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Abstract: Location-based services mainly provide geo-location data. 
However, a moving object’s detailed trajectory route is lost when there is 
low-sampling of these location data. Previous works have been developed 
in order to find the possible trajectories by using the location history logged 
by users. These methods can be considered as reconstruction or imputation 
processes. In this study, we reconstruct trajectories using personalization 
features of the routing theory based on evaluation criteria over a graph. In 
addition, this trajectory reconstruction has only been considered in a 
confined environment, i.e., a road network. 
 
Keywords: Trajectory Reconstruction, Personalized Routing, Graph 
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Introduction 

The fast development of technologies and mobile 
applications has arisen the need of analyzing the huge 
amount of geo-location data recorded regarding 
Moving Objects (MO). For example, users in mobile 
social networks such as Foursquare and Flickr use 
checking-in and sharing geo-tagged photos features to 
indicate their location. 

However, usually it is difficult or impossible to get 
detailed data about the movement of a user due to 
privacy issues (Chow and Mokbel, 2011), energy saving 
or simply because people do not check-in in every place 
they visit. As a consequence, source (raw) trajectory data 
are not very accurate since there are missing data during 
the silent durations, i.e., the time durations of a 
trajectory when no data are available to describe the 
movement of an object (Hung et al., 2011). Thus, the 
trajectory between two consecutive data records is 
unknown. As a result, the following are some possible 
questions to be addressed: How does an object move 
during a silent duration? How well do the current 
methods describe the actual trajectory followed by a 
MO? Does an object move according to a certain 
criterion, e.g., trying to avoid traffic jams or slopes? 

Previous works have focused on historical trajectory 
datasets of the same MO (Chang et al., 2011) or of 
similar MOs (Chen et al., 2011) as a way of inferring the 
routes or the movement patterns of a MO. For trajectory 
reconstruction (i.e., the imputation process for silent 

durations) some authors (Liu et al., 2011; Wei et al., 
2012) use an uncertainty reinforcement approach (i.e., 
uncertain + uncertain → certain). However, these 
approaches may be inadequate if the silent durations 
in the trajectories followed by the same MO are long 
(they exceed an application threshold) and recurrent 
(i.e., there are recurrent trajectory segments where no 
trajectory data are available). 

The problem of finding a route from one place to 
another, i.e., in the Route Finding Problem (RFP) (Da 
Silva et al., 2008; Schultes, 2008) is akin to the one of 
finding a trajectory between two consecutive low-
sampled points. In recent years, several approaches 
(Hochmair, 2005; Da Silva et al., 2008; Schultes, 2008) 
have incorporated metrics other than distance (e.g., time) 
and user criteria (e.g., preference for the path with most 
touristic attractions) to the RFP in order to provide 
customized solutions. 

Hochmair (2005) offers a brief taxonomy to build the 
“best” route based on criteria such as speed, safeness, 
attractiveness and simplicity for traversing a Road 
Network (RN). This same need is addressed by the route 
planning theory, i.e., the integration of user criteria to get 
“better routes” (Hochmair, 2005). A novel and relevant 
task is the reconstruction of low-sampling trajectories 
based on the movement patterns and the geographical 
space where it occurs, e.g., the RN of a city (i.e., the 
possible locations of the MO are constrained by the 
geometry of the RN (De Almeida and Güting, 2005; 
Trajcevski, 2011)).  
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Table 1. Research works including personalization and road network 
 Include criteria/ Consider Perform trajectory 
Reference personalization RN reconstruction Description 
Orlando et al. (2007) No No Yes A simple interpolation is done for reconstructing 
    trajectories as a previous step in a TDW proposal. 
Marketos and No No Yes The trajectory reconstruction is included in a module of a 
Theodoridis (2009)    TDW using parameters such as temporal and spatial gap 
    between trajectories, maximum speed and tolerance distance.  
Yuan et al. (2010; No Yes No Uses a Pattern-based approach for the offline preprocessing 
Chen et al., 2011;    of historical trajectory data for discovering mining patterns 
Zheng et al., 2012)    to infer routing  information. However a route is inferred, not 
    a trajectory. 
Chen et al. (2010) No Yes Yes The K best connected trajectories are given when a set of 
    locations (queried points) is the input. 
Chang et al. (2011) Yes  Yes No A familiar RN followed by a specific user is built using 
    historical data. Routes are inferred from this familiar RN for 
    the user. Chang et al. (2011) infers routes, not trajectories. 
Hsieh and Li (2013) Yes Yes No Uses Greedy search approaches, i.e., optimal local choices at 
    every decision stage providing an online recommendation 
    based on the best immediate location to be visited for 
    constructing the route. However a route is inferred, not a 
    trajectory. 

