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Abstract: Gait has unique advantage at a distance when other biometrics 

cannot be used since they are at too low resolution or obscured, as 

commonly observed in visual surveillance systems. This paper provides a 

survey of the technical advancements in vision-based gait recognition. A 

wide range of publications are discussed in this survey embracing different 

perspectives of the research in this area, including gait feature extraction, 

classification schemes and standard gait databases. There are two major 

groups of the state-of-the-art techniques in characterizing gait: Model-based 

and motion-free. The model-based approach obtains a set of body or motion 

parameters via human body or motion modeling. The model-free approach, 

on the other hand, derives a description of the motion without assuming any 

model. Each major category is further organized into several subcategories 

based on the nature of gait representation. In addition, some widely used 

classification schemes and benchmark databases for evaluating 

performance are also discussed. 
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Introduction 

In recent decades, much research effort has been 

devoted to the study of vision-based gait recognition. 

The aim of gait recognition is to automatically describe 

walking pattern from video sequences and thereafter 

identify individual based on the walking pattern. The 

basic architecture of a vision-based gait recognition 

system is depicted in Fig. 1. 

Given a gait sequence, silhouette segmentation 

relates to detecting and segmenting the region of interest, 

specifically, human silhouette from the images. For the 

most part, silhouette segmentation is accomplished by 

engaging background subtraction scheme, where moving 

silhouette is detected by subtracting current frame from 

the background model (Piccardi, 2004). 
 

 
 
Fig. 1. The framework of vision-based gait recognition 

The second stage of the system is feature extraction, 
where gait sequences are mapped into a compact set of gait 
features, or gait signatures. There are many candidate 
methods for this task and they can be broadly grouped into 
two major categories, i.e., model-based and model-free. In 
the former, a set of body or motion parameters is obtained 
via human body or motion modeling. The model-free 
approach, on the other hand, derives a description of the 
motion without assuming any model. The set of features 
of the known classes obtained in this stage serves as the 
gait templates and stored in the gait library. A review of 
model-based and model-free approaches are presented in 
section 2.1 and 2.2, respectively. 

The last stage of the system is the pattern recognition. 
The aim here is to identify, given the observed gait 
signatures of an unknown class, the optimal match from the 
library of known classes. A review of the commonly used 
pattern classification schemes is reported in section 3. 

Feature Extraction 

This section briefly discusses some of the most 
popular feature extraction methods in the literature. The 
feature extraction methods can be broadly divided into 
two major categories, i.e., model-based and model-free. 
For each of the categories, there are some subcategories, 
as depicted in Fig. 2. 
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Fig. 2. The categorization of feature extraction schemes 

 

Model-Based Approaches 

Model-based approaches describe walking pattern 

using model parameters of human body components or 

motion, such as motion trajectories, limb lengths, limb 

angular speeds and etc. Two commonly used gait 

representation in model-based approaches are structural 

model and motion model. 

Structural Model 

A structural model is a model that describes the 

properties of body components via measurements of the 

limb lengths, distance between limbs and relative position 

of limbs, among others. A structural model can be made 

up by approximating human body using primitive shapes, 

stick figures, or arbitrary shapes (Yam and Nixon, 2009). 

An early work by Bobick and Johnson (2001) 

measured static body parameters when the feet are 

maximally apart. Despite the simplicity in calculating 

static body parameters, these features suffer from the 

loss of deformation data. For this reason, researchers 

often turn to establishing and measuring the structural 

model throughout the gait cycle. 

BenAbdelkader et al. (2002) obtained a stick figure 

from the image by locating the silhouette bounding box 

and the mid-feet point, as depicted in Fig. 3. From the 

stick figure, they estimated the stride parameters (speed, 

cadence and stride length) and the height parameters of 

the moving silhouette. Later, Zhang et al. (2004) 

employed a two-dimensional five-link body model to 

represent the walking pattern. They extracted the gait 

features from image sequences using Metropolis-Hasting 

method. Likewise, Yoo and Nixon (2011) represented 

silhouette by a planar stick figure with eight sticks and 

six joints, as shown in Fig. 4. Motion parameters are 

then measured from the trajectories of the stick figure. 

Another variant is the work by Lee and Grimson 

(2002), where silhouette was separated into seven 

ellipsoidal regions. From these ellipses, they derived 

moment-based features including centroid, aspect ratio 

of the major and minor axes, as well as the orientation of 

major axis of the ellipse. They also measured the Fourier 

transform of ellipse parameters in temporal axis. Figure 

5 displays the ellipsoidal model. Wagg and Nixon (2004) 

proposed an articulated model in which ellipses were 

fitted for the torso and the head, lines for the legs and a 

rectangle for each foot, as depicted in Fig. 6. 

