

© 2017 Zhixong Xiao, Chandana Prasad Withana, Abeer Alsadoon and Amr Elchouemi. This open access article is

distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

American Journal of Applied Sciences

Original Research Paper

A Front-End User Interface Layer Framework for Reactive

Web Applications

1
Zhixong Xiao,

1
Chandana Prasad Withana,

1
Abeer Alsadoon and

2
Amr Elchouemi

1School of Computing and Mathematics, Charles Sturt University, Sydney, Australia
2Walden University, USA

Article history
Received: 12-07-2017
Revised: 15-10-2017
Accepted: 16-12-2017

Corresponding Author:
Chandana Prasad Withana
School of Computing and
Mathematics, Charles Sturt
University, Sydney, Australia
Email:cwithana@studygroup.com

Abstract: Nowadays, people are relying more and more on web

applications, such as Gmails, Google Map and Google Docs to

complete their daily tasks. However, web applications often fail to

provide reactive interactions with users. This paper explores the issues

and problems of current web application frameworks and narrowed

the research to the User Interface (UI) layer as it is the most important

component to focus on in terms of increasing web application
reactiveness. By integrating two Javascript libraries, namely, Preact

and Preact-router into the UI layer, the proposed approach optimizes

the way how the web server and web client communicates, which

leads to a more reactive web application. The proposed UI layer

framework was tested against a current framework and found that the

proposed framework reduced a significant amount of page load time.

In addition, number of requests sent to a web server was also reduced

compared to the current framework. The proposed UI layer framework

can be applied to business web applications to increase their

applications load time and reactiveness. By making their web

applications more reactive, it would potentially have a positive impact

on the conversion rates of their businesses.

Keywords: Web Application, Front-End User Interface Layer

Framework, Web Application Frameworks

Introduction

The fast paced development in network bandwidth
and internet technology has pushed web applications

to a dominant position. Nowadays, it is possible to use

an application anywhere and anytime as long as you

are connected to Internet. Due to the convenience

provided by web applications, online users start to

embrace them in their daily tasks (Nations, 2016). For

example, Google Maps services are used worldwide

by around 41% of Internet users via their browsers

(Privat, 2014). There are about one billion users are

using Google Maps each month. Furthermore, Gmail

also has more than 1 billion monthly active users

according to Techcrunch (Lardinois, 2016).
However, page reactiveness has been a major issue

in web applications. It is reported that a delay of 100

milliseconds in website load time can reduce 7 percent

in conversion rate (Formack, 2017). Another report from

BBC highlighted that a half second difference in page load

times can lead to a 10% difference in online sales.
The persistent reactiveness issue is due to the fact

that web application is traditionally hosted on a web
server in one place and rendered by a web client in
another place (MF, 2017). Therefore, the frequent
communications between the two ends lead to a poorer
user experience compared to client applications. Some of
the background information regarding how web
applications works is presented in Fig. 1.

Though security, scalability, maintainability and
development speed are important factors that should

be considered when building web applications, this

paper will only focus on analyzing the current web

development framework solutions for addressing the

reactiveness issue and identifying the best one. The

ultimate goal of this paper is to propose a new UI

layer framework which can improve the reactiveness

of web applications.

Zhixong Xiao et al. / American Journal of Applied Sciences 2017, 14 (12): 1081.1092

DOI: 10.3844/ajassp.2017.1081.1092

1082

Fig. 1: How web applications work (Mozilla Foundation, 2017)

Despite many researches on improving the

reactiveness of web applications, there are still rooms to

optimize. Some researchers used AngularJS framework

to increase the reactiveness by introducing front-end

routing (Chansuwath and Senivongse, 2016; Nikolić et al.,

2016). This approach did increase the overall

reactiveness of web applications. However, AngularJS

framework itself is notoriously heavy and takes a long

time to load up. Balasubramanee et al. (2013) proposed to

use Bootstrap framework in the front end, however, this
approach still relies on the traditional client-to-server

paradigm. Therefore, it requires frequent communications

between client and server sides in order to request and

receive documents (Anderson, 2017). Ahlawat (2016) and

Priefer (2014) integrated CMS frameworks into the front-

end side in an effort to streamline web application

development process, however, the CMS-based solutions

are highly inflexible because it depends excessively on

third party plugins and add-ons.