 
The route among check-in data of a low sampling 

trajectory is built (filled in) with additional geo-
referenced data points and time-stamps. To help in this 
task, a graph that represents the RN is built where the 
vertices save geo-related information (longitude and 
latitude) and the edges describe the cost for reaching two 
vertices (Speičvcys et al., 2003). The routing algorithms 
rely on this representation to build the trajectory between 
two location points (Dijkstra, 1959; Hart et al., 1968). 

Low-sampling data uncertainty management is a hard 
task to tackle. To facilitate this task, the trajectory 
reconstruction can rely on user preferences (a criterion), 
such as (minimize) distance or (visit) tourist attractions 
to try to fill in those silent durations. To the best of our 
knowledge, user preferences have not been considered in 
the low-sampling trajectory reconstruction problem. Our 
claim is that the movement of an object based on user 
preferences would generate some clues which may help 
in the trajectory reconstruction (Hung et al., 2011). 
Moreover, this may help to analyze the movement from 
different perspectives, i.e., depending on the criterion 
used for the reconstruction process. 

In order to clarify the contribution of our paper, in Table 
1 we refer to some research works based on route finding 
(or reconstruction of trajectories) using personalization and 
RN. Chang et al. (2011) and Hsieh and Li (2013) are the 
only ones who find the routes based on the RN and the 
user preferences. However, they only infer the route and 
the trajectory is not reconstructed. 

Representation of Trajectories 

Several models for representing trajectories have 
been proposed in the literature (Orlando et al., 2007; 
Spaccapietra et al., 2008; Chang et al., 2011). Most of 

them, except Spaccapietra et al. (2008), represent a 
trajectory as a sequence of geo-referenced points 
temporally ordered. 

According to Orlando et al. (2007), a trajectory Ti = 
(IDi, Li) where IDi is the unique identification of the MO 
and Li is a sequence of M observations 1 2, ,..., M

i i i
L L L=< > . 

Each observation ( ), ,j j j

i

j

ii ix y tL =  represents the MO at 

location ( ),j j

i ix y  where j

i
x , j

i
y  ∈ ℝ and at time j

i
t ∈ �, 

where � is a set of time-points. Li ∈2L, where L is the set 
of all possible observations. Li is temporally ordered, i.e., 

1j j

i i
t t +< , ∀ 1≤ j<M. TS = {Ti} is a set of trajectories 

(possibly low-sampled). 

Reconstruction of Low-Sampled 

Trajectories 

Given a trajectory Ti of a MO where some pairs of 
observations j and j+1, 1≤j<M, may be separated spatially 
and temporally in such a way that they exceed a spatial 
user threshold β and a temporary user threshold τ, i.e., they 
are considered as low-sampled, our goal is to fill in each 
of these pairs with imputed observations so that β and τ 

thresholds are met. Our reconstruction process is based on 
a set of criteria Cset from the personalized route planning 
theory (Hochmair, 2005; Da Silva et al., 2008; Nadi and 
Delavar, 2011), such as time and distance. 

