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Abstract: Research toward unmanned mobile robot navigation has gained 

significant importance in the last decade due to its potential applications in 

the location-based services industry. The increase in construction of large 

space indoor buildings has made difficulty for humans to operate within 

such environments. In this study, a mobile robot's indoor navigation 

algorithm is developed with vision cameras. Using two monocular 

cameras (one looking forward and one looking downward), the developed 

algorithms make use of the salient features of the environments to 

estimate rotational and translational motions for real-time positioning of 

the mobile robot. At the same time, an algorithm based on artificial 

landmark recognition is developed. The artificial landmark is shaped 

arrow based signboards with different colors representing different paths. 

These algorithms are integrated into a designed framework for mobile 

robot real-time positioning and autonomous navigation. Experiments are 

performed to validate the designed system using the mobile robot 

PIONEER P3-AT. The developed algorithm was able to detect and 

extract artificial landmark information up to 3 m distance for the mobile 

robot guidance. Experiment results show an average error of 0.167 m 

deviation from the ideal path, signified the good ability and performance 

of the development autonomous navigation algorithm. 
 

Keywords: Real-Time, Vision-Aided Navigation, Artificial Landmark 
 

Introduction 

Autonomous navigation for a ground-based mobile 

robot has become more and more desirable in these 

recent years in both indoor and outdoor environments. 

The usage of mobile robots in indoor environments (such 

as offices, warehouses, airports, etc.) appears to be more 

challenging since most the available technologies for 

positioning failed to operate reliably and accurately in 

indoors environments (Rivera-Rubio et al., 2015). While 

Global Positioning System (GPS) is unavailable in 

indoor environments, the low-cost Micro-Electro-

Mechanical System (MEMS) suffered from various 

stochastic errors. At the same radio frequency signals 

such as Radio-Frequency Identification (RFID) and 

Wireless Fidelity (WiFi) require dedicated and cost 

effective infrastructures (Zhao et al., 2007; Atia et al., 

2015; Zhuang et al., 2015). 

For these reasons, the implementation of visual 

sensors (i.e., cameras) in mobile robot navigation 

applications are actively being studied (Yang et al., 

2012). For a mobile robot real-time positioning using 

vision, most of the proposed solutions are able to provide 

good accuracy in terms of measurement and robustness. 

However, at some points, these solutions have 

limitations. While monocular vision failed to operate in 

complete unknown environment (Zhang et al., 2014), 

stereovision tends to be heavier in computation with 

limited range (Huang, 2013; Hong et al., 2012) and 

vision aided with inertial sensor is the most costly 

configuration with delays (Hesch et al., 2013). Despite 

these limitations, monocular vision appears to be the 

most suitable candidate for a vision-based navigation 

solution since it is able to provide richness of 

information for a high level of intelligence with a lower 

cost sensor (Ye et al., 2012). Compared to other depth 
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sensing devices, the range of a vision perception is 

unlimited. Therefore, monocular vision is able to detect 

features at its sight, no matter how close or far features 

are located, allowing it to operate in small and large, 

indoor and outdoor environments (Engel et al., 2012).  

For a vision based mobile robot autonomous 

operations, various sensors are used to get information, 

in its surroundings, that could help it take appropriate 

actions to reach its destination (Bhattacharayya et al., 

2014). Many practical approaches rely on observations 

of artificial landmarks placed in strategic places 

within the environments. For examples, Ye et al. 

(2012) use line marks on the floor combined with 

drawn MR Codes, Li et al. (2012) uses line marks 

considering their poses and Ortega-Garcia et al. 

(2014) uses straight lines combined with angles and 

landmarks recognition on its environment. This 

method is simple and widely used. However, 

difficulties arise when several paths to different 

destinations are involved; whether intersecting or 

sharing same corridors at few occasions (Ye et al., 

2012). In these situations, it is difficult to represent all 

paths as a single line mark model that allows the 

mobile robot to navigate safely at the middle of these 

corridors (avoiding possible misdirection and 

crashes). Moreover, tapes line marks method is not 

easy to modify after being set. Line marks following 

technique is usually more convenient with smooth 

curves rotations, which is not practical in big rotation 

angles (Ortega-Garcia et al., 2014). In more recent 

years, teach-and-replay methods have been studied 

and applied for autonomous navigation. For examples, 

Rojas Castro et al. (2015) developed an autonomous 

indoor navigation system based on the both prior 

analysis of a paper based floor plan of a building for 

reference and neuron-shaped artificial landmarks that 

help the robot on navigation sequences. Combining 

both teach-and-replay feature-based method and a 

segmentation-based approach, De Cristóforis et al. 

