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Abstract: This work describes a cascade detection of vehicles in 

Unmanned Aerial Vehicle (UAV) images and videos. There are some 

new approaches used in the detection. In particular, the Region of Interest 

(ROI) search is not only based on GIS and navigation data, but also 

employs visual method based on rapid image segmentation and road 

detection. The work also suggests doing ROI segmentation by the 

superpixel technique and trainable four-level cascade detector that uses 

artificial neural networks as classifiers. Characteristics of the being 

analyzed regions (combined superpixels) are based on geometric and 

texture features, as well as on deep features extracted from the image 

patches by nonlinear auto encoders. To improve the detection quality of 

the moving vehicles a separate stage of the detector based on optical flow 

analysis was introduced. Proposed detection algorithm was benchmarked 

on the real UAV videos and showed the sufficiently high accuracy. 

Performance of the algorithm allows supposing the on-board usage. 

 

Keywords: Unmanned Aerial Vehicles (UAV), Vehicle Detection, Road 

Detection, Superpixel, Deep Learning 

 

Introduction 

The problem of vehicle detection on aerial photos 
and videos has become more important lately because of 
the spread of UAV. The vehicle detection can be used 
mostly in the automation of monitoring of traffic and 
large parking lots. Works about the automatic vehicle 
recognition have long been published, for example 
(Coifman, 2006). 

The work by Kim and Chervonenkis (2015) describes 

the importance of the on-board recognition of both 

moving and stationary vehicles for automatic detection 

and classification of traffic situations. In this study a 

cascading approach to the vehicle recognition has been 

defined. The works (Kim and Chervonenkis, 2015; 

Abramov et al., 2015) have suggested using the image 

segmentation into superpixels followed by their 

association in regions, this approach is also used in 

proposed algorithm herein. These works were inspired 

by (Choi and Yang, 2009) paper which applies mean 

shift segmentation in the Luv color space in order to 

extract blobs (superpixels) of the image. Subsequently, 

the symmetry of the resulting blobs is examined by a 

filter based on complex valued Gabor functions. 

Additionally, the information of the shape is used. The 

shape of each blob is calculated by measuring the 

distance and orientation between the center of the blob 

and its surrounding edges. The authors point out that 

often more than one blob is detected for the same car due 

to intensity differences from the front and rear 

windshields. So blobs (superpixels) clustering procedure 

is needed and was introduced in aforementioned works. 

Description of the object area as a region allows using 

features of the shape of the object for its classification. 

In a number of works it has been proposed to use 

texture features to detect vehicles: Kembhavi et al. 

(2011) employ Histogram of Oriented Gradients (HOG) 

features; Nguyen et al. (2006; Grabner, 2008; 

Mauthner et al., 2010) use Local Binary Patterns (LBP) 

features and HOG features; Gleason et al. (2011) deal 

with HOG features and Histogram of Gabor 

coefficients features. A thorough analysis of these 

works revealed the HOG features having the main 

impact on vehicle quality detection. These features are 

used in two stages of our cascade. 

The last stages of the developed cascade deal with the 

features based on the movement of the object and the 

features built on the basis of the analysis of image 

fragments by means of nonlinear autoencoders.  

 The mentioned work by (Kim and Chervonenkis, 

2015) describes in detail the methodology of the use of 

UAV for road traffic monitoring and proposes an 

approach based on the recognition and classification of 

severity traffic situation. In this study we described the 

UAV automatic control. To recognize and classify 
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amicable situations proposed to use the features of the 

recognized and tracked vehicles, in particular, such as the 

histogram of the speed distribution of the vehicles. But 

description of vehicle detector is not described in detail. 

The general objective of our study is to develop a 

new multi-layer cascade vehicle detector, capable of 

operating on-board with sufficient speed. The novelty 

of the approach lies in the recognition of the area of the 

road for the allocation of ROI, in the selection of a set 

of specific geometry, texture, deep and motion features 

for cascade detector. Among the proposed geometric 

features-concentration ellipse dimensions and ellipse 

eccentricity, edge density, the use of which has become 

possible due to the recognition of objects as unified 

superpixels. Application of deep autoencoders features 

and the method of preparation of learning sample, 

based on estimates of the accuracy of matching the 

boundaries of the region and vehicle are also new to 

such problems. 