The current solutions did not address the web

application reactiveness from the UI layer. Therefore,

a new solution that focuses on the UI layer is urgently

needed.
Load time has been proved to have a significant

impact on business. According to Dooley (2012), a mere
one-second delay in page load time was accompanied by

a 7% decline in sales. In another study, Ancestory

claimed a 7% positive rise in conversions after

improving the render time of web pages by 68%,

whereas AliExpress reduced load time for their pages by

36% and recorded a 10.5% increase in orders and a 27%

increase in conversion rates for new customers

(Anderson, 2017). Web application users are more

satisfied if web applications can provide them with a

smooth experience. Therefore, a more reactive solution

to the web application can significantly increase

conversion rate for online business.

Literature Review

The existing web application frameworks will be

divided into three categories based on their technical

components. The first section will talk about MVC

frameworks, which follows by CMS frameworks and

lastly plug-in frameworks will be examined.

MVC Frameworks

For the purpose of building web applications, several

web application frameworks have been introduced by

various researchers. In efforts to build a secure and

scalable web application, Panchal (2016) proposed a

framework using JavaServer Pages and Spring as

back-end technologies. Though this approach provides

a secure back-end for web applications, it focuses

mainly on the back-end and did not provide a reactive

solution on the front-end. Other researchers presented

a similar idea but used different programming

languages and frameworks, such as Ruby on Rails or
PHP (Meenakshi, 2015; Vohra, 2014; Safronov and

Winesett, 2014). Therefore, despite its outstanding

Zhixong Xiao et al. / American Journal of Applied Sciences 2017, 14 (12): 1081.1092

DOI: 10.3844/ajassp.2017.1081.1092

1083

scalability and security, this approach fails to provide

a reactive front-end solution.

Some researchers introduced AngularJS framework

to address the issue of web application reactiveness

(Chansuwath and Senivongse, 2016; Nikolić et al.,

2016). Similarly, Rahman and Chitra (2015) presented a
solution fusing AngularJS with Joomla for building reactive

web applications. Furthermore, Balasubramanee et al.

(2013) proposed to a combination of Bootstrap and

AngularJS in an effort to expedite the web application

development process. However, AngularJS is itself a

complex and resource-consuming framework and is

not suitable for light-weight web applications. Though

the AngularJS framework is not an optimal choice, it

seems that the front-end routing technologies used in

the framework could be used in combination of other

technologies to improve the reactiveness of web
applications.

Song (2014) proposed to use Ajax in MVC for web
application development. Whist this improves the user
experience as data exchange between web client and web
server is done silently, it still relies on network
condition. Pop and Altar (2014) utilized a MVC model
for rapid prototyping when building a web application.
This approach can boost up the speed of the web
application development, however, it fails on the front
end to make the web application reactive.

CMS Frameworks

Priefer (2014) integrated a content management
system Joomla into a framework in order to reduce its
development time. While this approach can dramatically
reduce the development time, it makes the web
application highly inflexible by placing the
application into a CMS framework. Moreover, it relies
heavily on Joomla plug-ins to provide functionality to
the web application. Similarly, Ahlawat (2016)
proposed to build a web application based on
Wordpress. Though this approach can speed up the
development process, it gains the speed by sacrificing
its flexibility as it depends on the functionality
provided by the CMS platform and its ecosystem.

Plug-in Frameworks

Alor-Hernández et al. (2015) proposed a new way of

building web application based on the Adobe FLEX
technology. This approach provides secure and reactive

web applications as the application is pre-installed in the

browser upon the first load. However, it requires clients to

install a run-time environment on their systems before

running the application. In addition, every time the

runtime environment is required to be updated, the client

needs to download and install it again manually. Similarly,

a Silverlight framework is proposed by Appasami and

Suresh (2009) which provides strong reactiveness but

also requires a run-time environment to run.

