent for each feature point, as well as to fulfill the 
transformation invariance property. Moment functions 
that have been widely used as global features for object 
recognition applications, are firstly introduced as a set of 
local feature descriptors in Ong et al. (2014). A set of 
moments function represents the geometrical properties 
of a two-dimensional digital image, such as shape, 
centroid, total mass, rotational inertia skewness and 
kurtosis (Mukundan and Ramakrishnan, 1998). These 
geometrical properties are extremely useful for 
describing the implicit spatial extent of a particular 
region around a feature point. The properties of an image 
can be generated from a set of geometric moments with 
the general definition given as: 
 

, ( , ) , , 0,1,2,3
i j

ijG n y f x y dxdy i j
ζ

= =∫∫   (1) 

 
The moments function in Equation 1, G of order 

(i+j), is formulated with two-dimensional monomial 
functions in the image region of for f(x, y). Geometric 
moments were firstly being introduced as the set of 

invariant descriptors for recognizing two-dimensional 
digital images (Hu, 1962). The presented set is able to 
eliminate the transformation factors, no matter in 
translation, scaling, reflection, skew and rotation. 
Since then, the research topic of moments function 
has been extensively explored for the past few decades 
(Almoosa et al., 2008; Chen et al., 2013; Costantini et al., 
2011; Li et al., 2012). Every publication has reported its 
improved version of moments.  

In order to eliminate the translation factor, geometric 
moments function is specified with respect to the image 
centroid (x0, y0) as the origin, which is stated in Equation 
2. After that, Equation 3 is composed by eliminating the 
scale factor. Using the theory of algebraic invariants to 
derive rotation invariants with Hu’s moments, a set of 
moment functions that are invariant with respect to scale, 
translation and rotation transformations is given in 
Equation 4 (Mukundan and Ramakrishnan, 1998): 
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Once a feature point has been detected with FAST 

detector, a set of local descriptor is formulated from the 
local neighborhood of each feature point. A local 
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neighborhood region of 10x10 pixels is extracted and 
represented with the invariants descriptor of Equation 4. 
The proposed descriptor ID, as defined in Equation 5 
stores the five different values of invariant moment 
functions for each feature point p: 
 

1 2 3 4 5
( ) [ ]ID p M M M M M=   (5) 

 
Since each set of invariants descriptor constitutes 

the information of a region centered by a feature 
point, the combination of the entire sets of invariants 
descriptor depicts a unique representation of the ROI 
in the frame n: 
 

( ) [ (1)... ( )] , , 1,2,3TROI n ID ID p n p= =   (6) 

 
Equation 6 will be used to compute each ROI in the 

following experimental study of the single-target 
visual tracking. Table 1 listed some examples of 
descriptor that are computed with Equation 4 for 
single-target tracking from five different video 
sequences of VOT dataset (VOT, 2016). Each target 
in the ROI is bounded with a rectangle, which is 
depicted in Fig. 6. The first three samples of ROI in 
Fig. 6 are selected from the same video sequence 
(dinosaur) but each ROI undergoes different 
transformations, which are rotation and scaling. Based 
on Table 1, the variation values of descriptors 
computed for the similar ROI that undergoes different 
transformations are as low as 0.000016 and never 
exceeds 0.000308. Therefore, the proposed descriptor 
in Equation 4 has been proven to satisfy the invariants 
property against different transformations. In addition, 
the ROI from the other four video sequences are 
computed and compared with the ROI in video 
sequence a. The ROI from video sequence g is 
intentionally selected to show the discriminative 
power of the invariant descriptor since video sequence 
a and g are having similar background. The values of 
the calculated differences among descriptors have 
exceeded 0.05, which successfully shown the 
discrimination property of the proposed descriptor.  

Feature Descriptor Matching  

This section explains the methodology to estimate the 
most likely location of a target in the next video frame 
by using the position of ROI in the current frame. After 
getting the estimated ROI in next frame, a new set of 
feature descriptor is computed and match with the 
previous set of descriptor. Fig. 7 displays a concise 
pseudo code to estimate the most likely location of a 
target in the next frame by using the current ROI’s 
size and centroid, ROI (n). Feature points detection 
and descriptor formulation are carried out at the new 

location, SA (n+1) to compute a new set of descriptor, 
ROI (n+1).  

In order to determine the matching pairs between 
two consecutive frames, the set of descriptor ROI (n-
1) from the previous frame Fr (n-1) is associated in a 
certain criterion with the descriptor set of the current 
frame, Fr(n). To find out a suitable criterion for 
showing the correlation between two sets of 
descriptor, four types of matching criteria have been 
tested on the computed descriptors of Fig. 6. The 
matching result is illustrated in Fig. 8 to show the 
comparison between Pearson’s Correlation 
Coefficient (CC), Mean Absolute Difference (MAD), 
Root Mean Squared Error (RMSE) and Sum of 
Absolute Difference (SAD). SAD criterion displays 
the most significant differences among the multiple 
video sequences and exhibits minor differences for the 
similar video sequence that undergoes various 
transformations. Hence, SAD is selected as the 
matching criterion, where a lowest value indicates a 
stronger association between two sets of descriptor.  