We consider the network-constrained trajectories (TS, 
Ga), where TS is a set of trajectories and Ga is a directed 
and labeled graph representing the underlying 
constrained RN where the set of trajectories TS is 
constrained. The graph Ga is a two-tuple. Ga = (V, E), 
where V is a set of vertices {vi} (representing the 
intersections of the streets) and E is a set of edges {ek} 
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(representing the segments of the streets). An edge ek has 
a source vertex (the initial part of an edge) denoted by 

vk,s, a target vertex (the end part of an edge), which is 
denoted by vk,t (the edge ek is traversed from vk,s to vk,t, 
but not the other way around) and an associated cost for 
traversing it denoted by ck ∈ ℝ, i.e., an edge is a tuple ek 

= (vk,s, vk,t, ck). Each vertex v ∈ V can be described by a 
location x, y (longitude, latitude). We consider the graph 
Ga, which is derived from a RN, to be fully connected 
and without any isolated network segments. We consider 
the following functions, see also Fig. 1: 
 
• get_vertex_source: E → V. Function applied to an 

edge to get its source vertex 
• get_vertex_target: E → V. Function applied to an 

edge to get its target vertex 
• get_cost: E → ℝ. Function applied to an edge to get 

the cost of traversing the edge 
• get_x: V → X. Function applied to a vertex to get its 

longitude 
• get_y: V → Y. Function applied to a vertex to get its 

latitude 
 

The function road_distance: L X L X Cset →ℝ 
receives a pair of consecutive observations and a 
criterion of movement c and generates the road 
distance between them according to the given 
criterion. The road distance refers to the distance of a 
particular path followed by a MO between the two 
observations. It depends on the underlying RN and on 
the criterion c. Figure 2 shows three possible roads 
(depicted in solid lines) between consecutive 
observations A and B according to some criteria. The 
criterion c1 (distance) used in the road drawn in green 
has the shortest road distance, followed by the road 
distance of the road drawn in blue using the criterion 

c2 (time). Finally, the road distance is the longest 
when the criterion c3 (tourist attraction) is used, i.e., 
road_distance(A, B, c1) ≤ road_distance(A, B, c2) ≤ 
road_distance(A, B, c3). Note how the distance 
between these observations changes according to the 
criterion of movement and the RN that were used. 
Note also that the Euclidean distance, depicted as a 
dashed line, does not correspond to the road distance 
in any of the three cases. 

We regard the trajectory Ti as low-sampled if ∃j, 1≤ j 

≤ M, (road_distance ( 1, ,j j

i i
cL L + ) ≥ β ⋀ 1j

i
t +  - j

i
t  ≥ τ), i.e., 

the road distance according to a criterion c and a RN 
between two consecutive observations is longer than β (a 
user distance threshold) and their time difference 

( )1j j

i it t+ −  is longer than τ (a user time threshold). We 

consider the function traj(Li,c) where Li∈2L is the 
sequence of M observations of a trajectory Ti and c∈ 

Cset, is a criterion of reconstruction. The result of the 
traj function is a more detailed sequence of 
observations 'iL so that the thresholds β and τ are met for 

j

i
L  and 1j

i
L + , ∀j, 1≤ j < M. 

The idea behind the trajectory reconstruction 
function is to fill in the trajectory with imputed 
observations between observations j

i
L  and 1j

i
L +  (∀j, 1 

≤ j < M, where both thresholds β and τ are not met) 
considering the criterion c and the RN. Next, we 
explain the effect of the traj function over a pair of 
observations j

i
L  and 1j

i
L +  where the thresholds β and τ 

are not met in order to show how the sequence of low-
sampling data are imputed. 