(2015) developed an autonomous navigation method, 

as an improved version of Chen and Birchfield (2009) 

method, capable of operating in both indoor and 

outdoor environment. Following the same logic, teach 

and replay based technique aided by local ground 

planarity is used by Clement et al. (2015) for an 

autonomous navigation system experimented in both 

indoor and outdoor environments. However, as 

mentioned by De Cristóforis et al. (2015), the main 

drawback of the teach and replay methods lies in the 

fact that the robot workspace is limited only to the 

regions mapped during the training step. The robot has 

to be guided throughout the entire path before 

performing autonomous navigation, which may 

represent a very tedious process. 

This paper proposed an alternative solution for 

vision-based navigation in indoor environments using 

two cameras arranged in a unique way. With no prior 

learning nor learning of a structured and non-structured 

environment, this system of integrated algorithms is 

capable of providing an accurate real-time positioning by 

exploiting natural features of the environment, as well as 

directives using arrow based signboards as artificial 

landmark placed within the environment for an 

autonomous navigation. Several experiments are 

performed to highlight the system performance in terms 

of accuracy and robustness. 

The organization of this paper is as follow: The 

techniques applied for the mobile robot positioning are 

presented in section 2, while the artificial landmark 

driven autonomous navigation methodology is 

elaborated in section 3. The system design and its 

functionalities are described in section 4 and the 

experimental studies and results are discussed in section 

5. Lastly, the paper is concluded in section 6. 

Positioning Algorithms Description 

The developed positioning algorithms utilized two 

cameras, one looking forward and one looking 

downward, to detect and track salient features in the 

environment. Whenever a motion occurs, features 

patterns from successive image frames are exploited to 

estimate travelled distance and rotations motions. The 

algorithms are divided in two positions, where the 

forward-looking camera is used to estimate rotation 

motions (Diop et al., 2015), while the downward-

looking camera is utilized for travelled distance 

estimation (Diop et al., 2014). 

Using a forward-looking camera for rotations 

motions estimation, the magnitude A from a 

displacement of a feature point Γ between the previous 

image (pi) and the current image (ci) can be obtained 

from the coordinate points Γci (x, y) and Γpi (x, y), as 

shown in Fig. 1, as follow: 
 

( , ) .( , ) .( , )x y ci x y pi x yA Γ Γ=  (1) 

 

Assuming that the Width of the image in pixel W is 

equivalent to the camera field of view following the x-

axis in degree (FOVx), the equation to calculate the yaw 

θi rotation angles between images is expressed as follow: 
 

,

1

n
x FOV x

i i

i

A
and

W

ϕ
θ θ θ

=

×
= =∑

 

(2) 

 
where, n is the number of pairs of images.  

On the other hand, the downward-looking camera is 

used to estimate the travelled distance from ground 

features. As shown in Fig. 2, the travelled distance 



Diop Mamadou et al. / American Journal of Applied Sciences 2016, 13 (5): 593.608 

DOI: 10.3844/ajassp.2016.593.608 

 

595 

estimation required information of the ϕFOV,y, the height 

of the image resolution H (in pixels), the height of the 

camera Z with respect to the ground (in centimeter) and 

the camera focal length Fy following the y-axis (in 

pixels). From the ϕFOV,y, the focal Length Fy is 

formulated as follow: 

 

,

1
0.52

1
tan tan

180 2 360

y y

y FOV y

H
H

F F

FOV
π π

ϕ

× ×
= =

   × × ×   
     

(3) 

Given pairs of identical features (Γp, Γc) between pi 

and ci of ground, the magnitude Ay (in Pixel) of the 

features’ displacement can be computed using Equation 

2. By correlated with the magnitude pairs of features 

from the image, the travelled distance dTD of a mobile 

robot can be estimated between successive images, using 

following equation: 