Fig. 2: Current best framework by Lamża et al. (2015)

Current Best Solution and Its Limitations

Lamża et al. (2015) proposed a scalable and flexible

web application framework seen in Fig. 2. This approach

followed the MVC model by completely separating front

end and back end. In this way, front end developers and

back end developers can develop the web application at

the same time as long as there are agreed Application

Programming Interface (APIs) between them. This

would significantly boost up the development speed.
Furthermore, it enhances the model by moving the UI

layer to a separate web server. In this way, the server that

handles back end services is distinct from the one that

handles front end UI layer. This makes the whole

structure highly scalable. In addition, it applies Node.js

as the UI layer server language to facilitate its

development, which is echoed by other researchers

(Cantelon et al., 2014). This is because Node.js

application can be written completely in Javascript,

Zhixong Xiao et al. / American Journal of Applied Sciences 2017, 14 (12): 1081.1092

DOI: 10.3844/ajassp.2017.1081.1092

1084

which has long been used as a front end language. This

makes the UI layer easy to maintain as there is no steep

learning curve required for front end developers.

On the back end, it breaks the monolithic back end

layer into multiple individual web services and connects

front end and back end using an API gateway. This

dramatically reduces the complexity of maintaining the

back end services. Moreover, since the back end server is

individual, it can be developed using battle-tested

languages and frameworks such as Java or C#.

Therefore, it provides solid security to the framework.

Limitations

This framework excels at development speed,

scalability and security. However, it is not optimal in

terms of page reactiveness. The UI layer is currently

separating from the back end server, which makes the

development and maintenance easier. However, the UI

layer still requires frequent communications with web

browser in order for a web application to render

properly. For example, each time users try to navigate
through a web application by clicking links on it, the

web browser would send requests to the web server that

hosts the UI layer and then the server would respond to

the web browser by sending back a combination of

HTML, CSS and Javascript, or a pre-rendered UI view.

In either case, frequent communications between web

browser and web server is required in order for the web

application to function. The web application would

respond poorly if the network is unstable in this

framework. Therefore, page reactiveness is hampered by

these frequent communications and would lead to poor

user experience. Though there are defects in how this
framework handles its UI layer (Fig. 3), it seems that the

back-end framework used in this approach can be used in

combination of front-end router technologies to provide

a better reactive experience. Further researches have to

be done on this possibility of fusing the back-end

framework with front-end router technologies.

Web applications have now become a central part of

the internet. The need for making web applications more

reactive is of top priority. This paper has presented

reviews of recent web application frameworks. It is

concluded that many researchers have been focusing on

proposing frameworks that address issues in the back-

end, such as improving the scalability and security of the

framework. While some frameworks introduced

technologies to enhance reactiveness, they can be further

optimized and improved.
The proposed solution will be based on the solution

proposed by Lamża et al. (2015) and will be focusing on

enhancing the reactiveness of the web application in an

effort to provide a better user experience and reduce

server resource.

Fig. 3: The UI Layer of the framework

Proposed Model

The proposed framework in Fig. 4 is built upon the
framework proposed by Lamża et al. (2015). It mainly
addresses the page reactiveness issue by integrating two

libraries into the UI layer, namely, Rreact and Preact-
router. By applying these libraries, it dramatically changes
the way how web browser and web server communicates.
In the proposed framework, all the HTML, CSS and
Javascript files will be bundled before going to production
stage. After the module bundling, a single Javascript file
including all the code will be served to the UI layer. By
doing this, the whole web application HTML documents,
CSS styles and Javascript files are completely loaded up
in the first load. In addition, routing is also handled in the
client web browser by Preact-router. Therefore, no request
is sent when users navigate around a web application.

This is because all the pages have been loaded upfront
into the browsers. This eliminates the needs for sending
requests from a web browser to a web server and waiting
for its responses. As a result, the reactiveness of the web
app would improve significantly.

The two key libraries that are added to the framework

are Preact (Preact, n.d.) and Preact-router (n.d.).

Preact provides an ultra-thin Virtual Document Object
Model (DOM) on top of the normal DOM. By
introducing a Virtual DOM, direct manipulation of DOM
elements is reduced to a minimal extent. Any UI changes
would be first recorded in the Virtual DOM and then
compared with the DOM to make the minimal DOM
element updates. Since manipulating DOM is a costly
operation which takes a certain amount of time,
minimizing the need to manipulate DOM is an effective

way to increase the reactiveness of web applications
especially in rich interface ones. Furthermore, the Preact
library is lightweight itself, which accounts for only
10KB. This small size makes the loading time of the
library negligible. Therefore, Preact speeds up the page
reactiveness significantly by replacing the traditional
DOM with Virtual DOM, while not affecting the page
load time in a dramatic way.