Methodology 

The functional block diagram of the algorithm of 
vehicle detection on the image is shown in Fig. 1. 

The algorithm input receives a pair of consecutive 
RGB-images from an on-board UAV camera (still 
pictures or shots from a video flow) and the vehicle 

search is carried out on the earliest one (the operational 
one). We consider the case of a mechanically stabilized 
on-board camera performing a nadir shooting. 

Image pre-processing scales the operational image 

with the following formation of a binary Region(s) of 

Interest (ROI) mask. The scale coefficient is calculated 

by the Navigation data-based Processing unit on the 

basis of the UAV flight altitude at the time of the 

operational image shooting. Scaling allows reducing 

the impact of the flight altitude on vehicle detection 

quality, as well as improving the performance of the 

entire system. If there is a digital terrain map in the 

on-board system, the Navigation data-based 

Processing unit generates an inclined rectangle for the 

operational image. This rectangle defines the position 

of the road with roadside and other surrounding area 

that can be reached by a vehicle in case of an 

accident. In practice, usually one rectangle is formed. 

However, in some cases (a sharp bend in the road, 

crossroad, forked roads, etc.) the unit defines the 

region of interest by means of several slightly 

intersecting rectangles. When the on-board system 

does not contain a sufficiently detailed and accurate 

digital map of the area, or in the case of low accuracy 

of determination of the UAV location and orientation, 

the ROI search is performed by a Road Detection unit. 

 

 
 

Fig. 1. Functional block diagram of the developed vehicle detection algorithm 
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Unit of Visual Automatic ROI Determination 

Visual method of automatic ROI determination 

consists in determination in an image of an area (or 

mask) of unspecified form which contains the whole or 

almost the whole road. The algorithm is as follows: 

 

1) First of all, the quick initial image segmentation 

is carried out. The individual segments are related and 

relatively homogeneous regions. In this case the color 

image is analyzed. Color space is initially divided into 

a limited number of fixed clusters. In the simplest case, 

this can be a small (for example, 8) number of 

brightness gradations. In the case of a more complex 

performance, all colors of pixels are taken into account. 

A region of pixel connectivity belonging to the same 

color cluster is lumped into one segment. 

Simultaneously with the segment construction, its 

moments of first and second order are quickly 

calculated. On the basis of central moments of the 

second order, the parameters of segment dispersion 

ellipse are calculated: Axes size, elongation 

(eccentricity) and the orientation of the main axis. 

(Hereinafter the major axis of the ellipse is referred to 

as the segment axis). The moments of the first order are 

considered as coordinates of the midpoint of a segment. 

2) Next step is the filtration of received segments. 

First of all it is necessary to exclude bright segments. 

Then segments that are small, not enough elongated and 

very large are excluded from the list. Filtration threshold 

is selected. 

3) Several segments are put together. For this 

purpose, all possible pairs of segments are considered. 

Segments are joined together only under certain 

conditions. In particular, the distance between 

midpoints of segments shall be less than the axis of 

each segment multiplied by a parameter, the orientation 

of segments must vary little (less than a parameter, in 

our case it is 5-10°). There may also be restrictions on 

the proximity of color of joined segments. For joined 

segments moments are calculated on the basis of 

moments of each joined segment. 

4) The segments obtained as a result of joining, are 

joined to one another in a similar manner. 

 

All received segments are checked for similarity to 

the road. The axis of the segment shall be close to both 

the two opposite sides of the original image. All 

segments satisfying such conditions are joined in one 

set-this is the desired ROI and a mask. 

Image Regions Extraction performs segmentation 

of the operational image (with due regard to the ROI 

mask) followed by a region creation using the 

resulting segments. The final regions are considered 

as potential vehicles. 