 

,2 tan
360

y FOV y

TD

Z A

d
H

π
ϕ × × × × 

 =  (4) 

 

 
 

Fig. 1. Geometrical representation of features displacements on image frame of 3-DOF orientation estimation 
 

 
 

Fig. 2. Geometrical representation of features displacements on image frame for travelled distance estimation 
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Artificial Landmark Driven Autonomous 

Navigation Algorithm 

The autonomous navigation algorithm recognized 

colored arrow on sign boards as artificial landmarks, 

where artificial landmarks are specially designed 

artificial landmark that aid the autonomous 

navigation. From the recognized landmark, the 

algorithm extracted necessary information (such as 

color, pointing direction, pose and depth) that allowed 

a mobile robot to guide itself through a specific path 

toward a destination. 

In between successive captured frames, the algorithm 

first tries to detect the presence of the artificial landmark 

shapes within the frame scene by matching all identified 

contours with a predefined template. The template 

matching process consisted of matching all contours 

with an arrow shape template using HuMoments 

technique (Hu, 1962; Mercimek et al., 2005; Bradski and 

Kaehler, 2008). Once the shapes are detected, the colour 

of the artificial landmarks will be identified. The 

proposed algorithm is operated in such a way that 

different predefined colors represented different path to a 

destination. Each Artificial landmark’s color is verified, 

whether it corresponds to the preselected one to follow 

or not. Colored image can be represented in several color 

models among such Red blue Green (RGB) and Hue 

Saturation Value (HSV) (Ibraheem et al., 2012). As an 

approximation way of humans’ perception and 

interpretation of colors, HSV offered robustness in 

detecting lighting changes and shadows with the ability 

of separating image intensity from color information. 

HSV used the combination of three components (Hue H, 

Saturation S, Value V) to define a specific color. Each 

color brightness, from the lightest to the darkest, is 

defined within the HSV combination range from its 

minimum (Hmin, Smin, Vmin) o its maximum (Hmax, Smax, 

Vmax) value. Since specific path are represented with 

specific colour in the proposed algorithm, these colours 

are calibrated within the specific range of ((Hmin, Smin, 

Vmin), (Hmax, Smax, Vmax)). 

Once the preselected colour is detected, 

information such as the depth, the orientation to the 

centre of the frame scene, the pointing direction and 

the distance to travel are extracted from the artificial 

landmark in order to provide directive to reach the 

desired destination. 

Arrow Tip Detection 

The arrow shape used in this study is a heptagonal 

arrow shape with seven corner nodes. Each of these 

corner nodes formed an angle from the intersection of 

any two successive vertices. As shown in Fig. 3, the 

tip of the arrow N1 can be identified by acquiring the 

arrow tip TIP through comparing the sum of all three 

successive corner node angles, and find the smallest 

summation angle. Thus, the tip of the arrow N1 can be 

identified through Equation 5 to 7, as shown below: 

 

�( )iiTIP N N=  (5) 

 

where: 

 

�
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�
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, ,
ii ii N NN N − + + +=  (6) 
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Arrow Depth Information  

The Depth information D of a detected arrow is 

defined as the estimated distance between the front-

looking camera and the detected arrow in the image 

frame. The derivation of depth data required 

information such as the ϕFOV,x, the height of the image 

resolution H, the camera focal length Fx in pixel, the 

real height RH of the arrow in centimeter and the 

image height IH of the arrow in pixel, as shown in 

Fig. 4. 

From the ϕFOV,x and H, the focal Length Fx is 

formulated in Equation 8, as shown below: 

 

,

0.5

tan
360

x

FOV x

H
F

π
ϕ

×
=

 × 
 

 (8) 

 

By referring to Fig. 4, IH corresponded to the line 

from the tip of arrow �1 to the center of the line formed 

by the edges �4 and �5. Therefore, the depth information 

D can be derived as follows: 

 

xF RH
D

IH

×
=  (9) 

 