Zhixong Xiao et al. / American Journal of Applied Sciences 2017, 14 (12): 1081.1092

DOI: 10.3844/ajassp.2017.1081.1092

1085

Fig. 4: Proposed framework

Preact-router is a library that keeps web application UI
in sync with Uniform Resource Locator (URL). This library
makes it possible to handle routing in the front-end.
Without Preact-router, each user click on a page would send
a request to web server for new HTML document. This
operation would break the reactiveness of a web application
as user has to wait for the web server to respond as well as
for the web browser to re-render the HTML document. By
introducing the routing library, it reduces the needs to send
requests for page contents from the web server when users
navigating through web applications. Therefore, it
remarkably improves the reactiveness of web applications
as fewer communications between web client and web
server are required.

One of the biggest gains in the proposed framework is

the web application becomes more reactive. After the initial

load, the whole web application is in the browser, so no

other server request for HTML documents is made when

user navigate through the web application later on. This

increases the user experience dramatically because it

provides a smoother interactions that is similar to client

applications. Furthermore, by bundling all the HTML, CSS

and Javascript in one file and injecting it into the browser, it

reduces significantly the requests required to fetch all the

necessary files. By doing this, it potentially saves a large

amount of server resources as well as bandwidth.

However, one prominent disadvantage of the

proposed solution is a web application built using this

approach would take longer to load for the first time

compared with other traditional web applications. This is

because it tries to load up all the HTML, CSS and

Javascript files in one go.

Test on the Proposed Framework

It is necessary to implement testing to make an

unbiased determination on whether the proposed new

framework performs better than the current best solution

in terms of web application reactiveness. The final

decision was made to test the two frameworks on a

single local machine in order to control external factors

that affect the test, such as inconsistent bandwidth and

packet loss, which might have caused the testing results

to be misrepresented.

Testing Environment Setup

All testing were performed on a macOS Sierra system

with a version of 10.12.3, which utilized a 2.2 GHz Intel

Core i7 processor with 16.0 GB of RAM.

Loading time of the web pages were measured using

Lori (Life-of-request info) 0.2.0.20080521.1 and The

Addon Bar 3.2.9-compat-fixed-4 extensions with Firefox

53.0.2 (64-bit) and Chrome DevTools with Google

Chrome Version 58.0.3029.110 (64-bit).

Firefox Browser

The Lori Firefox extension is designed to monitor

the length of time required to completely load a web

page in Firefox browser (Lori, n.d.). It measures the

following metrics:

• Time to First Byte (TTFB): How long it took to see

the first byte from a remote server

• Time to Complete (TTC): How long it took to

display the page

• Page size: Number of bytes used to display the page

Chrome Browser

The Chrome DevTools is used to measure the

following metrics:

• DOMContentLoaded: How long it took to load a

HTML document

• Load: How long it took to load a HTML document

and its dependent resources

Zhixong Xiao et al. / American Journal of Applied Sciences 2017, 14 (12): 1081.1092

DOI: 10.3844/ajassp.2017.1081.1092

1086

Test Case

In order to test the load times for both frameworks, UI
layer of a web application composed of 4 static HTML
pages, 16 style sheets, 20 script files and 10 images was
created using the reviewed and proposed frameworks
respectively. All the files for the web application are listed
in the appendices Table from 3 to 6. Additionally, Fig. 6 to
12 and Table 7 and 8 from appendices illustrates more
details on the files based on different file types.

Testing Procedure

Two testing websites seen in Fig. 10 from

appendices were built with the structure listed in the

testing case section using two framework solutions

respectively. The two websites were run 10 times in

cache-free Firefox and Chrome browsers to test their

loading speed and reactiveness. The test was started on

the Home tag, then navigated in the order of Portfolio,

Courses and Tutorials to complete a full circle. Finally,
the results will be analyzed to determine which

framework is more reactive.

Testing Results

The 10 test results from Firefox browser is listed in

Table 1 a screenshot of the execution timeline is

provided in appendices (Fig. 8).