In order to select a suitable segmentation algorithm, 

the following superpixel extraction algorithms were 

compared: Felzenszwalb-Huttenlocher Segmentation 

(FHS) (Felzenszwalb and Huttenlocher, 2004), SEEDS 

(Van den Bergh et al., 2012), SEEDS Revised (Stutz, 

2014; 2015), SLIC (Radhakrishna et al., 2012), Model 

Based Clustering (MBC) (Zhong and Ghosh, 2003), 

Quick shift (Vedaldi and Soatto, 2008). High average 

image processing time makes MBC and Quick shift 

algorithms unsuitable for on-board use. SLIC algorithm 

is unsuitable due to a poor quality of segmentation (for a 

detailed comparison of these three algorithms, see 

Abramov et al., 2015). Comparison of FHS, SEEDS and 

SEEDS Revised algorithms has been conducted on 

operational images without regard to the ROI mask as 

per the following characteristics (Table 1): (a) Average 

image processing time; (b) Average number of image 

superpixels; (c) Average number of superpixels into 

which the vehicle is divided; (d) Average vehicle 

segmentation performance value-Undersegmentation 

Error and Boundary Recall. 

The (a)-(c) characteristics affect the performance of 

the entire vehicle detection system. The segmentation 

quality indicators used are given in (Neubert and Protzel, 

2007). The Undersegmentation Error (UE) indicator 

(Formula 1) shows how well a set of superpixels 

covering the vehicle follows its shape: 

 

 
1

min( , )
in out

S Vehicle

UE P P
N

∈

= ∑  (1) 

 

Where: 

Pin  = The number of vehicle covering pixels of the S 

superpixel 

Pout  = The number of pixels of the S superpixel that are 

outside the boundaries of the vehicle 

N = Vehicle area (number of pixels) 

 

The Boundary Recall indicator shows the proximity 

of the borders of vehicle covering superpixels to the 

borders of this vehicle. The indicator is calculated as a 

percent of vehicle boundary pixels having in a 

predetermined radius around themselves the boundary 

pixels of vehicle covering superpixels. Images 

illustrating segmentation quality indicators used are 

shown in Fig. 2. 

(Left) The red rectangle indicates the vehicle. B, C, E 

and F superpixels cover the vehicle. The area of the 

green part of each such superpixel-Pin and yellow-Pout 

(Formula 1). (Right) Rectangles show the boundary 

pixels: The black ones belong to the vehicle, the blue 

ones belong to the vehicle covering superpixel. The 

upper boundary vehicle pixel does not have in its d 

radius of boundary superpixel covering pixels; the lower 

boundary vehicle pixel has such pixels 
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Fig. 2. Explanatory images for Undersegmentation Error (left) 

and Boundary Recall (right) indicators 

 
Table 1. Comparison of image segmentation algorithms 

    SEEDS  
 FHS SEEDS revised 

Image processing time, ms 249 96 369 
Boundary Recall, [0; 1] 0,52 0,45 0,5 
Undersegmentation Error, [0; 1] 0,34 0,57 0,2 
Number of superpixels per image 831 1198 1200 
Number of superpixels per vehicle 3,5 4,5 4,3 

 

SEEDS Revised algorithm is characterized by the 

maximum operational image processing time (Table 

1). In contrast, the SEEDS algorithm is the fastest 

one, but it breaks the vehicle into the largest number 

of superpixels that leads to the creation of the largest 

number of regions. The most balanced algorithm is 

FHS, who has been selected as the operational image 

segmentation algorithm. 

The first step of the FHS algorithm introduced in 

Felzenszwalb and Huttenlocher (2004) paper is 

weighted graph building. Each edge of the graph 

represents the joint of the two adjacent image pixels. 

The weight of the edge is dissimilarity measure 

between pixels. The usual practice for weight 

calculation is Euclidian distance between pixels’ RGB 

values. In this study we use weighted Euclidian 

distance in Lab color space. In the next step of the 

algorithm the edges of the graph are sorted in weight 

ascending order. Running through the sorted list of 

edges the superpixels (represented by the disjoint trees) 

are created by means of joining similar image pixels. 