Arrow Orientation Information 

The orientation of the arrow shape (��) can be 

illustrated as the arrow's position towards the x-axis, 

from the central line of the image frame. Fig. 5 

showed an example of the orientation representation 

of the arrow shape in 2D postures. Consider an image 
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frame with resolution of H (Height) and W (Width) in 

pixel, it is possible to compute the central line of the 

image frame through the coordinates (H/2, 0) and 

(H/2, W). Given the centre of an arrow Ci (x, y) 

recognized in the image, the line that is parallel to the 

x-axis and intersects the central line of the image in Pi 

(x, y) represented the arrow position expressed in 

pixel from the image centre; as shown in Equation 10: 

. .i i i x i xC P C P= −  (10) 

 

Given ϕFOV,x and �, the arrow orientation expressed 

in degree is formulated and shown in Equation 11: 

 

( ),
*

i i FOV x

i

C P

H

φ
ω =  (11) 

 

 

 
Fig. 3. Geometrical representation of the artificial landmark based arrow for the mobile robot autonomous navigation 

 

 

 
Fig. 4. Geometrical representation of the arrow depth 
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Fig. 5. Geometrical representation of the arrow Orientation in an image frame 

 

 
 
Fig. 6. Extraction of an arrow based signboard with distance to 

travel information 

 

Arrow Pointing Direction Information 

The pointing direction of the artificial landmark 

arrow conveyed information on how many degrees, in 

yaw angle, a mobile robot were to turn. The pointing 

angle δi is formed between the point oi, the point Ci and 

the tip �� of that arrow, as illustrated in Fig. 5. Note that 

δi can be obtained using Equation 12: 

 
�, ,

i i i i
o C tδ =  (12) 

 

Distance to Travel Information  

The distance to travel information provides input 

on how far a mobile robot needed to travel in order to 

reach the next check point. This information is the 

result of extraction and recognition of the numerical 

characters, appeared next to the arrow sign, as shown 

in Fig. 6. Extraction of the numerical characters 

required prior detection of the colored arrow in order 

to crop the signboard area. This function extended the 

height and width delimitation of the arrow. Here, the 

centre of the arrow is used as the starting point of all 

dimension sides for border extension.  

Once the sign-board is extracted, the numerical 

characters information can be identified by isolating 

its written color with the color detection technique 

described in previously. Next, morphological image 

processing techniques are applied to gather all blobs, 

near to each other, into in a single larger blob 

representing the value area. From that perspective, 

smaller and larger blobs excluded within a range are 

considered as noises and are removed from the image. 

That allowed the numerical characters area appeared 

as the only candidate within a range nearest to arrow 

centre, to be extracted and processed for optical 

character recognition. Next, segmentation and 

recognition using Optical Character Recognition 

(OCR) Technique is performed. The segmentation of 

the numerical characters involved the same procedure 

of the contours detection techniques described in 

previously, except here all contours are taken into 

consideration since each one represents a number. 

Each of the segmented images is processed using 

OCR technique (Smith, 2007) to convert the image 

contents into characters. Figure 7 illustrates the 

overall conversion process to obtain the travelled 

distance information from the numerical characters. 

Pose Correction Handling 

Assuming the mobile robot is initially aligned 

perpendicularly to the artificial landmark, then the 
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only reason an arrow encounter a yaw orientation pose 

is because the mobile robot is heading through its 

centre at a certain angle during navigation. If the 

mobile robot approached an arrow with a certain 

angle, it means that few maneuvers (yaw rotations) 

were performed throughout the path between one 

arrow signboard to another, as shown in Fig. 8. The 

correction value �	, which represented the right angle 

to rotate, can be obtained by subtracting the pointing 

direction information α, with the sum of all rotation 

angles �i throughout the way; as expressed in 

Equation 14: 

 

0

n

c ii
θ δ θ

=
= −∑  (14) 

 

where i is the number of rotations and n is the total 

number of rotations. 

Algorithm Validation 

Three experiments were setup to validate the 

proposed algorithms. The first experiment aimed to 

test the algorithm robustness and accuracy. A set of 

18 images, each contained an arrow of 22 cm height 

within the signboard, are captured. The signboard is 

positioned at two different depths (up to 3 m) with 

three different poses (yaw, pitch and roll orientation), 

as illustrated in Fig. 9. The arrow information 

extracted from the image are the matching value, the 

depth, the pointing direction, the position to the centre 

of the image, the size area in the image, the length and 

all corner point angles as structured in Table 1. 