Table 1: Test results in Firefox browser

Test in Firefox Solution from Lamza, Marzec and Wrobel Proposed Solution
------------------------------- --- --

Test No. Page TTFB (s) TTC (s) Page Size (MB) TTFB (s) TTC (s) Page Size (MB)

1 Home 0.043 0.411 2.36 0.088 1.104 2.82
 Portfolio 0.054 0.395 2.37 0.000 0.000 2.82

 Course 0.043 0.369 2.36 0.000 0.000 2.82

 Tutorial 0.048 0.390 2.36 0.000 0.000 2.82

2 Home 0.048 0.372 2.36 0.083 1.174 2.82
 Portfolio 0.047 0.372 2.37 0.000 0.000 2.82

 Course 0.049 0.373 2.36 0.000 0.000 2.82

 Tutorial 0.046 0.381 2.36 0.000 0.000 2.82

3 Home 0.058 0.392 2.36 0.106 1.123 2.82
 Portfolio 0.043 0.379 2.37 0.000 0.000 2.82

 Course 0.043 0.381 2.36 0.000 0.000 2.82

 Tutorial 0.043 0.383 2.36 0.000 0.000 2.82

4 Home 0.051 0.411 2.36 0.097 1.204 2.82
 Portfolio 0.043 0.402 2.37 0.000 0.000 2.82

 Course 0.035 0.378 2.36 0.000 0.000 2.82

 Tutorial 0.051 0.394 2.36 0.000 0.000 2.82

5 Home 0.048 0.373 2.36 0.081 1.134 2.82
 Portfolio 0.049 0.371 2.37 0.000 0.000 2.82

 Course 0.050 0.356 2.36 0.000 0.000 2.82

 Tutorial 0.041 0.371 2.36 0.000 0.000 2.82

6 Home 0.047 0.362 2.36 0.092 1.133 2.82
 Portfolio 0.043 0.368 2.37 0.000 0.000 2.82

 Course 0.048 0.373 2.36 0.000 0.000 2.82

 Tutorial 0.049 0.382 2.36 0.000 0.000 2.82

7 Home 0.052 0.392 2.36 0.106 1.136 2.82
 Portfolio 0.046 0.373 2.37 0.000 0.000 2.82

 Course 0.048 0.382 2.36 0.000 0.000 2.82

 Tutorial 0.049 0.381 2.36 0.000 0.000 2.82

8 Home 0.053 0.411 2.36 0.117 1.211 2.82
 Portfolio 0.049 0.402 2.37 0.000 0.000 2.82

 Course 0.039 0.378 2.36 0.000 0.000 2.82

 Tutorial 0.053 0.394 2.36 0.000 0.000 2.82

9 Home 0.045 0.373 2.36 0.101 1.214 2.82
 Portfolio 0.044 0.389 2.37 0.000 0.000 2.82

 Course 0.054 0.353 2.36 0.000 0.000 2.82

 Tutorial 0.045 0.371 2.36 0.000 0.000 2.82

10 Home 0.047 0.362 2.36 0.096 1.178 2.82
 Portfolio 0.043 0.363 2.37 0.000 0.000 2.82

 Course 0.044 0.371 2.36 0.000 0.000 2.82

 Tutorial 0.051 0.362 2.36 0.000 0.000 2.82

Zhixong Xiao et al. / American Journal of Applied Sciences 2017, 14 (12): 1081.1092

DOI: 10.3844/ajassp.2017.1081.1092

1087

Table 2: Test results in Chrome browser

 Solution from Lamza, Marzec and Wrobel Proposed Solution

Test in Chrome -- --

------------------------------ DOM Content Page DOM Content Page
Test no. Page Loaded (ms) Load (ms) Size (MB) Loaded (ms) Load (ms) Size (MB)