Huang and Boulgouris (2009), the silhouettes were 

manually labeled into eight body components. Some 

geometry features, i.e., the area, the center of gravity and 

the orientation were thereafter measured on each body 

component. In the more recent work by Tafazzoli and 

Safabakhsh (2010), the silhouette was segmented into 

three major regions, i.e., the head, torso and leg, based 

on the mean anatomical proportions. Then, active 

contour models and Hough transform were used to 

construct a posterior model of the gait motion. Fourier 

analysis was subsequently used to reveal the motion 

patterns of the body parts. Table 1 summarizes the 

structural model gait representation. 

Motion Model 

A motion model measures the parameters of gait 

mechanics, such as the kinematics of joint angles in 

human walking. 

In the work of Cunado et al. (1997; 2003), the 

movement of the legs was fitted into a pendulum-like 

motion model. Fourier transform analysis, thereafter, 

was used to describe the frequency components of the 

leg movements. Similarly, Yam et al. (2004) modeled 

the lower limbs as double pendulum; the angular motion 

was thereafter recorded as the phase-weighted magnitude 

of the Fourier descriptor of the lower limbs. 

Tanawongsuwan and Bobick (2001) placed markers 
on legs and thorax to derive the joint angle trajectories. 
The variation in joint angles in temporal axis was then 
derived. Another variant of the motion model was 
presented in Yoo et al. (2002) where hip and knee angles 
were estimated from the silhouette by linear regression 
analysis. The gait signature was denoted as the parameters 
obtained from the trigonometric-polynomial interpolant 
functions of the angles. In Wang et al. (2004), a 
Conditional Density Propagation framework (Isard and 
Blake, 1998) was used to track the human and to further 
estimate  joint  angle  trajectories  of the lower limbs. 
The  angles of joints were represented as Euler angles. 
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Fig. 3. The stick figure model in BenAbdelkader et al. (2002) 
 

 
 
Fig. 4. The stick figure model in Yoo and Nixon (2011) 
 

 
 
Fig. 5. The ellipsoidal model in Lee and Grimson (2002) 
 
In a later work, Fathima and Banu (2012) performed 

skeletonisation on the extracted silhouette of each image 

frame. Then six joint angles from head to foot were 

calculated. More recently, Lu et al. (2014) extracted 

motion angles of lower limbs to build joint distribution 

spectrums. Based on the joint distribution, the feature 

histogram was thereafter computed as gait signature. A 

summary of motion model is provided in Table 2. 

 
 
Fig. 6. The articulated model in Wagg and Nixon (2004) 
 

 
 
Fig. 7. The first column shows a sample frame of the actions. 

The second and third columns show their corresponding 
MEIs and MHIs (Bobick and Davis, 2001) 

 
Though model-based approaches are more robust to 

view and scale variations, accurately locate the joints 
positions is a strenuous task due to the non-rigid 
structures of the human body and to self-occlusion 
(Yang et al., 2008; Wang et al., 2011). For this reason, 
researchers often turn to model-free approaches. 

Model-Free Approaches 

Model-free approaches directly extract motion 
pattern from the gait sequences without constructing any 
model. The gait representation obtained by model-free 
approaches can be broadly categorized into appearance-
based representation, transformation-based 
representation and distribution-based representation. 



Chin Poo Lee et al. / American Journal of Applied Sciences 2017, 14 (2): 252.266 

DOI: 10.3844/ajassp.2017.252.266 

 

255 

Table 1. Summary of model-based approaches (structural model) 

Literature Gait features Classifier/Distance metric 

Bobick and Johnson (2001) Static body parameters Population covariance 
BenAbdelkader et al. (2002) Stick Fig. (stride and height parameters) Bayesian classifier 
Zhang et al. (2004) Five-link biped (linked feature trajectories) HMMs 
Yoo and Nixon (2011) Stick Fig. kNN 
Lee and Grimson (2002) Ellipsoidal model (moment-based features) kNN + Mahalanobis distance 
Wagg and Nixon (2004) Articulated model kNN + Euclidean distance 
Huang and Boulgouris (2009) 8 body components (geometry features) Euclidean distance 
Tafazzoli and Safabakhsh (2010) 3 body regions (posterior model of motion) kNN 

 
Table 2. Summary of model-based approaches (motion model) 

Literature Gait features Classifier/distance metric 

Cunado et al. (1997; 2003) Pendulum (inclination of legs) kNN 
Yam et al. (2004) Pendulum (joint angle trajectories) kNN + Euclidean distance 
Tanawongsuwan and Bobick (2001) Joint angle trajectories  DTW 
Yoo et al. (2002) Joint angle trajectories Neural networks 
Wang et al. (2004) Joint angle trajectories kNN + Euclidean distance 
Fathima and Banu (2012) Joint angle trajectories SVM 
Lu et al. (2014) Joint angle trajectories SVM 

 

Appearance-Based Representation 

In appearance-based representation, the gait motion is 

accumulated into an energy image. The higher the 

energy at the position in the image, the more frequent the 

motion occurs at the position. 