In this experiment, the information is analyzed on 
different signboard posture in order to define the 
algorithm constraint settings for robustness. The 
results obtained from the experiment are illustrated in 

Fig. 9 and Table 1. Results demonstrated the 
algorithm accuracy and robustness in detecting and 
extracting arrow information over a distance up to 3 
meters. The accuracy of the algorithm is evaluated by 
using the up, down, left, right directions as a reference 
for ground truth measurements, representing 0, 180, -

90 and 90°C respectively. Data collected from Table 1 
on Images 1, 7, 9, 11, 13, 16-18, the pointing direction 
(direction in Table 1) measurements generates an 
average error of 0.6°C, with the highest errors 
occurring on farthest detections. However, the 
accuracy of the depth information is highly depends 

on the arrow poses in the scene, where yaw-oriented 
poses have an effect on the arrow length which is used 
for depth measurement. 

The robustness of the evaluated by its ability to detect 
the arrow up to 3 m distance and at any poses (yaw, 
pitch, roll orient) up to some extent. Several extreme 

case were set in the experiment, involving the detection 
of the arrow when its pose is yaw-oriented up to ±30° 
(as shown in Image 2 and 3 in Fig. 9), pitch-oriented up 
to ±30° (as shown in Image 4 and 5 in Fig. 9) and roll-
oriented up to ±360° (as shown in Image 6, 8, 9, 10, 11 
and 12 in Fig. 9). In addition, the algorithm robustness 

is illustrated in the accurate recognition of the arrow 
tips. The findings in this experiment have proven that on 
arrow angles data collected in Table 1, where the 
application of Equation 7 on detected arrow always 
recognizes the tip. 

 

 
 

Fig. 7. Process of distance to travel information extraction and recognition 
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Fig. 8. Examples of rotation manoeuvres on mobile robot 

 

 

 
 

Fig. 9. A set of 18 images with different sign-board poses 
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Table. 1. Extracted Arrow Information from Fig. 9 

  IMAGES 

  ------------------------------------------------------------------------------------------------------------------------ 

  Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Image 7 Image 8 Image 9 

Arrow Information Match 0.018 0.082 0.242 0.288 0.264 0.024 0.034 0.012 0.013 

 Depth (cm) 47.35 58.12 70.35 55.76 34.55 72.41 83.96 75.05 66.24 

 Direction (q°) -90.18 -100.9 -72.71 -89.77 -90.27 -68.83 0 59.03 89.21 

 Position (ω°) -0.65 -3.006 -0.24 2.51 4.14 -12.35 2.76 -10.07 2.43 

 Size (pixel) 24042 18700 14231.5 13577.5 36098 10786 7658 9862 12635 

 Length (pixel) 305.002 248.485 205.273 259.002 418.005 199.449 172 192.421 218.021 