As presented by Zhixian (2011) for the correct 
(cleaned) network-constrained trajectory datasets, 
given any of its spatio-temporal observations 

( ), ,j j j

i i ix y t , its location ( ),j j

i ix y  should be over a road 

edge ∈E (set of edges of Ga). Consider two sampled 
observations j

i
L and 1j

i
L + where the β and τ thresholds 

are not met. Each observation is associated with the 
nearest edge in a road map (represented by the graph 
Ga) using the get_edge function, i.e., get_edge( j

i
L ,Ga) 

and get_edge( 1j

i
L + ,Ga). The signature of the get_edge 

function is L X G → E, where G is the set of the 
directed and labeled graphs representing RNs. Here, the 
nearest edge in the graph Ga = (V, E) is the output of 
the get_edge function. Therefore, a point ( j

i
x , j

i
y , j

i
t ) 

that is not over an edge ∈ E is replaced by a point 
( j

i
x′ , j

i
y′ , j

i
t ) where ( j

i
x′ , j

i
y′ ) is over an edge of E, see 

Fig. 3. That is, when we consider raw trajectories with 
a RN, each point is mapped over a road segment by 
searching for its closest road segment. Because of this 
and following the approach of Zhixian (2011), the 
minimum distance between j

i
L  and a road segment ek is 

computed by Equation 1: 
 

( )
( )

( )( )
( )( )

j
i

j j
i i

j
i

j
i

L ,

L ,   L    

 L , _ _ ,
 

L , _ _

k

k k

k

k

d e

d e if e

d get vertex source e
min otherwise

d get vertex target e

 ∈

  =  
  
  

′



 (1) 

 

where, 'iL is the projection of j

i
L over ek, d( j

i
L ,ek) is the 

perpendicular distance between j

i
L and ek and d( j

i
L , 

get_vertex_source(ek)) and d( j

i
L , get_vertex_target(ek)) 

is the Euclidean distance between j

i
L  and the 

source/target vertex of ek. Note that the d function is 
overloaded with the signatures L X E → ℝ and L X V → 
ℝ. The ek segment, which has the minimum distance 
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d( j

i
L ,ek) among all the RN segments is where the point j

i
L is mapped. i.e. get_edge( j

i
L ,Ga) = ek. 

 

 
 

Fig. 1. A street segment and its corresponding edge ek 
 

 
 

Fig. 2. Road distance according to three criteria Vs the Euclidean distance between two observations A and B 
 

 
 

Fig. 3. Edges of the graph Ga where j

i
L and 1j

i
L +  fit better 
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Getting the Location Point from Routing 

Algorithms 

Let a and b be observations where a = 
(get_x(get_vertex_target(get_edge( j

i
L ,Ga))), 

get_y(get_vertex_target(get_edge( j

i
L ,Ga))), set_time( j

i
L )) 

and b = (get_x(get_vertex_target(get_edge( 1j

i
L + ,Ga))), 

get_y(get_vertex_target(get_edge( 1j

i
L + ,Ga))), 

set_time( 1j

i
L + )). 

We use the set_time function: V→� to assign a time-
stamp to observations a and b. This function is explained 
in the next subsection. 

Then the function traj({ j

i
L , 1j

i
L + }, c) returns a 

sequence of observations {a, o1, o2, …, op, b} describing 
the route between j

i
L and 1j

i
L +  according to a criterion c 

and a RN, see Fig. 4. Note that the sequence of 
observations is imputed from the application of a routing 
algorithm over the graph Ga between its edges 
get_edge( j

i
L , Ga) and get_edge( 1j

i
L + , Ga). In this way, 

the (sub) trajectory obtained between j

i
L and 1j

i
L +  

according to a criterion c can be described by the 
Equation 2: 

1

1

1

1

,

( _ ( _ _ ( )),

_ ( _ _ ( )),

_ ( _ _ ( ))),

....,

( _ ( _ _ ( )),

( , , ) _ ( _ _ ( )),

_ ( _ _

j

i

k

j j

i i k

L

get x get vertex target e

get y get vertex target e

set time get vertex target e

get x get vertex target e

traj L L c get y get vertex target e

set time get vertex ta

+ =

1

1

1

1

( ))),

...,

( _ ( _ _ ( )),

_ ( _ _ ( )),

_ ( _ _ ( ))),

k

p

p

p

j

i

rget e

get x get vertex target e

get y get vertex target e

set time get vertex target e

L

−

−

−

+

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
  

 (2) 