The size of the superpixels is adjusted by the pixels’ 

dissimilarity threshold. 
When using the FHS algorithm the vehicle can 

usually be well approximated by one to four 

superpixels (Table 1). Therefore, in addition to the 

superpixel analysis, it is necessary to conduct the 

analysis of complexes of neighboring superpixels: 

Pairs, “threes” and “fours”. The test of the developed 

vehicle detection algorithm, however, has showed that 

when using “fours”, the vehicle detection quality 

indicators are improving slightly, but the performance 

is reduced significantly. Therefore, all possible 

superpixels shall be considered as image regions, 

including pairs of adjacent superpixels and 

combinations of three superpixels, in which at least one 

is adjacent to the other two. As a result of the scaling of 

the operational image (Fig. 1) it is possible to establish 

rough thresholds above and below the size of the region 

and not to create areas which are clearly not a vehicle. 

In addition to information about the superpixel 

components, each region is described by a concentration 

ellipse. C is a matrix of second central moments 

calculated as per all N pixels in the region ( ; )T T

i i i
X x y= : 

 

11 12

1 12 22

1
( )( )

1

N

T

i i

i

c c
C X X X X

c cN
=

 
= − − =  

−  
∑  (2) 

 

1

1

=

= ∑
N

i

i

X X
N

 (3) 

 
The midpoint of the concentration ellipse is 

defined by the formula 3. Large (a) and small (b) axis 

of the ellipse and its orientation-the angle Θ between 

the major axis and the positive direction of the OX 

axis in the working image coordinate system are 

calculated as follows: 

 

11 22
0.5 ( )a c c D= ⋅ + +  (4) 

 

11 22
0.5 ( )b c c D= ⋅ + −  (5) 

 

12

2

11

arctan
c

a c

 
Θ =  

− 
 (6) 

 
2 2

11 22 12
( ) 4D c c c= − +  (7) 

 
We use the concentration ellipse with semi-axes of 

the size twice bigger than the size of semi-axes 

calculated by formulas 4 and 5. The advantage of use of 

the concentration ellipse as a compressed representation 

of the region (above an inclined rectangle, a convex hull, 

etc.) is a greater resistance of its parameters to 

segmentation errors. An example of the operational 

image (with an applied ROI mask) and some of its 

regions is shown in Fig. 3. 

Regions Cascade Filtration provides a binary 

classification of the regions represented by 

concentration ellipses by the following classes: 

“Vehicle” and “Everything else”, followed by 

filtration of regions referred to the second class. 

Classification is carried out according to the cascade 

principle: Region features the calculation of which is 

more time-taking are calculated on the later stages of 

the cascade. As a classifier at each stage of the 

cascade a Multilayer Perceptron (MLP) is used. 
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Fig. 3. Operational image (region of interest only) and some of 

its regions (blue areas). Concentration ellipse for each 
region is shown in blue 

 

At the first stage of the cascade, regions are described 

using the following features: The length of semi-axes (a 

and b; a≥b), the eccentricity of the concentration ellipse: 

 
2

2
1

b
e

a
= −  (8) 

 

And edge density: 

 
2

E

E

N

W H
ρ =

⋅

 (9) 

 

(here NE-the number of edge pixels fallen into the 

window of W×H size). In order to calculate the last 

feature (ρE) the operational RGB-picture is brought to a 

single-channel half-toned one from which the edge mask 

is extracted using the Canny algorithm. Two thresholds 

used by the Canny algorithm, are selected automatically 

during the training of the classifier of this stage of the 

cascade. After that an edge mask integral image is built, 

which allows calculating the NE value in 3 arithmetic 

operations (1 addition and 2 subtractions). The window 

for the region is obtained by an extension of a minimum 

direct rectangle delineating the 50% of concentration 

ellipse on each side. The configuration of the neural 

network classifier of the cascade stage is 4:14:1. 