Arrow Angles (°) P1 89.62 108.451 102.12 76.1 79.41 93.28 88.69 91.41 92.08 

 P2 48.09 40.81 49.48 57.69 54.39 53.13 53.13 50.51 48.06 

 P3 93.59 85.82 113.7 99.32 100.008 99.28 98.58 97 93.36 

 P4 89.01 72.94 109.72 80.37 69.37 91.32 89.08 88.08 92.35 

 P5 91.48 102.374 77.94 100.2 110.63 88.89 91.82 92.26 87.98 

 P6 93.09 103.426 83.49 92.48 88.31 100.2 98.59 93.88 99.48 

 P7 48.46 44.65 37.925 57.44 54.5 52.84 54.43 48.61 52.36 

  Image 10 Image 11 Image 12 Image 13 Image 14 Image 15 Image 16 Image 17 Image 18 

Arrow Information Match 0.026 0.009 0.045 0.128 0.214 0.211 0.057 0.089 0.109 

 Depth (cm) 77.44 83 74.58 320.946 379.936 390.34 320.867 313.895 320.867 

 Direction (q°) 116.42 180 -116.69 -90 -91.5 -90 1.27 88.75 178.72 

 Position (ω°) -10.88 3 -2.11 -2.031 -1.95 -2.27 0.4 1.7 1.38 

 Size (pixel) 9232.5 8058.5 10146.5 627 525 517.5 610.5 643 620.5 

 Length (pixel) 186.489 174 193.644 45 38.01 37 45.01 46.01 45.01 

Arrow Angles (°) P1 90 90.599 92.59 94.76 100.3 106.64 89.56 87.72 92.7 

 P2 50.21 48.92 54.52 71.2 65.65 56.49 61.5 81.17 76.67 

 P3 94.96 96.08 101.03 124.54 123.08 116.2 101.31 130.45 130.33 

 P4 91.11 88.28 92.85 84.11 82.65 99.16 95.19 86.59 83.16 

 P5 90 92.15 88.41 99.46 99.46 83.11 88.27 97.04 102.21 

 P6 101.87 94.99 97.66 111.8 111.8 118.84 115.27 113.64 113.71 

 P7 55.49 51.11 50.31 66.8 66.8 69.62 62.03 71.56 69.29 

 

 
 

Fig. 10. Colored arrow detection using HSV color model 
 

In the second experiment, a signboard with a 

colored arrow (blue and red) is adopted to represent 

specific path by using color detection. Using HSV 

color model for color detection, blue colored arrow is 

predefined within the range ((88, 80, 52), (115, 255, 255)) 

and red colored arrow within ((0, 150, 89), (12, 255, 

255)). Applying these color ranges in the color detection 

algorithm gave results as illustrated in Fig. 10. Results 

showed good robustness and accuracy of the algorithm 

in identifying the arrow color. The corresponding color 

of a detected arrow with a predefined color range would 

not only help in identifying the path to follow, but also 

aid in discarding the arrow that do not meet the 

predefined color range requirements. 
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Fig. 11. Distance to Travel Information Detection and Recognition 
 

In the third experiment, a set of colored arrow 

based signboards (red and blue), with different 

distance to travel information on each signboard, is 

captured with different poses over different distances. 

In addition of accurately identifying specific colored 

arrow within the environment, this experiment is also 

designed to evaluate the accuracy in detection and 

recognition of the numerical characters representing 

the distance to travel. The experiment results, in Fig. 

11, show that the algorithm is able to detect and 

recognize the distance to travel information from the 

defined colored arrow up to a meter in this case study. 

System Design and Implementation 

This section outlines overall hardware setup and 
system framework design. The setup utilized the 
proposed algorithm illustrated in section 3.  

System Hardware Setup 

The system hardware consisted of a mobile robot, a 

laptop and two cameras (as shown in Fig. 12). The mobile 

robot is a PIONEER P3-AT from Adept. The mobile 

robot is attached to the laptop, LENOVO core i7 and 8GB 

ram, that hosted the algorithms. The laptop is connected to 

two cameras, labeled as CAMERA1 and CAMERA2. 

CAMERA1 is a Logitech HD c920, set with 640×480 

(width × height) pixels resolution, 52×42 degrees 

(horizontal × vertical) field of view after calibration and 

capturing 30 Frames Per Second (FPS). CAMERA1 is 

positioned at forward-looking direction. This camera is 

responsible for detecting and following the arrow and 

measuring the yaw rotation motions of the mobile robot. 

CAMERA 2 is a Logitech HD c390, set with 320×240 

(width × height) pixels resolution, 42×42 degrees 

(horizontal × vertical) field of view after calibration and 

capturing 30 FPS. CAMERA2 is positioned at downward-

looking direction. This camera’s responsibility is to 

measure mobile robot’s translational motions and to 

estimate the mobile robot’s travelled distance. 

System Framework 

A system framework is designed to use data provided 

from the developed algorithms to derive the actual 

location of the mobile robot and the appropriate moves to 

execute. Given these three algorithms (yaw motion 

estimation, travelled distance estimation and artificial 

landmark recognition) running in parallel as threads, yaw 

estimation and travelled distance algorithms are used for 

the mobile robot real-time positioning while the artificial 

landmark recognition algorithm is used for the mobile 

real-time autonomous navigation. The framework real-

time positioning consisted of retrieving yaw estimation 

and travelled distance estimation data, every 60 

milliseconds interval, to compute and show on the 

graphical user interface map. The current position of the 

mobile robot �(�,�) is represented using the Equation 15: 