1 Home 465 478 2.36 685 721 2.82
 Portfolio 532 565 2.37 0 0 2.82

 Course 487 499 2.36 0 0 2.82
 Tutorial 475 487 2.36 0 0 2.82

2 Home 458 469 2.36 699 736 2.82
 Portfolio 511 551 2.37 0 0 2.82

 Course 479 480 2.36 0 0 2.82
 Tutorial 458 486 2.36 0 0 2.82

3 Home 457 468 2.36 720 755 2.82
 Portfolio 512 551 2.37 0 0 2.82

 Course 489 501 2.36 0 0 2.82
 Tutorial 463 476 2.36 0 0 2.82

4 Home 452 468 2.36 768 806 2.82
 Portfolio 531 514 2.37 0 0 2.82

 Course 451 468 2.36 0 0 2.82
 Tutorial 458 487 2.36 0 0 2.82

5 Home 459 508 2.36 798 838 2.82
 Portfolio 521 514 2.37 0 0 2.82

 Course 461 473 2.36 0 0 2.82
 Tutorial 475 498 2.36 0 0 2.82

6 Home 479 462 2.36 756 801 2.82
 Portfolio 526 589 2.37 0 0 2.82

 Course 465 564 2.36 0 0 2.82
 Tutorial 457 479 2.36 0 0 2.82

7 Home 451 446 2.36 773 815 2.82
 Portfolio 543 578 2.37 0 0 2.82

 Course 508 521 2.36 0 0 2.82
 Tutorial 487 501 2.36 0 0 2.82

8 Home 465 478 2.36 707 746 2.82
 Portfolio 514 533 2.37 0 0 2.82

 Course 478 499 2.36 0 0 2.82
 Tutorial 480 501 2.36 0 0 2.82

9 Home 489 502 2.36 743 779 2.82
 Portfolio 541 557 2.37 0 0 2.82

 Course 476 498 2.36 0 0 2.82
 Tutorial 468 489 2.36 0 0 2.82

10 Home 472 494 2.36 725 762 2.82
 Portfolio 545 578 2.37 0 0 2.82

 Course 487 508 2.36 0 0 2.82
 Tutorial 475 490 2.36 0 0 2.82

Fig. 5: A comparison of web content load time in Chrome and Firefox browsers

Zhixong Xiao et al. / American Journal of Applied Sciences 2017, 14 (12): 1081.1092

DOI: 10.3844/ajassp.2017.1081.1092

1088

The 10 test results from Chrome browser is listed in

Table 2 a screenshot of the execution timeline is

provided in appendices (Fig. 9).

Figure 5 is a comparison of web content load time in

Chrome and Firefox browsers.

Results and Discussion

According to the readings from the tests performed in

Chrome, the proposed framework required

approximately 60% less time to load the whole web

application and its dependent resources.

This is calculated by using the total load time of the

proposed solution divided by the total load time of the

current best solution. To take the Test No.1 case as an

example, the calculation is 721/(478+565+499+487)-

100% ≈ -64.46%

It is noted that, in the framework used by Lamza,

Marzec and Wrobel, each page requires a separate

page load, which is in stark contrast to the proposed

solution where only the home page is required a page

load. This is because the whole application is loaded

into the browser upon the first page load in the

proposed framework. After loading the whole

application, there is no need to send requests to the

web server when users navigate to portfolio, course

and tutorial pages. This can be seen in the Table 6

where the load time for portfolio, course and tutorial

pages is zero. By cutting the load time to zero for

these pages, it makes the web application ultra-

reactive. In addition, the proposed framework only

sends one request to the web server in order to load up

the entire web application while the traditional

framework uses 4 requests to do so. This reduces the

burden of the web server and frees up its resources as

less requests are sent from the web clients.

In the Firefox results, the readings showed

approximately 30% less time to display the whole web

application.

This is calculated by using the total TTC of the

proposed solution divided by the total TTC of the current

best solution. To take the Test No.1 case as an example,

the calculation is 1.104/(0.411+0.395+0.369+0.390)-

100% ≈ -29.46%.

The proposed framework loads up the entire

application in the home page so subsequent page visits

do not require any page load-up. Furthermore, it only

sends one request to fetch the whole web application

while the other framework does so in 4 requests.

Other observations from the testing results in Firefox

browser coincide with the findings from the Chrome

one that the proposed framework makes the web

application more reactive and consumes less web

server resources.

Conclusion

Researchers have proven that the page load time

has a significant impact on retaining visitors to a web

application. Therefore, it is the aim of this paper to

find a solution to improve the reactiveness of web

applications. The proposed framework excelled at the

web application load time as a whole because it loads

everything up in one request. This makes the entire

application ultra-reactive by reducing subsequent page

visit load time to zero. In addition, it immensely saves

server resources by cutting web client requests in a

significant amount.

However, the reactiveness comes at a price of

increasing the first load time notably. Further research

into reducing the first load time is needed to optimize

the framework. Additionally, the experimentation was

limited to a local machine running macOS system and

other systems are not included in this testing. Further,

the tests only utilized a simple web application

composed of a limited amount of files. This limited

scope provided useful data for analysis, but it was not

comprehensive. Further testing with a complete set of

data need to occur in the future.