 
According to the RN mapping defined by 

Speičvcys et al. (2003) the end vertex of an edge ek is 
the initial vertex of the edge ek+1, see Fig. 5. Therefore, 
get_x(get_vertex_target(ek)) = 

get_x(get_vertex_source(ek+1)) and 
get_y(get_vertex_target(ek)) = 

get_y(get_vertex_source(ek+1)). Note that 
get_edge( j

i
L ,Ga) = e1 and get_edge( 1j

i
L + ,Ga) = ep. 

 

 
 

Fig. 4. Imputed observations between the observations a and b 

 

 
 

Fig. 5. The end vertex of an edge ek is the initial vertex of the edge ek+1. 
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Fig. 6. Example of time assignment to a reconstructed (sub)trajectory 
 

For each imputed observation used for the 
reconstruction of the trajectory between j

i
L  and 1j

i
L +  a 

time-stamp must be set. For this purpose, we define the 
set_time function. 

Getting the Time-Stamps from Routing Algorithms 

To compute the time-stamp of each imputed 
observation of the reconstructed trajectory segment, the 
difference get_time( 1j

i
L + )-get_time( j

i
L ) is proportionally 

assigned to each of them. Then, the time-stamp of an 
imputed point can be computed as follows. Let: 
 
• get_distance: E → ℝ. Function applied to an edge to 

get the distance of the edge 
• j

iL
D : The distance from the observation j

i
L  to 

get_vertex_source(get_edge( j

i
L ,Ga)) 

• 1j
iL

D + : The distance from 1j

i
L +  to 

get_vertex_source(get_edge( 1j

i
L + ,Ga)) 

 
Then, see Equation 3: 

 

1

1

1

2

_ ( , )

( _ ( , ))

_ ( )

_ j
i

j
i

j j

i i

j

i L

p

k L
k

total distance L L

get istance get edge L Ga D

get distance e D

d

+

+

−

=

=

−

+ +∑

 (3) 

 
Note that the addition begins at k = 2 since we 

suppose that get_edge( j

i
L ,Ga) = e1 and ends at p-1 

because get_edge( 1j

i
L + ,Ga) = ep. That is, both e1 and ep 

are part of the resulting sequence. Then, the time-stamp 
of a get_vertex_target(ek) vertex is computed by 
Equation 4: 
 

( )( ) ( )

( )

( )
( )

( )

j
i

1

j 1
i1

j j 1 j
i i i

_ _ _   _ L  

_   _ L
*

_ L ,L   _ L

j
i

k

p

k L
k

set time get vertex target e get time

get distance e D
get time

total distance get time

−

+

=

+

= +

 
−   

   
 − 

∑  (4) 

For example. Let us consider the reconstructed 
trajectory between the observations 1

1L  and 2
1L  shown 

in Fig. 6 where we get the edges e1, e2, e3, e4. The 
get_time( 1

1L ) = 2 pm and get_time( 2
1L ) = 3pm, then 

get_time( 2
1L )- get_time( 1

1L ) = 1 hour, i.e., an hour 

must be proportionally divided among the edges. Then 
get_distance(e1) = 12, get_distance(e2) = 10, 
get_distance(e3) = 10, get_distance(e4) = 10, 1

1L
D = 2, 

2
1L

D = 2. Note that get_edge( 1
1L ,G) = e1 and 

total_distance( 1
1L , 2

1L ) = 40. 