From a sequence of gait images, Bobick and Davis 

(2001) obtained two temporal templates, namely Motion 

Energy Image (MEI) and Motion History Image (MHI). 

The former is a binary image representing the location of 

motion in an image sequence. MHI, on the other hand, is 

a grayscale image representing the recency of motion. 

Figure 7 shows a few actions and their corresponding 

MEIs and MHIs. Although MHI attempts to capture the 

direction of motion, it suffers from several drawbacks. A 

major problem of MHI method lies in its difficulty to 

discriminate the motion direction when there is self-

occlusion (Ahad et al., 2012). In addition to that, the 

MHI also has the drawback that it is sensitive to the 

variance of motion duration. In view of this, Lee et al. 

(2014b) proposed a time-sliced averaged motion history 

image (TAMHI). In their work, the gait cycle is divided 

into several regular time windows to generate multi-

composite images to better preserve transient 

information. Histograms of Oriented Gradients (HOG) 

descriptors are then calculated on these composite 

images to obtain the gait signature. Figure 8 shows the 

TAMHI composite images and the TAMHI-HOG 

descriptors of each time window in the gait cycle. 

Liu and Sarkar (2004) proposed an averaged silhouette 

approach, as displayed in Fig. 9. They aligned and averaged 

the silhouettes to describe the normalized accumulative 

energy in every gait cycle. An extension of the averaged 

silhouette approach was endeavored by Xu et al. (2006). In 

their work, the binary silhouettes were averaged over 

each gait cycle of the gait sequence. Subsequently, the 

Coupled Subspace Analysis (CSA) was employed as a 

preprocessing step to remove noise and, a Discriminant 

Analysis with Tensor Representation (DATER) was 

applied to enhance the discriminative power. 
Like the averaged silhouette approach, Han and Bhanu 

(2006) proposed a Gait Energy Image (GEI) representation 
to denote the averaged accumulative energy of human 
walking image sequences. They then used a statistical 
approach to create synthetic templates from real templates, 
both of which were thereafter fused as the gait signature. 
Figure 10 depicts the real and synthetic GEI templates. 

Some other variations based on GEI had also been 

introduced. Yang et al. (2008) extracted the dynamic 

region in GEI using variation analysis. Subsequently, a 

dynamics weight mask was constructed to intensify the 

contrast between dynamic region and other regions. The 

so obtained gait representation, referred to as the 

Enhanced GEI (EGEI), is shown in Fig. 11. Huang et al. 

(2013) devised another approach by modifying GEI to 

extract more information from the lower part of body. A 

gait representation is devised by convolving the modified 

GEI with Gabor wavelets. Another variant was proposed 

in Zhang et al. (2009), where the dynamic variance parts 

of the GEI were captured in a Dynamic Gait Energy 

Image (DGEI). Subsequently, they projected the DGEI 

onto a low-dimensional manifold based on principal 

component analysis and locality preserving projection (He 

and Niyogi, 2003). A blend of GEI and fuzzy principal 

component analysis was presented in Xu and Zhang 

(2010). They projected the GEI features onto a lower-

dimensional space based on fuzzy principal component 

analysis. Moustakas et al. (2010) proposed another 

extension, where the gait signatures were obtained via the 

Radial Integration Transform (RIT) on the GEI and the 

sequence of silhouettes. Recently, Xu et al. (2012) 

represented  each   GEI  as  a  set  of  local Gabor features.  



Chin Poo Lee et al. / American Journal of Applied Sciences 2017, 14 (2): 252.266 

DOI: 10.3844/ajassp.2017.252.266 

 

256 

 
 
Fig. 8. Samples of the TAMHI composite images (odd 

columns) and the corresponding TAMHI-HOG 
descriptors (even columns) (Lee et al., 2014b) 

 

 
 
Fig. 9. The first row shows samples of the binary silhouettes 

over one gait cycle. The second row shows the averaged 
silhouettes for the subject; each averaged over a 
different gait cycle (Liu and Sarkar, 2004) 

 

 
 
Fig. 10. First row shows the samples of normalized and aligned 

silhouettes. The rightmost image is the corresponding 
real GEI template. Second row shows the synthetic 
GEI templates generated by cropping the bottom 
portion of the real template and normalizing it to the 
original template size (Han and Bhanu, 2006) 

 

 
 
Fig. 11. First image displays an example of GEI. Second image 

highlights the three regions of GEI, where the dynamic 
region is marked as region III. Dynamics weight mask 
is shown in the third image (Yang et al., 2008) 

 

They combined the Gabor features of different 

orientations and scales. A global Gaussian Mixture Model 

(GMM), thereafter, was learnt from the local augmented 

Gabor features of the entire gallery GEIs. Hu (2014), they 

represented each GEI as a set of Dual-Tree Complex 

Wavelet Transform (DTCWT) features. Recently, 

Choudhury and Tjahjadi (2015) computed the entropy of 

GEI and subsequently multiscale shape analysis was 

performed using Gaussian filter. 