At the second and third stages of the cascade, in 

addition to the eccentricity of the concentration ellipse 

for regions, a HOG-descriptor (histogram of gradient 

orientations) is calculated. The original version of the 

descriptor was developed by (Dalal and Triggs, 2005; 

Dalal, 2006) for the purpose of solving the problem of 

pedestrian detection in static images. Currently the 

descriptor and its modifications are successfully used in 

many algorithms for detecting different objects. In 

particular, the vast majority of modern algorithms for 

vehicle detection in static images, not using an explicit 

model of the vehicle, comprise the calculation of HOG-

descriptor (Turmer, 2014). 

In our implementation which differs from the 

original one, the HOG-descriptor is calculated as 

follows. It is necessary to form for each region a 

region-centered square window of size (where a and 

b-the length of the semi-axes of the concentration 

ellipse). For each pixel of the window the length 

MG(x, y) and direction ΘG(x, y) of the gradient vector 

are calculated as follows: 

 

2 ( )W H a b= = ⋅ +  (10) 

 

( ) ( ) ( )( , ) max{ ( , ), ( , ), ( , )}
G G R G G G B

M x y M x y M x y M x y=  (11) 

 

22

/ / / /
( / / )
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G R G B

I x y I x y
M x y

x y

 ∂ ∂ 
= +   

∂ ∂   
 (12) 

 

( , ) ( , )
( , ) arctan

G

I x y I x y
x y

y x

 ∂ ∂
Θ =  

∂ ∂ 
 (13) 

 

The direction of the gradient vector is calculated in 

the same color channel (R/G/B) as its length and is 

brought to the ;
2 2

π π 
− 
 

interval. Intensity derivatives 

are calculated using the Sobel operator with a 3×3 core. 

After that, a histogram of gradient directions 

(orientations) consisting of 9 bins is calculated in the 

windows. The weight of each bin is the sum of lengths 

of all vectors of the gradient, fallen in the bin. The 

resulting h histogram is normalized-it is divided by its 

L2-norm: 

 

 
2 2

2n
h h h ξ= +  (14) 

 

(here ξ-a small constant, in our implementation ξ = 

0.01). If the examined region is well approaching the 

vehicle, the gradient vector of the dominant direction 

will be orthogonal towards the longitudinal axis of the 

vehicle. Consequently, in order to increase the descriptor 

resistance to rotation, the hn normalized histogram 

components undergo cyclic shift so that the bin with the 

maximum weight is always in the first position. The 

resulting histogram is a 1×1 HOG-descriptor (Fig. 1). 

The configuration of the neural network classifier of the 

second stage of the cascade is 10:23:1. 

2×2 HOG-descriptor (Fig. 1) is calculated in a similar 

manner. For each window a region is formed as 

described above for construction of the 1×1 HOG-

descriptor. The window is divided into four overlapping 

by 25% square cells of equal size (Fig. 4), in each of 

which the hn gradient orientation normalized histogram 

consisting of 8 bins is calculated. 
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Fig. 4. View of the window used in order to calculate the 2×2 

HOG-descriptor 

 

The descriptor is obtained by concatenating hn 

histograms taken in “clockwise” order. Due to the low 

resistance of the descriptor to rotation, the training of the 

classifier of the third stage of cascade is conducted with 

“reproduction” of positive samples (of relevant vehicles). 

Each positive sample creates three more samples that 

model the rotation of the vehicle by ±90 and 180° with 

respect to its current orientation. New samples are 

obtained by cyclic permutation of the descriptor 

histograms with simultaneous cyclic shift of their 

components. The configuration of the neural network 

classifier of the third stage of the cascade is 33:29:1. 