Acknowledgement

We are grateful to Angelika Maag from the CSU

study center for proof reading and making corrections

to this article. Without their support, it would have not

been possible to submit this in the current form.

Funding Information

The authors should acknowledge the funders of this

manuscript and provide all necessary funding

information.

Author’s Contributions

Zhixong Xiao: Investigate issues and challenges web

applications frameworks. Propose and implemented a new

UI layer framework that makes web application more

reactive. Zhixong has tested the proposed framework in

multiple test cases against the current best solution.

Chandana Prasad Withana: Supervised/worked

closely with Zhixong during the analysis, design and

experiment phases.

Abeer Alsadoon: Worked on the setup of the

experiments and gave important suggestions on design

of experiments.

Zhixong Xiao et al. / American Journal of Applied Sciences 2017, 14 (12): 1081.1092

DOI: 10.3844/ajassp.2017.1081.1092

1089

Amr Elchouemi: Give the final review and approval

for the manuscript to be submitted.

Ethics

Authors should address any ethical issues that may

arise after the publication of this manuscript.

References

Ahlawat, N., 2016. Build a WordPress web application

using WAMP.

Alor-Hernández, G., V.Y. Rosales-Morales and L.O.

Colombo-Mendoza, 2015. Frameworks,

Methodologies and Tools for Developing Rich

Internet Applications. 1st Edn., IGI Global,

 ISBN-10: 1466664371, pp: 366.

Anderson, S., 2017. How fast should a website load in

2017?

Appasami, G. and J.K. Suresh, 2009. Developing

device independent Visual Components for web

applications using Affine Vector graphics and

silver light framework. Int. J. Comput. Electr.

Eng., 1: 496-496.

Balasubramanee, V., C. Wimalasena, R. Singh and M.

Pierce, 2013. Twitter bootstrap and AngularJS:

Frontend frameworks to expedite science gateway

development. Proceedings of the IEEE International

Conference on Cluster Computing, Sept. 23-27,

IEEE Xplore Press, Indianapolis, USA, pp: 1-1.

DOI: 10.1109/CLUSTER.2013.6702640

Cantelon, M., M. Harter, T.J. Holowaychuk and N.

Rajlich, 2014. Node.js in action. Manning

Publications Co.

Chansuwath, W. and T. Senivongse, 2016. A model-

driven development of web applications using

AngularJS framework. Proceedings of the

IEEE/ACIS 15th International Conference on

Computer and Information Science, Jun. 26-29,

IEEE Xplore Press, Okayama, pp: 1-6.

 DOI: 10.1109/ICIS.2016.7550838

Dooley, R., 2012. Don't let a slow website kill your

bottom line.

Formack, L., 2017. Amazon's 'secret weapon':

Understanding how website experience can

influence shoppers.

Lamża, A., M. Marzec and Z. Wrobel, 2015. Scalable

and flexible web application architectures.

Proceedings of the Annual International Conference

on Computer Games, Multimedia and Allied

Technology, (MAT’ 15).

 DOI: 10.5176/2251-1679_CGAT15.37

Lardinois, F., 2016. Gmail now has more than 1B

monthly active users.

Lori (Life-of-request info). (n.d.). Add-ons.

https://addons.mozilla.org/en-US/firefox/addon/lori-

life-of-request-info/.

Meenakshi, S., 2015. Ruby on rails - an agile

developer's framework. Int. J. Comput. Applic.,

112: 7-11.

MF, 2017. How the Web works. Mozilla Foundation.

Nations, D., 2016. Improve your understanding of web

applications.

Nikolić, L., G. Milosavljević and I. Dejanović, 2016.

Framework for Web application development based

on Java technologies and AngularJS. Proceedings of

the 6th International Conference on Information

Society and Technology, (IST’ 16).

Panchal, H.B., 2016. A web application based on the

MVC architecture using the spring framework

(Order No. 10196389). ProQuest Dissertations and

Theses Global, (1854862284).

Pop, D.P. and A. Altar, 2014. Designing an MVC

model for rapid web application development.

Proc. Eng., 69: 1172-1179.

 DOI: 10.1016/j.proeng.2014.03.106

Preact (n.d.). https://preactjs.com/

Preact-router (n.d.). https://github.com/developit/preact-

router.