Inspired by the idea of cumulative energy image, 

Zhang et al. (2010a) constructed an Active Energy 

Image (AEI) by accumulating the frame difference 

between two successive images. Subsequently, each AEI 

was projected onto a subspace via two-Dimensional 

Locality Preserving Projections (2DLPP) method. 

Recently, Huang and Boulgouris (2012) divided the 

silhouette into three areas, i.e., head, torso and legs. They 

obtained Shifted Energy Image (SEI) by aligning each 

area according to their respective horizontal center. 

Subsequently, the Linear Discriminant Analysis (LDA) 

was performed on the SEI for dimension reduction. 

Unlike GEI which accumulates all the images in a gait 

cycle, Chen et al. (2009) divided a gait cycle into several 

clusters. Then a Dominant Energy Image (DEI) is 

produced from each cluster. Summing the cluster’s DEI 

and the positive portion of the frame difference between 

consecutive frames, thereafter, produced the Frame 

Difference Energy Image (FDEI) of the frame. In a more 

recent development, Roy et al. (2012) introduced a Pose 

Energy Image (PEI), where they averaged the silhouettes 

of all key poses in a gait cycle. In addition, the duration 

spent in each key pose state over a gait cycle was also 

recorded as the Pose Kinematics. Figure 12 depicts the 

key poses and their PEIs. A summary of appearance-

based representation is presented in Table 3. 

Since human walking is a continuous movement of 

body parts, capturing the directional motion over time is 

intuitively prominent. In most of the appearance-based 

representations, there is no explicit consideration of the 

direction of image motion. Representing motion 

information in composite energy image, henceforth, leading 

to the loss of essential directional motion information. 

Transformation-Based Representation 

Besides the normalized accumulative energy 
approach, transformation is another dominant method to 
obtain discriminative gait signatures. Some of the widely 
used transformation methods are Principal Component 
Analysis (PCA) and Fourier transform. 

In an early paper, Murase and Sakai (1996) projected 
the binarized gait silhouettes onto eigenspace using PCA. 
Each motion sequence formed a trajectory in the 
eigenspace, referred to as the parametric eigenspace 
representation. An extension was devised by Huang et al. 
(1999), where the gait silhouette images were 
projected onto a low-dimensional eigenspace based on 
PCA. The vector obtained from the PCA computation 
was further projected onto a canonical space based on 
Canonical Analysis. 
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Fig. 12. (a) A sequence of silhouette in a gait cycle with the key pose labeled at the bottom of each silhouette. There is a total of 16 

key poses, i.e., S1-S16. (b) The PEIs of the 16 key poses (Roy et al., 2012) 

 

 
 
Fig. 13. (a) An example of PMS. (b) Computation of shape context for a PMS using log-polar histogram bins (Zhang et al., 2010b) 

 

Another notable use of PCA was presented in 

Wang et al. (2003a; 2003b). They transformed the 

silhouette boundaries onto eigenspace using Procrustes 

shape analysis to obtain the Procrustes Mean Shape 

(PMS). Accordingly, a Procrustes mean shape distance 

was proposed as the distance metric. Zhang et al. 
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(2010b) adopted PMS as their gait signature. They 

engaged shape context (Belongie et al., 2002) descriptor 

to measure the similarity between two PMSs. Figure 13 

displays a sample PMS and the computation of shape 

context. Zheng et al. (2011) adopted Partial Least 

Square regression on the GEI vector to generate 

optimal feature vector. Subsequently, a robust View 

Transformation Model (VTM) is obtained by applying 

robust PCA on the optimal feature vector. Later on, 

Kusakunniran et al. (2011a) proposed a variant of the 

Procrustes shape analysis by introducing Pairwise 

Shape Configuration (PSC) as the shape descriptor. 

PSC embeds local relation between a boundary point 

and its neighboring points. Later, they proposed a 

Higher-order Shape Configuration (HSC) to generate 

speed-invariant gait features based on Procrustes shape 

analysis (Kusakunniran et al., 2011b). 