 

( )
cos

,
sin

x TD
P x y

y TD

θ
θ

= ∗
= 

= − ∗
 (15) 

 

where, 
� is the travelled distance and � is the yaw 

rotation. 
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Fig. 12. Two cameras setup for a mobile robot real-time positioning and autonomous navigation system 

 

As for the real-time artificial landmark detection 

algorithm, it is used to guide the mobile robot through a 

specific path based on the colored landmark. Once a 

landmark describing a selected path is detected, depth 

and yaw pose information of the landmark are extracted to 

instruct the mobile robot to move toward the landmark 

centre at a specific speed until it reaches a certain 

predefined distance. For this experiment, the mobile robot 

adjusted itself within ±5° to the sight of the landmark 

centre and moved forward until it reaches 0.5 m to the 

landmark. The specifications are applied with respect to 

data integrity involving the measurements from yaw and 

travelled distance estimation algorithms obtained from 

Diop et al. (2014; 2015). After the mobile robot reached 

0.5 m distance to the landmark, it stopped and retrieved 

the landmark pointing direction and together with the 

distance to travel information from the signboard. Once 

that information is retrieved, the mobile robot rotated in 

consideration with the accumulation of rotations made 

throughout the way; and travel to the distance as stated 

until another landmark is detected. It no landmark is 

detected, the mobile robot will stop at the distance 

specified by the last signboard. 

Experimental Studies 

This section illustrates the experiment studies of the 

proposed system with results and discussions. 

Experimental Setup 

The real-time positioning and autonomous navigation 

system experiment consisted of four phases. The first 

phase of the experiment involved testing the robustness 

and accuracy of the system in detecting a specific 

landmark navigated through and rotated in the direction 

indicated. Three shuffled pieces of artificial landmarks 

are used in the first phase of the experiment. Two of the 

artificial landmarks are in blue color while the third 

artificial landmark is in red color. The direction of these 

landmarks is arranged in such way that different color 

landmarks are always pointed toward opposite direction. 

The mobile robot is placed at 2 m distance to these 

landmarks and it is instructed to navigate by following 

the red colored landmark with respect to the designed 

framework. The results of the mobile robot navigation, 

when the red colored landmark located at a different 

position on scene scenarios, are illustrated in Fig. 13. 

The second phase of the experiment involved testing the 

robustness and accuracy of the system in handling the 

error and travelled at the specified distance mentioned by 

the numerical characters image below the landmark. The 

mobile robot is located at 2 meters from the landmark. 

Three different experiment scenes were set. In each 

scene, the landmark is placed at different locations. To 

be more specific, the landmark is placed at the middle, 

the extreme left and the extreme right with respect to the 

captured image frame, respectively. For each scene, two 

different colored landmarks (blue and red) are used in 

which 2 and 5 m of distance to travel are specified on the 

blue and red colored landmarks, respectively. Results of 

the mobile robot navigation are illustrated in Fig. 14. 

The third phase of the experiment involving testing 

the system's ability to stay on path in real-time 

navigation and to illustrate various navigation path error 

handling in real-time. To demonstrate this experiment, a 

specific navigation path consisted of four-sided polygon 

path, as illustrated in Fig. 15, is set. Red colored artificial 

landmarks with specific labels (1, 2, 3 and 4) and distance 

to travel are placed at each corner of the path to guide the 

mobile robot, as shown in both Fig. 15 and 16. Landmarks 



Diop Mamadou et al. / American Journal of Applied Sciences 2016, 13 (5): 593.608 

DOI: 10.3844/ajassp.2016.593.608 

 

604 

are placed at the comers of the 4-sided polygon path, 

where each landmark is placed at the 50 cm lane to the 

previous one to create a rectangular path to navigate. To 

illustrate the error handling capability, different scenarios 

(A, B and C) were set in this experiment and are described 

as followed (with reference to Fig. 15): 

 

• In scenario A, the landmark 2 is aligned with the 

landmark 3 to create an obvious error handling 

situation 

• In scenario B, the landmark 1 is aligned with the 

landmark 2 to create an obvious error handling 

situation 

• In scenario C, landmark 1 and 2 are aligned and 

landmark 2 and 3 are aligned to create multiple 

error handling situations 

 

The final phase of the experiment was performed to 

evaluate the mobile robot's ability to stay on path for a 

long run. The experiment consisted of instructing the 

mobile robot to repeatedly navigate in a 4-sided 

rectangular path, as illustrated in Fig. 17. In this 

experiment, the mobile robot was left navigating for 

more than half hour, performing 8 complete rounds of 

the rectangular path. 