Instead of using all the shortlisted pairs, only those 
highly reliable pairs are remained to improve the 
matching performance. An efficient way for filtering 
matching pairs is by using RANdom Sample and 
Consensus (RANSAC) algorithm. RANSAC algorithm 
estimates the possible homographies that elaborate the 
relation between descriptor pairs in different frames 
(Hartley and Zisserman, 2004). During the estimation 
process, the less reliable pairs or mostly known as the 
outliers are rejected. Figure 9 presents the procedure for 
descriptor association and matching pairs filtering. 
Based on the finalized set of descriptor from filtering 
process, the properties of the ROI in the new frame, such 
as location and centroid are redefined.  

Experimental Evaluation  

Experiments are conducted on six video sequences 
that are illustrated in Fig. 6 (a, d-h). The performance 
of the proposed model is evaluated based on different 
basic characteristics of the real-world objects. The 
basic characteristics of each video sequence are stated 
in Table 2. The resolution and total number of frames 
in each video sequence is clearly listed. In addition, 
the single-target is described in terms of type (rigid/ 
articulated), average size and size changes rate 
throughout each video sequence. The dinosaur, torus 
and fish sequences are composed of rigid object with 
minor changes in background and illumination. 
Whereas, the targets in bolt and diving sequences are 
moving body parts in different background and the 
ROIs are always positioned at the middle of the whole 
image frame. Motocross sequence is the most 
challenging among all, by experiencing the large size 
changes, high illumination and changing background.  
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 (a) (b) (c) (d) 

 

 
 (e) (f) (g) (h) 
 

Fig. 6. Samples of video sequence selected from VOT database 

 

 
 

Fig. 7. Pseudo code for searching the most likely location of target in the following video frame 

 

 
 
Fig. 8. Matching criteria of descriptors that are computed from Fig. 6, where Correlation Coefficient (CC), Mean Absolute 

Difference (MAD), Root Mean Squared Error (RMSE) and Sum of Absolute Difference (SAD) 
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Fig. 9. Methodology to match the descriptors from two consecutive frames 

 
Table 1. Examples of invariant descriptor computed for single-target tracking that is depicted in Fig. 6 
Video sequence  Descriptor 1  Descriptor 2  Descriptor 3  Descriptor 4  Descriptor 5  

(a) Dinosaur  2.83763718  6.43220496  10.005507850  9.89971412  6.360887056 
(b) Dinosaur: Rotation  2.83754509  6.42870862  10.005079500  9.90128054  6.361408775 
(c) Dinosaur: Scaling  2.83757730  6.43206610  10.006114530  9.89991911  6.360771349 
Variance (δ/µ)  0.00001600  0.00030800  0.000052000  0.00008600  0.000053000 
(d) Fish  2.74647456  6.01559222  9.417894528  9.91291528  6.250012111 
(e) Motocross  2.86174249  6.34979751  10.280109300  10.64044220  6.442691427 
(f) Bolt  2.68944380  5.95541496  9.958119233  9.87003711  6.114742046 
(g) Torus  2.84872441  6.53332944  10.228156380  9.87506709  6.368011042 
(h) Diving  2.83493682  6.21989446  9.566294378  9.52572635  6.415703213 
Average of differences with video a (+/-)  0.05545000  0.25785000  0.314290000  0.23645000  0.100150000 

 
Table 2. The basic characteristics of video sequences 
Sequence  Frames  Resolution  Type  Target size (pixel2)  Size change  Target size w.r.t. Frame (%)  Features  

Dinosaur  326  320×240  Rigid  Medium (8,448)  High  6.1-11.7  75-139  

Fish  164  460×259  Rigid  Small (3,574)  Medium  1.5-3.9  12-23  

Motocross  326  640×360  Rigid  Large (15,922)  High  2.3-8.6  109-345  

Bolt  350  640×360  Articulated  Small (3,456)  Low  0.4-2  26-54  

Torus  264  320×240  Rigid  Small (2,304)  Low  2.6-3.2  14-28  

Diving  219  400×224  Articulated  Medium (8,960)  High  6.7-13  45-244 

 
Performance Measures  

Since a large variety of performance criterion are 
used in the existing research works of visual tracking, it 
is difficult to decide a standard criterion to show the 
comparative performance between the visual trackers. 
Čehovin et al. (2016) have made an effort to investigate 
the theoretical aspect of the existing criteria and have 
proven the correlation between all criteria with some 
systematic experimental analysis. Two most suitable 
criteria in terms of accuracy and robustness are identified 
as the guide to symbolize the trackers performance. Both 
criteria are able to measure the ability of a visual tracker 
to continuously and accurately locate the target 
throughout the video sequence. The overlap region 
criterion, OR(n) compares both position and size of the 
ground truth ROI, R(gt, n) and the estimated ROI, R(est, 
n) to observe the percentage of a successful tracking in a 
particular frame n. To conclude an overall overlap region 
over an entire video sequence, the average overlap 
region is deduced in Equation 7: 