Many Fourier descriptor-based techniques can be 

found in the literature. An early use of Fourier 

descriptors to model the human gait motion was found in 

Mowbray and Nixon (2003). The researchers performed 

Fourier transform on the deformation silhouette 

boundaries, with the coefficients of the Fourier series 

being the gait signature. Similarly, Tian et al. (2004) 

described the global and local features of shape contour 

using Fourier descriptors. In their work, three-

dimensional Fourier transform was applied to the gait 

volume to obtain a unique frequency for individual 

walking pattern. Another variant was presented in Lu et al. 

(2008), where they represented every gait cycle as four 

key frames. Fourier transform was subsequently 

performed on these key frames to obtain the key frame 

profile. Elsewhere, Yuan et al. (2015) obtained five key 

frames from each gait cycle based on the ratios of 

silhouette bounding box. Fourier descriptors were 

thereafter deployed to describe the key frames silhouette 

boundary. Ohara et al. (2004) further introduced the idea 

of three-dimensional Fourier transform. Choudhury and 

Tjahjadi (2012) adopted both PMS and elliptical Fourier 

descriptors as gait signatures. The final label was decided 

by combining the outputs from both representations using 

rank-summation rule. In a more recent work, Lee et al. 

(2013) proposed optimally interpolated Fourier descriptors 

for gait recognition. Specifically, the closed contours of 

the body silhouette were circularly shifted by a circular 

permutation matrix before element-wise frame 

interpolation and Fourier transform was applied to 

produce length invariant gait signatures. Elsewhere, 

Boulgouris and Chi (2007) performed Radon transform on 

the silhouettes in each gait cycle. Subsequently, LDA 

was applied to identify the Radon coefficients that carry 

the most discriminative information. Table 4 summarizes 

transformation-based representation. 

Distribution-Based Representation 

In distribution-based representation, human 

walking is characterized by the statistical distribution 

generated throughout the gait cycle. Some of the more 

widely used representation in this category are optical 

flow distribution, probability distribution and texture-

based distribution. 

Polana and Nelson (1994) first adapted optical flow 

in the gait recognition problem. They tracked and 

recognized people walking in outdoor scenes by 

gathering the optical flow magnitudes and periodicity 

measurements over the entire body. Following that, 

Little and Boyd (1995) filtered the optical flow of 

human walking to produce a set of moving points and 

their flow values. Then, the geometry of the moving 

points was used to derive a gait signature. On the other 

hand, Bashir et al. (2009) computed the optical flow fields 

from preprocessed subject images over a gait cycle. 

Figure 14 depicts the computation of the optical flow field. 

In their representation, both the motion intensity and 

the motion direction information were captured in 

flow vectors. To achieve robustness against noise, the 

flow direction was discretised and a histogram-based 

direction representation was formulated. Lam et al. 

(2011), the optical flow field of the moving 

silhouettes was adopted to construct the Gait Flow 

Image (GFI) for gait recognition. 

Apart from optical flow, probability distribution is 

also proposed as a gait representation. Vega and Sarkar 

(2003) modeled the relational statistics of gait image 

features in probability functions space, where each 

motion type creates a trace in this space. Recently, 

Hong et al. (2013) proposed a probabilistic gait 

representation. They considered the silhouette as a 

multivariate random variable and Bernoulli mixture 

model was employed to model silhouette distribution. 

Lee et al. (2014a) propounded yet another probabilistic 

gait representation by computing the binomial 

distribution of all pixels in the gait image. Thereafter, the 

mean and variance of the distribution is obtained. 

 

 
 
Fig. 14. The first two images show the silhouette at frame t − 1 

and t respectively. The computed optical flow field is 
displayed in the third image (Bashir et al., 2009) 
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Table 3. Summary of model-free approaches (appearance-based representation) 

Literature Gait features Classifier/distance metric 

Bobick and Davis (2001) MEI + MHI Mahalanobis distance 
Lee et al. (2014b) TAMHI + HOG Euclidean distance 
Liu and Sarkar (2004) Averaged silhouette Euclidean distance 
Xu et al. (2006) Averaged silhouette + CSA + DATER kNN 
Han and Bhanu (2006) GEI Euclidean distance 
Yang et al. (2008) EGEI Euclidean distance 
Huang et al. (2013) Modified GEI + Gabor Wavelets SVM 
Zhang et al. (2009) DGEI + PCA + Locality preserving projections Euclidean distance 
Xu and Zhang (2010) GEI + Fuzzy PCA kNN + Euclidean distance 
Moustakas et al. (2010) GEI + Radial integration transform Probability 
Xu et al. (2012) GEI + Gabor-PDF Locality constrained group 
  sparse representation 
Zhang et al. (2010a) AEI + 2D locality preserving projections kNN + Euclidean distance 
Huang and Boulgouris (2012) SEI + Linear discriminant analysis - 
Chen et al. (2009) FDEI + Frieze + wavelet HMMs 
Roy et al. (2012) PEI Euclidean distance 