In both analyzed HOG-descriptors non-normalized h 

gradient orientation histogram is calculated by means of 

integral images. For this purpose, it is necessary to build 

a block of a bins (h) size (where bins (h)-the number of 

bins in the h histogram) of gradient maps. Each such a 

card is a single-channel image of a (W, H) size equal to 

the size of the operational image after applying the ROI 

mask. Each pixel of gradient map contains a record 

about the length of the gradient vector at this point of the 

operational image (see formula 8) or a zero. Each 

gradient map corresponds to a bean in the h histogram, 

i.e., covers a range of directions of the gradient vector of 

20°
 
width for 1×1 HOG and 22.5° for 2×2 HOG. Then, 

the integral images of all gradient maps are calculated. 

Thus, non-normalized h gradient orientation histogram 

in the window is calculated by means of 3.bins (h)
 

arithmetic operations. 

Analyzed HOG-descriptors possess a high 

discriminating ability. It is interesting to note that the 

N×N modification HOG-descriptor (where N-is a number 

of units by which the window is divided as per 

width/height) which suggests itself, where N>2-leads to 

a more complex algorithm of “reproduction” of positive 

samples and according to our analysis, it has a low 

discriminating ability. Our study has been also 

confirmed by (Gleason et al., 2011). 

Method of Traffic Areas Determination 

The method is based on a comparison of neighboring 

shots. For adjacent (X and Y) shots an optimal T rigid 

transform that allows combining images is built. This 

transform describes well the change in the image due to 

the motion of the camera (and UAV) on the assumption 

of its optical stabilization. At this stage, a single-channel 

image is used to speed up the calculation. The transform 

building is made very quickly and using an exactly 

known method based on the construction of the Lucas-

Canade optical flow on the image pyramid. If T(X)=is an 

X shot influenced by the T transform, then, on the: 

 

( )( )-Z abs Y T X=     (15) 

 

Sample (here abs is a capturing pixel by pixel of the 

absolute value) most of the points without motion have a 

low intensity. After smoothing of Z and threshold 

filtering, we get the image on which the majority of non-

zero intensity pixels correspond to points of a true 

motion of objects in the image. 

After binarization and construction of an integral 

image, it becomes easy to use a simple way of 

calculating the number in which there is the movement 

for any straight-oriented rectangle. The approach 

described above can be quickly implemented. 

The Fourth Stage 

For each region we create a rectangular image in 

which the vehicle is positioned vertically. Image size = 

size of the inclined rectangle circumscribing about a 

concentration ellipse + 50% on each side. Image is 

launched in two deep autoencoders. Features of the 

region at this stage of the cascade are obtained by 

concatenating of the encoder outputs. The configuration 

of the first autoencoder is: 1088:100:10:100:1088. The 

configuration of the second autoencoder is: 

374:30:5:30:374. Total region is described by 15 

features. The configuration of the classifier at this stage 

is: 15:14:1. 

In order to train these two autoencoders, the initial set 

of positives (Fig. 5) (for training purpose only positives 

are used) is clustered into two clusters by size. The 

centers of clusters determine the size of pictures that 

autoencoders are working with. Training (but not 

validation) positives are reproduced by rotation by 

180°. The training of autoencoder is performed by 

minimizing the sum of reconstruction error squares. 

Training images are brought to the gray; their average 

is deducted from them and divided by the norm. In this 

case, the optimization criterion becomes the 

minimization of the sum of correlation coefficients. 

Multilayer autoencoder is trained as a sequence of 

single-layer  ones, followed by gluing  and fine  tuning. 
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Fig. 5. Samples of training images for autoencoders 

 

 
 
Fig. 6. Visualization of hidden neurons of the first layer 

Table 2. Confusion matrix (case: Moving objects detection 

unit is off) 

 Actual Actual positives  
 negatives (Vehicles) 

Predicted negatives 0.992 0.136 
Predicted positives 0.008 0.864 

 

Table 3. Confusion matrix (case: Moving objects detection 

unit is on) 

 Actual Actual positives 
 negatives (Vehicles) 

Predicted negatives 0.955 0.011 
Predicted positives 0.045 0.989 

 

The first hidden layer is initialized by a two-

dimensional cosine transform. Following hidden layers 

are PCA. When training the first monolayer 

autoencoder KL regularization and weight decay 

regularization are used (Ng, 2011). When training the 

next monolayer autoencoders only KL is used. The fine 

tuning is carried out without regularization. 
Samples of training images for the first and second 

autoencoders and visualization of hidden neurons of the 

first layer are shown in Fig. 6 (The configuration of the 

autoencoder is 1088:100:10:100:1088). 