1

( )
,

( , ) ( , )
( ) , 1,...,

( , ) ( , )

TF

k

OR i
OR where

TF

R gt n R est n
OR n n TF

R gt n R est n

=

=

∩

= =

∪

∑
  (7) 

 
A visual tracker that scored a high value in accuracy is 

not necessarily showing a continuous tracking in every 
frame. Therefore, the number of tracking failures is 
recorded to annotate the robustness of a visual tracker. Note 
that the indicator of failure rate, F is increased whenever the 
overlap region, OR = 0. In order to have a better 
visualization of both criteria in the comparative 
performance, the failure rate is further normalized as an 
exponential representation in Equation 8. The value of 
S serves as a scaling factor to control the visualization 
of robustness criterion, Rs. When there is none 
tracking failures, the value of robustness criterion 
should increase to a maximum of value 1: 
 

,

S

s

F
R e where

TF

µ
µ

−

= =   (8) 
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In the common practice to setup an experiment for 
testing visual tracker, the ROI of target is initialized in 
the first frame and the tracker will locate the target in the 
subsequent frames. The performance is continuously 
measured even though the tracker failed in any time 
frame of the entire video sequence. This practice has 
been used by some publications to show comparative 
study in visual tracking (Ross et al., 2008; Kwon and 
Lee, 2009; Babenko et al., 2011). Other than that, some 
publications suggested that reinitialization has to be 
triggered once the tracker fails. Reinitialization 
represents the manual intervention in some supervised 
system that do not require autonomous real-time 
performance. If none of the region is overlap, the tracker 
is considered fail and the tracking process is terminated. 
The tracking failures that happened, whether at the 
beginning or in the middle of video sequence would 
affects the performance evaluation of the respective 
tracker. Thus, it is inappropriate to calculate the sum of 
overlap region with respect to total number of frames. 
The tracking should be continued until fully processed 
the entire sequence to show the overall evaluation of the 
performance (Čehovin et al., 2016; Kristan et al., 2016). 
Both practices are implemented in our experimental 
study to show the comparative performance among 
trackers. At the same time, we can further investigate 
whether the tracker improve its accuracy and robustness 
performances after reinitialization.  

According to Kristan et al. (2016), it is difficult to 
point out a ‘best’ visual tracker that is able to 
accommodate a large variety of surveillance dataset with 
diversified characteristics. Some applications require a 
highly accurate tracking over robustness, such as sport 
analytics that is used to locate the position of ball during 
tournament or calculate the player’s acceleration and 
velocity. Yet, a robust tracker is more preferable than a 
highly accurate tracker for other applications that required a 
continuous tracking performance. The number of failure 
rate in the continuous tracking and accuracy have to be 
observed together to further explained a tracker’s 
performance. Apart from showing the applicability of our 
proposed model, the experimental results are also 
analyzed to find out the suitability of the proposed 
model towards different characteristics of dataset.  

Two types of experiments are conducted on each 
tracker by using six video sequences from VOT dataset. 
The first type of experiment measured the tracking 
process, where the tracker was initialized in the first 
frame and the tracker has to locate the target in the 
subsequent frames until the end of the video sequence. 
Although reinitialization is not triggered, the number of 
failures of each tracker, F is also recorded. On the other 
hand, the second experiment would reinitialize the tracker 
whenever the tracking failed. The performance of the 
proposed and two state-of-art visual trackers are illustrated 
in Fig. 10. For a better understanding on the tracker’s 

performance in the accuracy-robustness visualization 
graph, kindly take notes on the following remarks: 
 
• A zero-failure but totally inaccurate tracker will be 

displayed at the bottom right corner of the graph  
• When the area of the estimated ROI overlapped with 

mostly area of the ground truth but the tracker 
experienced extremely high failure rate, it will be 
located towards the top left corner of the graph  

 
For brevity, the proposed invariant feature descriptor 

is represented as IFD in the rest of the experimental 
results and discussions.  