 
Table 4. Summary of model-free approaches (transformation-based representation) 

Literature Gait features Classifier/distance metric 

Murase and Sakai (1996) Parametric eigenspace trajectories Spatiotemporal correlation 
Huang et al. (1999) PMS + Canonical analysis Spatiotemporal correlation 
Wang et al. (2003a; 2003b) PMS Procrustes distance 
Zhang et al. (2010b) PMS + Shape context kNN + Shape context distance 
Zheng et al. (2011) VTM L1-norm distance 
Kusakunniran et al. (2011a) PSC kNN + Procrustes distance 
Kusakunniran et al. (2011b) HSC kNN + Procrustes distance 
Mowbray and Nixon (2003) Fourier descriptors kNN + Euclidean distance 
Tian et al. (2004) Fourier descriptors  DTW 
Lu et al. (2008) Fourier descriptors (key frame profile) kNN 
Yuan et al. (2015) Fourier descriptors (key frame) Canonical Time Warping 
Ohara et al. (2004) 3D Fourier descriptors Cross correlation 
Choudhury and Tjahjadi (2012) PMS + elliptical Fourier descriptors Procrustes distance + 
  dissimilarity score 
Lee et al. (2013) Circular shifting + Interpolation + Fourier descriptor Product of Fourier coefficients 
Boulgouris and Chi (2007) Radon transform + LDA Euclidean distance 

 
Table 5. Summary of model-free approaches (distribution-based representation) 

Literature Gait features Classifier/distance metric 

Polana and Nelson (1994) Optical flow Nearest centroid 
Little and Boyd (1995) Optical flow Euclidean distance 
Bashir et al. (2009) Optical flow Euclidean distance 
Lam et al. (2011) GFI kNN + Euclidean distance 
Vega and Sarkar (2003) Trace in space of probability functions Euclidean distance/DTW 
Hong et al. (2013) Multivariate probability + Bernoulli mixture model Probability 
Lee et al. (2014a) Binomial distribution Kullback-Leibler divergence 
Kellokumpu et al. (2009) LBO-TOP Histogram intersection 
Abdolahi and Gheissari (2011) LBP-TOP + Histograms of video-words occurrences SVM 
Hu et al. (2013) Optical flow + LBP DTW 
Lee et al. (2015) TBP Euclidean distance 

 

The success of texture descriptors in face expression 

(Zhao and Pietikainen, 2007) and action recognition 

(Kellokumpu et al., 2008), inspired Kellokumpu et al. 

(2009) to engage texture descriptor based on Local 

Binary Patterns from Three Orthogonal Planes (LBP-

TOP) to represent human motion. They proposed a 

multi-resolution Local Binary Patterns (LBP) coding that 

is subsequently used to construct spatiotemporal LBP 

histograms. Abdolahi and Gheissari (2012) devised a 

rotation invariant version of the LBP-TOP. They 

extracted spatiotemporal interest points and described 

them by a dynamic texture descriptor. Afterwards, the 

gait signature was represented as a histogram of video-

words occurrences. A hybrid of optical flow and texture 
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descriptor was presented in Hu et al. (2013). In their 

work, the LBP was used as a texture descriptor of optical 

flow of the gait sequence. In a more recent work, Lee et al. 

(2015) proposed a Transient Binary Patterns (TBP) 

representation to capture the binary patterns of gait 

motion over the time. They suggested that encoding the 

binary patterns along the temporal axis reflects the 

walking traits of every individual. Table 5 presents a 

summary of distribution-based representation. 

Pattern Recognition and Classification 

This section outlines some widely used pattern 
classification schemes in the gait recognition phase. The 

k-Nearest Neighbor (kNN) scheme (Fix and Hodges, 
1951) is engaged when the gait features are encapsulated 
in a single representation, e.g., averaged silhouette. The 
kNN scheme is commonly based on the Euclidean 
distance between a test sample and the set of training 
samples. The predicted class of the test sample is set to the 

most frequent class label in the set of k nearest training 
samples with the minimum distance. Some examples of 
using kNN in gait recognition can be found in  
(Cunado et al., 2003; Wagg and Nixon, 2004; Wang et al., 
2004; Xu and Zhang, 2010; Lu et al., 2008), among others. 

Human walking is sometimes represented in a series 

of time-varying gait features, e.g., joint angle 

trajectories. The gait sequences are seldom realized at 

the same speed across the gait cycles, thus producing 

gait sequences of different lengths. A classification 

scheme that allows elastic shifting of the time axis  

(Keogh and Ratanamahatana, 2005) to minimize some 

distance measures is henceforth needed. To that end, the 

Dynamic Time Warping (DTW) technique (Berndt and 

Clifford, 1994) and its variants are usually applied to align 

gait sequences of different lengths (Tanawongsuwan and 

Bobick, 2001; Tian et al., 2004; Hu et al., 2013). 