For k = 1  
set_time(get_vertex_target(e1)) = get_time( 1

1L ) + 

((get_distance(e1)- 1
1L

D )/total_distance( 1
1L , 2

1L )) * 

get_time( 2
1L )- get_time( 1

1L ) = 2 pm + 1/4 = 2:15 pm 

For k = 2 
set_time(get_vertex_target(e2)) = get_time( 1

1L ) +(( 

get_distance(e1) + get_distance(e2)-

1
1L

D )/total_distance( 1
1L , 2

1L )) * get_time( 2
1L )- 

get_time( 1
1L ) = 2 pm + 2/4 = 2:30 pm 

For k = 3 
set_time(get_vertex_target(e3)) = get_time( 1

1L ) +(( 

get_distance(e1) + get_distance(e2) + get_distance(e3)- 

1
1L

D )/total_distance( 1
1L , 2

1L )) * get_time( 2
1L )- 

get_time( 1
1L ) = 2 pm + 3/4 = 2:45 pm 

Note that, after the reconstruction, it is possible 
that the imputed data points do not meet the β and τ 
thresholds. In this case, the longitude of the street 
segments is longer than the β threshold because this 
imputation stage only gets location points based on 
the edges of a graph Ga that represents the segments 
of a RN where a MO moves. Additional imputed data 
points can be obtained using interpolation methods 
between the imputed points, i.e., the start and the end 
vertex of an edge. The following equations find 
additional data points over a segment ek based on the 
line equation, see Equation 5:  
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( )( ) ( )( )
( )( ) ( )( )
( )( )( ) ( )( )

_ _ _   _ _ _
*

_ _ _  _ _ _

 _  _ _  _ _ _

k k

k k

k k

get y get vertex target e get y get vertex source e

get x get vertex target e get x get vertex source e

x get x get vertex target e get y get vertex r

y

ta get e

−

−

− +

= 
 (5)  

 
where, get_x and get_y are found slicing the segment ek 
in such a way that A ≤ β ⋀ road_distance( 1, ,j j

i i
cL L + ) ≤ 

A*β. Where A is the amplitude of the sub segments of ek, 
see Equation 6 and 7. 
 

( )( )

( )
( )( )

( )( )

j j 1
i i

_ _ _  

 *
_ L ,L ,    c

_ _ _  

 _ _ _

i k

i

k

k

x get x get vertex source e

d

road distance

get x get vertex target e

get x get vertex source e

+

+

 




=


 − 

 (6) 

 

( )( )

( )
( )( )

( )( )

j j 1
i i

_ _ _  

 *
_ L ,L ,    c

_ _ _  

_ _ _

i k

i

k

k

y get y get vertex source e

d

road distance

get y get vertex target e

get y get vertex source e

+

+

 




=


 − 

 (7) 

 
where, di = A* i, 1 ≤ i ≤ N-1. N is the number of intervals 
so that road_distance( j

i
L , 1j

i
L + ,c) = N * A. 

In Fig. 7 we show an example for finding additional 
data points for a segment ek, where 
get_x(get_vertex_source(ek)) = 3, 
get_y(get_vertex_source(ek)) = 1, 
get_x(get_vertex_target(ek)) = 6, 
get_y(get_vertex_target(ek)) = 5. Let β = 1.25, 
road_distance( j

i
L , 1j

i
L + ,c) = 5, then we choose A = 1.25 

and N = 4: 

 
• d1 = 1.25, then x1 = 3.75, y1 = 2 
• d2 = 2.5, then x2 = 4.5, y1 = 3 
• d3 = 3.75, then x3 = 5.25, y1 = 4 

 
Thus, the set of additional data points between (3, 1) 

and (6, 5) is {(3.75, 2), (4.5, 3), (5.25, 4)}. The time-
stamps for each of these points can be found by the 
proportional assignment of the time difference between 
observations. The results are also shown in Fig. 8, where 
we suppose that set_time(get_vertex_source(ek)) = 12 pm 
and set_time(get_vertex_target(ek)) = 4pm. 