Results and Discussion  

Among six of the video sequences, both of the 
proposed IFD (with and without reinitialization) 
achieved the highest average of overall accuracy and 
robustness, as illustrated in Fig. 11 but not all of the IFD 
is placed at the top right corner of the graph in each 
sequence of Fig. 10 since the accuracy is notably lower 
in the fish and torus sequences. Among four of the 
sequences (dinosaur, motocross, bolt and diving), both IFD 
have outperformed other trackers no matter in terms of 
accuracy or robustness as shown in Fig. 10. In the aspect of 
accuracy, both of the IFD achieved more than 0.6 till 0.8 in 
these sequences with the highest accuracy in dinosaur, 
motocross and followed by bolt and diving. However, only 
IFD with reinitialization always exceeds 0.8 in terms of 
robustness while maintaining at 0.7 to 0.9 accuracy. Tracker 
IFD without reinitialization always fall behind since the 
IFD tracker has included its false-tracking measurements 
although it has drifted away from the target or accidentally 
drifted back to the ground truth position at some other 
frames. For the fish and torus sequences, IFD with 
reinitialization also performed better in terms of accuracy 
and robustness even though the accuracy is notably lower 
than other trackers. Therefore, reinitialization is helpful to 
compensate the tracker’s performance in some challenging 
situations of the video sequence.  

A few of the visual properties, such as rigidity, 
illumination, foreground and background colors are the 
conditions that can be analyzed to interpret the tracker’s 
performance. Although dinosaur, motocross and diving 
sequences experienced high changes in size with the 
changing background and motion but both IFD are able 
to perform superior results in terms of accuracy and 
robustness. Mainly because three of the sequences 
contributed more features as compared to the fish and 
torus sequences. The number of detected features are 
recorded in the last column of Table 2, where fish and 
torus sequences are having less than 20 features in 
mostly frames. Feature matching process is able to filter 
a set of more reliable matching pairs when more features 
are involved. This result has proven that IFD depends 
strongly on the number of detected features rather than 
size changes and rigidity of the target. 
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Fig. 10. Comparative performance for proposed and existing visual trackers over all video sequences 

 

 
 

Fig. 11. Average performance of the overall accuracy and robustness between proposed and existing visual trackers 
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Unlike IFD tracker, the accuracy of meanshift and 
Camshift trackers are apparently low in the four 
aforementioned sequences but both trackers surpassed in 
the fish and torus sequences. Note that meanshift and 
Camshift trackers are sensitive to color ambiguity, 
illumination and non-rigid object (Lim and Kang, 2011). 
Since the foreground area of torus and fish are 
constituted from the specific colors that are almost 
similar with the background area, making both trackers 
that rely heavily on color to perform better than IFD. 
However, the color ambiguity between foreground and 
background colors in dinosaur sequence has increased 
the vulnerability of meanshift and Camshift trackers to 
drift away from the rigid target. The accuracy of both 
trackers also dropped in the motocross sequence 
because of the high illumination changes in the 
beginning to middle of sequence and the size changes 
in the rest of the sequence. Although diving sequence 
is having less illumination and color ambiguity 
problems, the background clutter and large shape 
deformation due to the articulated body parts have 
mixed up the specific color information used by both 
trackers. However, IFD tracker does not suffer from 
these problems and accomplish more than 0.6 accuracy 
in the dinosaur, motocross, bolt and diving sequences. 
The advantages of IFD are assured for processing an 
object that exhibits highly-distinctive features regardless 
of size, shape and illumination changes.  

Conclusion  

A new invariant feature descriptor model using 
moment invariants has been presented and compared 
with the state-of-the-art trackers on different 
characteristics of video sequences. A more detailed 
description of the proposed model has been described 
thoroughly in this study. The model begins with a 
selected region of interest that contains a single target. 
Feature points are detected from the ROI, where a set of 
descriptor is formulating around the region of each feature 
point. The set of descriptor extracted from ROI of two 
consecutive frames are matched and used to find out the 
most likely position of the target in the next frame.  

From the large number of diversified scenarios in the 
surveillance applications, the performance and analysis 
of the proposed model has been demonstrated with 
single-target tracking. The detailed experimental analysis 
and comparison are conducted with six benchmarked 
video sequences. The experimental results shown that 
our proposed model on average outperforms the existing 
visual trackers by achieving higher accuracy and 
robustness. In addition, the results also revealed a few 
important aspects of the proposed model. Our proposed 
model is able to overcome the problems faced by 
meanshift and Camshift trackers, such as color 
ambiguity, illumination and non-rigidity. In addition, the 

proposed model is invariant regardless of object’s size, 
rotation and translation changes throughout video 
sequence. Nevertheless, the experimental analysis also 
found out that the proposed model depends strongly 
on the number of detected features. Our model would 
fail if apply on the target that is particularly contained 
features that are not obvious and undetectable, such as 
a smooth surface with a single color or a tiny 
foreground area with less texture.  

In our future research, the proposed model will be 
improved to manage the tracking task on the target with 
small and smooth surface. The video sequences will be 
selected from other add-on datasets of the future VOT 
challenges. Likewise, it would be interesting to conduct 
a comparative evaluation against a variety of existing 
trackers from the VOT challenges.  
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