Inspired by the promising performance in speech 
recognition, state-space model such as the hidden Markov 

Model (HMM) was adapted for the gait recognition 
problem. HMMs are a widely adopted approach to the 
modeling of sequence data. The transitions between states 
and the generation of output symbols are determined by 
probability distributions (Stolcke and Omohundro, 1993). 
The application of HMMs in gait recognition can be found 
in Zhang et al. (2004; Chen et al., 2009). 

Some researchers (Fathima and Banu, 2012; Abdolahi 

and Gheissari, 2012; Huang et al., 2013; Lu et al., 2014) 

applied multi-class Support Vector Machines (SVM) in 

the gait recognition problem. A multi-class pattern 

recognition problem is usually decomposed into multiple 

binary classification problems (Duan and Keerthi, 2005). 

Neural network is likewise a widely used technique in 

pattern classification task. Zhang et al. (2005; Yoo et al., 

2008; Xiao and Yang, 2008) employed back propagation 

neural network in gait recognition. Lee et al. (2008) 

applied an ensemble of neural network to achieve better 

generalization performance than a single neural network. 

Some other classification methods are also deployed. 

Fuzzy logic is frequently used in cases when there are 

overlapping characteristics. Given a test sample, the fuzzy 

logic method assigns proximity towards each training 

sample. The final label is determined based on the highest 

proximity value. The application of fuzzy logic in gait 

recognition could be found in Roy and Sural (2009; 

Bharti and Gupta, 2013), among others. 

Gait Datasets 

Standard gait datasets  are  required  to evaluate 

the    performance    of    gait  recognition  algorithms. 

In this section, several popular gait datasets, i.e., USF 

Human ID Gait Baseline Database, Southampton Human 

ID at a Distance Gait Dataset, CASIA Gait Dataset, 

CMU Motion of Body (MoBo) Dataset and OU-ISIR 

Gait Dataset, are briefly discussed. A summary of the 

datasets is presented in Table 6. 

 
Table 6. Summary of datasets used in vision-based gait recognition 

Dataset Segments Subjects Filming settings Covariates 

USF Human ID - 122 Outdoor Viewpoint, Surface, Footwear,  
giat baseline dataset    Carrying condition, Time instants 
Southampton Human ID Large dataset 100  Indoor, Outdoor, Treadmill - 
at a distance gait dataset 
 Small dataset 12 Indoor Footwear, Clothing, Carrying condition 
CASIA Gait Dataset Dataset A 20 Outdoor Viewpoint 
 Dataset B 124 Indoor Viewpoint, Clothing, Carrying condition 
 Dataset C 153 Outdoor, Infrared Walking speeds, Carrying condition 
 Dataset D 88 Indoor + Footprint - 
CMU MoBo Gait Dataset - 25 Treadmill Viewpoint, Walking speeds, 
    Carrying condition, Surface incline 
OU-ISIR Gait Dataset Treadmill dataset A 34 Treadmill Walking speeds 
 Treadmill dataset B 68 Treadmill Clothing 
 Treadmill dataset D 185 Treadmill Gait fluctuations 
 Large population dataset 4016 Indoor Viewpoint 
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USF Human ID Gait Baseline Dataset 

The USF Human ID Gait Baseline dataset (Sarkar et al., 
2005) is collected at University of South Florida (USF). 
The dataset comprises 1870 video sequences of 122 
people. For each person, there are 5 covariates, i.e., 
viewpoint, surface type, shoes, carrying condition and 
different time instants. 

Southampton Human ID at a Distance Gait Dataset 

There are two major segments in the Southampton 
Human ID at a distance gait dataset: Large dataset and 
small dataset. The large dataset has a population of 
more than 100 subjects with 3 scenarios: Indoor, 
outdoor and treadmill. The small dataset, on the other 
hand, contains video sequences of 12 subjects, filmed 
indoor with different covariates, i.e., footwear, clothing 
and carrying condition. 

CASIA Gait Dataset 

The Institute of Automation, Chinese Academy of 

Sciences (CASIA) publishes the CASIA gait dataset. 

There are four datasets in the CASIA gait database: 

Dataset A (standard dataset), Dataset B (multiview 

dataset), Dataset C (infrared dataset) and Dataset D (gait 

and footprint dataset). 

The Institute of Automation, Chinese Academy of 

Sciences (CASIA) publishes the CASIA gait dataset. 