Analysis and Discussions 

Based on the experiments, the real-time positioning 
and autonomous navigation system and framework had 

shown a good response to the directives provided by the 
artificial landmarks, as illustrated in the 1st two phases 
of the experiment. Good responses were observed in the 
third phase of experiment in handling the error 
correction on rotations and translation over specify 
distance specified by the landmark. In the final phase of 

the experiment, the mobile robot is able to navigate 
through the specified path scenario for half an hour 
with an average error of 0.167 m from the ideal path 
and 0.080 m average deviation from the first round of 
the navigation, as shown in Table 2. The system 
accuracy appears to be acceptable as compared to some 

existing vision-based solutions for indoor 
environments, as illustrated in Table 3. The low 
navigation path error generated from this system allows 
the mobile robot to navigate in a narrow indoor 
environment. A real-time indoor navigation experiment 
is setup and shown in the following link. The video 

illustrated the capability of the system to navigate the 
mobile robot in a narrowed, indoor environment. 
https://drive.google.com/open?id=0B3VoMqHLevubRW
xUSDZLcmlRZEU.  

 

 
 

Fig. 13. Real-time positioning and autonomous navigation system framework 
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Fig. 14. Mobile robot response on driven artificial landmark directives 
 

 
 

Fig. 15. Errors handling during mobile robot navigation 
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Fig. 16. Sets of signboards labels 

 

 
 

Fig. 17. Path following in mobile robot navigation 

 
Table. 2. The RMSE of the navigation experiment from Fig. 17 

  Root Mean Square Deviation (RMSD) of the mobile robot (in meter) 

 ------------------------------------------------------------------------------------ Average 

 SIDE1 SIDE2 SIDE3 SIDE4 (mean) 

Compared to the ideal path 0.031 0.119 0.263 0.254 0.167 

Compared to the first round 0.02 0.141 0.027 0.134 0.08 

 

Table. 3. Comparative table of few existing vision based indoor positioning solutions 

Few existing vision based positioning solutions accuracy (in meter) Experimented in indoor Environements 

---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Chen and Birchfield (2009) De Cristóforis et al. (2015) Clement et al. (2015) Atia et al. (2015) Rivera-Rubio et al. (2015) 

0.14 0.19 0.2 0.99 1.3 

 

A few limitations can be observed from this system. 

Firstly, the system is very sensitive to the landmark's 

pose and pointing direction. Landmarks that are not well 

positioned in the environment could generate errors in 

depth estimation and pointed direction rotation. These 

errors, particularly in pointing direction information, 

could lead to a large deviation of the mobile robot from 

its path at a long run. Secondly, since the color is used to 

represented specific paths, the system had become 

sensitive to extreme lighting environments (very dark or 

very bright). This constraint, however, can be avoided 

with constant ambient indoor environment. 

Conclusion  

This paper aimed to address the potential of vision 

sensors to accurately estimate the real time position and 

to guide a mobile robot throughout navigation at indoor 

environments. The mobile robot’s real-time positioning 

and autonomous navigation system, aided by vision, 

were achieved using features points and visual 

landmarks as artificial landmark. This research has 

uncovered a significant potential in using vision for real-

time positioning and autonomous navigation in the 

indoor environments. Even though the results obtained 

from developed algorithms seems acceptable, there are 

yet lots of rooms for improvement in measurement 

accuracy for a complete autonomous navigation system. 

Improvement of this system involves adding an Inertial 

Measurement Unit (IMU) or Lidar as an additional 

sensor to aid vision for a better accuracy in indoor 

positioning. Additional module could be integrated along 

with obstacle avoidance, clear path recognition and path 

planning in order to handle busy environment, reduce 

path deviation in long runs and offer more flexibility 

during navigation. 
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