Results 

Our experiments on the real marked UAV videos 

result to the following detection quality rates Table 2 

and 3. 

The performance of the developed vehicle detection 

system in case of working with a full 640×480 shot 

without ROI selection was 5 fps (when using mean ×86 

single core processor and the FHS method of 

segmentation). Visual ROI detection technique boosts 

the performance up to 19 fps. It’s possible to increase the 

performance at the cost of detection quality-we should 

switch to the SEEDS segmentation method. 

Discussion 

The peculiarity of the proposed detection method is 

as follows: 
 

1) New effective and rapid methods for ROI selection 

which allow multiply reducing the search area have been 

proposed. ROI selection can significantly reduce the 

time of further processing and the number of false 

responses. 

2) It has been proposed to use the methods of 

superpixels selection for segmentation of high-precision 

ROI segmentation. These methods are not so rapid, but 

because of ROI detection, selection of the appropriate 

scale and optimization of segmentation algorithms it is 

possible to get acceptable performance. 
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3) A set of superpixels and combinations of 

neighboring superpixels-as regions-candidates for the 

presence of images of an individual vehicle are built. 

Restrictions on these regions make it possible to restrict 

the size of the resulting set of regions. 

4) For the vehicle detection in formed regions, a 

cascade of trainable classifiers is used. The first level of 

the classifier is very rapid; the latter one is less rapid. All 

levels are using a MLP technique. 

5) The first level of the cascade is based on the 

analysis of integral characteristics of the shape of the 

region (moments). This simple classifier allows 

significantly reducing the initial selection. 

6) The second and third levels of the cascade are 

based on analysis of (HoG) texture of image elements in 

the region. These levels also allow significantly reducing 

the selection. 

7) The last level of the cascade is built on the feature 

selection by the method of construction of a regularized 

neural network image autoencoder and the encompassing 

inclined rectangular area of each region is brought to a 

single rectangular form by a linear transformation. 
8) Moving areas in the image are detected by a 

separate fast algorithm, which is based on a 
comparison of neighboring shots. The results of this 
analysis are used at the final classification levels in 
order to significantly improve the accuracy of 
classification of moving vehicles. 
 

It is possible to conduct further studies in the 

following areas: 
 

1) On the obtained ROI (which usually contains 

the entire road visible in the shot) quite small areas 

may be selected. Further object search will be made 

only in those areas. Algorithm of selection of these 

areas is similar to the algorithm of ROI selection and 

will also be fast. This approach will allow speeding up 

the algorithm by several times in general and reducing 

false responses. 
2) Color characteristics can be used in the detection. 

Now they are used only for segmentation. This can 
significantly increase the accuracy of detectors. 

3) Autoencoder can also use multi-channel (color) 

image. 

4) For images of different sizes different 

autoencoders can be built. 

5) The algorithm can be supplemented by an object 

type classifier. For example, light-duty vehicles and load 

carrier vehicles. 

6) The algorithm can be used to detect other objects 

not vehicles, for example, animals. 

7) In the algorithm, various types of classifiers can be 

used, not necessarily MLP. 

8) In the algorithm, various methods of segmentation 

can be used, not necessarily FHS. 

Conclusion 

The method allows detecting motionless vehicles 
with a good accuracy and moving vehicles with an even 
greater accuracy. 

The resulting detection was tested on actual 
experimental data and showed the sufficiently high 
accuracy.  

The speed of the algorithm allows supposing the on-
board use. The developed method can be used for traffic 
monitoring, evaluation of parking occupation and a 
number of related tasks. 
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