There are four datasets in the CASIA gait dataset: 

Dataset A (standard dataset), Dataset B (multiview 

dataset), Dataset C (infrared dataset) and Dataset D (gait 

and footprint dataset). 
CASIA Dataset A (Wang et al., 2003a) consists of 20 

subjects. Each subject has 12 image sequences with 4 

sequences for each of the three directions, i.e., parallel, 

45 degrees and 90 degrees to the image plane. CASIA 

Dataset B (Zheng et al., 2011; Yu et al., 2006), on the 

other hand, is a large multiview gait database consisting 

of 124 subjects and 11 views. Besides that, three 

variations are considered in the dataset, i.e., carrying 

condition, viewing angle and clothing. CASIA Dataset C 

(Tan et al., 2006) was acquired with an infrared camera 

at night. It contains 153 subjects with four walking 

conditions: Normal walking, slow walking, fast walking 

and normal walking with a bag. The last dataset, CASIA 

Dataset D, consists of 88 subjects. The dataset was 

collected synchronously by camera and Rscan Footscan. 

CMU MoBo Gait Dataset 

The CMU MoBo gait dataset (Gross and Shi, 2001) 

is collected by Carnegie Mellon University (CMU). The 

dataset consists of 25 individuals walking on a treadmill. 

Each subject performs four different walking patterns: 

Slow walk, fast walk, incline walk and walking with a 

ball. The dataset was captured by cameras placed at six 

different locations around the subject. 

OU-ISIR Gait Dataset 

The Institute of Scientific and Industrial Research 
(ISIR), Osaka University (OU) maintains two vision-
based gait datasets, i.e., treadmill dataset and large 
population dataset. 

The treadmill dataset comprises people walking on a 
treadmill surrounded by 25 cameras (Makihara et al., 
2012). The treadmill dataset A contains gait sequences of 
34 subjects with speed variation ranging from 2 to 7 
km/h at 1km/h interval. For each walking speed, it 
comprises 68 videos with two videos per subject. The 
treadmill dataset B contains gait sequences of 68 
subjects with 32 different clothing combinations. The 
treadmill dataset C is still not publicly available yet. The 
treadmill dataset D consists of 370 gait sequences of 185 
subjects. The dataset focuses on the gait fluctuations 
over time. The gait fluctuations were measured by 
Normalized Auto Correlation (NAC) of size-normalized 
silhouettes for the temporal axis. The dataset is divided 
into two subsets: DBhigh comprising 100 subjects with 
the highest NAC (stable gait) and DBlow comprising 
100 subjects with the lowest NAC (fluctuating gait). 

The large population dataset (Iwama et al., 2012) 

consists of 4016 people walking on the ground 

surrounded by 2 cameras at 30 fps, 640 by 480 pixels. 

Currently, only the dataset captured by the first camera 

(dataset C1) is publicly available. 

Concluding Remarks and Prospective 

Research 

This paper serves as a review of existing strategies in 

the feature extraction and pattern recognition stages of 

gait recognition. Previous work on feature extraction can 

be broadly grouped into two major categories, i.e., 

model-based and model-free. The model-based 

approaches explicitly model the human body by shapes 

and, thereafter, the properties of these shapes in a gait 

cycle are measured (structural model), or measures the 

motion via the kinematics of joint angles (motion 

model). Though model-based approaches are more 

robust to view and scale variations and reflect the 

kinematic characteristics of walking manner, they are 

difficult to accurately locate the joint positions due to the 

non-rigid structures of human body and to self-

occlusion. Therefore, the current literature focuses more 

on model-free approaches. 

The model-free approaches, on the other hand, 
directly operate on the gait sequences without assuming 
any specific model. The gait signatures in model-free 
approaches can be divided into appearance-based 
representation, transformation-based representation and 
distribution-based representation. The appearance-based 
representation captures the statistics (e.g., average, 
difference) of moving silhouette in the gait sequences. 
Some researchers reduce the dimension of the gait input 
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feature by projecting them onto other domains, giving 
rise to the transformation-based representation. The 
distribution-based representation, on the other hand, 
describes gait signatures by distribution or histograms. 

Although much research has been devoted to gait 

recognition, the usability of gait recognition in a real 

application context still face challenges. Prospective 

research may consider to address several covariates, 

namely the viewing angles, clothing, carrying condition 

and speed. The majority of gait recognition algorithms 

are restricted to specific viewpoints and are sensitive to 

the change in viewing angles. Thus, combining different 

viewing angles as training data and transformation-based 

gait representation are some possible solutions. Clothing 

and carrying condition variations are of particular 

concern in real world applications. Some potential 

solutions are video acquisition using infrared camera, 

fusing gait with other biometrics such as face and 

transformation-based gait representation. Yet another 

challenge is the robustness to speed variations. 

Appearance-based and distribution-based gait 

representation might be appropriate to describe gait 

sequences of varying speeds. 
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