Priefer, D., 2014. Model-driven development of

content management systems based on Joomla.

Proceedings of the 29th ACM/IEEE International

Conference on Automated Software Engineering,

Sept. 15-19, ACM, Vasteras, Sweden, pp: 911-914.

DOI: 10.1145/2642937.2653474

Privat, L., 2014. Google maps: 1 billion monthly users.

Rahman, A.A. and D.S. Chitra, 2015. A framework for

ultra-responsive light weight web application using

AngularJS. Proceedings of the Online International

Conference on Green Engineering and

Technologies, Nov. 27-27, IEEE Xplore Press,

Coimbatore, pp: 1-4.

 DOI: 10.1109/GET.2015.7453857

Safronov, M. and J. Winesett, 2014. Web application

development with Yii 2 and PHP. Packt

Publishing Ltd.

Song, G., 2014. The reconstruction pattern of MVC. Int.

J. u- e- Service Sci. Technol., 7: 147-156.

 DOI: 10.14257/ijunesst.2014.7.2.14

Vohra, D., 2014. JRuby Rails Web Application

Development. 1st Edn., Springer International

Publishing, Heidelberg, ISBN-10: 3319039342,

pp: 67.

Zhixong Xiao et al. / American Journal of Applied Sciences 2017, 14 (12): 1081.1092

DOI: 10.3844/ajassp.2017.1081.1092

1090

Appendix A

Table 3: All the HTML files

No. Static HTML page Size

1 index.html 2 KB
2 courses.html 1 KB
3 portfolio.html 4 KB
4 tutorials.html 1 KB

Table 4: All the CSS files

No. Style Sheet Size

1 style.css 5 KB
2 animate.min.css 53 KB
3 hint.min.css 10 KB
4 hover-min.css 98 KB
5 loaders.min.css 41 KB
6 balloon.min.css 5 KB
7 bttn.min.css 33 KB
8 csshake.min.css 22 KB
9 flag-icon.min.css 33 KB
10 github-markdown.min.css 12 KB
11 grid.min.css 5 KB
12 mobi.min.css 10 KB
13 sanitize.min.css 3 KB
14 spectre.min.css 42 KB
15 tufte.min.css 7 KB
16 zocial.min.css 45 KB

Table 5: All the Javascript files

No. Script Size

1 jquery-3.2.1.min.js 87 KB
2 moment.min.js 51 KB
3 bootstrap.min.js 37 KB
4 jquery-ui.min.js 254 KB
5 lodash.min.js 71 KB
6 beautify.min.js 33 KB
7 chroma.min.js 37 KB
8 Draft.min.js 128 KB
9 intercooler.min.js 30 KB
10 is.min.js 13 KB
11 js.cookie.min.js 2 KB
12 jsoneditor.min.js 162 KB
13 jsplumb.min.js 198 KB
14 jstree.min.js 135 KB
15 matter.min.js 86 KB
16 mo.min.js 130 KB
17 offline.min.js 10 KB
18 p5.min.js 285 KB
19 sir-trevor.min.js 377 KB
20 vex.min.js 9 KB

Table 6: All the Images files

No. Image Size

1 test1.jpg 28 KB
2 test2.jpg 74 KB
3 test3.jpg 23 KB
4 test4.jpg 25 KB
5 test5.jpg 168 KB
6 test6.jpg 75 KB
7 test7.jpg 37 KB
8 test8.jpg 23 KB
9 test9.jpg 85 KB
10 test10.jpg 61 KB

Fig. 6: Number of image objects across different rank ranges

Fig. 7: Number of CSS objects across different rank ranges

Fig. 8. Number of Javascript objects across different rank

ranges

Zhixong Xiao et al. / American Journal of Applied Sciences 2017, 14 (12): 1081.1092

DOI: 10.3844/ajassp.2017.1081.1092

1091

Fig. 9. Number of various file types

Fig. 10. Different file types contributed to total bytes

Fig. 11. Number of objects across different rank ranges

Fig. 12. The testing web application

Zhixong Xiao et al. / American Journal of Applied Sciences 2017, 14 (12): 1081.1092

DOI: 10.3844/ajassp.2017.1081.1092

1092

Table 7: Firefox browser execution timeline

Table 8: Chrome browser execution