Implementation of the traj Function 

Given (a) users check-in records describing a set of 
trajectories TS = {Ti} from a certain location-based 
service and (b) a user criterion c; we claim that a “good” 

route should (a) meet the user criterion and (b) returns a 
more detailed trajectory T’I (as long as Ti has at least a 
pair of low-sampled observations). Algorithm 1 calls the 
Function 1 (traj) for each pair of consecutive low-
sampled observations of a trajectory Ti. 

 
INPUT: { j

i
L , 1j

i
L + |road_distance( j

i
L , 1j

i
L + ,c) ≥ β ⋀ 1j

i
t +  - 

j

i
t  ≥ τ} 

      c: criterion of movement 
 
OUTPUT: { j

i
L , 1j

i
L + |road_distance( j

i
L , 1j

i
L + ,c) ≥ β’ ⋀ 

1j

i
t +  - j

i
t ≥ τ’ ∧ β’<  β ⋀ τ’ < τ} 

 
BEGIN 

1. // To apply a routing algorithm according to 

criterion c between get_edge( j

i
L , Ga) and 

get_edge( 1j

i
L + ,Ga) 

 
2.      FOR EACH ek  

 

3.   // Use set_time function for setting the time to 

each vertex resulting from the routing 

algorithm 

 

4.  Ok ←  (get_x(get_vertex_target(ek)), 
get_y(get_vertex_target(ek)), 
set_time(get_vertex_target(ek))) 

 
5.  IF road_distance(Ok, Ok+1,c) ≥ β∧ 

get_time(Ok+1)- get_time(Ok)  ≥ τ THEN 

 

6.             // Interpolate between Ok and Ok+1 

Use Equation 6 and 7 

 
7. Trajectory ← { j

i
L ,(get_x(get_vertex_target(e1)), 

get_y(get_vertex_target(e1)), 
set_time(get_vertex_target(e1))), …, 
(get_x(get_vertex_target(ek)), 
get_y(get_vertex_target(ek)), 
set_time(get_vertex_target(ek))), …, 
(get_x(get_vertex_target(ep-1)), 
get_y(get_vertex_target(ep-1)), 
set_time(get_vertex_target(ep-1))), 

1j

i
L + } 

8.         END 

9.        RETURN Trajectory 

END 
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Fig. 7. Additional imputed data points and time-stamps data points for the start and end vertex of a same edge 
 
Reconstruction of a Trajectory Algorithm 
 

INPUT: TS: set of sampled trajectories 
  c: criterion of movement 
 
OUTPUT: {TS’|∀Ti ∈ TS’ |road_distance( j

i
L , 1j

i
L + ,c) ≥ 

β’ 1j

i
t +  - j

i
t  ≥ τ’ β’ < β τ’ < τ} 

BEGIN 

1. TS’ ← ø, T’i← ø 

 

2. FOR EACH Ti IN TS  

3.  FOR EACH j

i
L  in Ti 

4.  IF road_distance( j

i
L , 1j

i
L + ,c) ≥ β 1j

i
t +  - j

i
t ≥ τ 

THEN 

 

5.   Trajectory ← traj({ j

i
L , 1j

i
L + },c) 

6.   APPEND Trajectory TO T’i 
 

7.  ELSE  

 

8.   APPEND { j

i
L , 1j

i
L + } TO T’i 

9.   NEXT j

i
L  

10.  END 

11.  END 

12. END 

13. RETURN TS’ 

END 

 

How the Traj Function Works: An Example 

To explain how the traj function works, let us 
consider a set of check-in data describing a trajectory of 
a particular user as shown in Table 2 and the RN of the 
city of Medellín, Colombia.  

We get the nearest edges get_edge(Check-in A, 

Ga), get_edge(Check-in B, Ga) and get_edge(Check-

in C, Ga) for each check-in observation. Next, the 
change of the imputed data of the reconstructed 
trajectories is shown as the criterion c changes. Let β 

be less than the actual road distance between each pair 
of check-in and c be less than the difference between 
time check-ins. Distance (Fig. 8), time (Fig. 9) and 
tourist attraction (Fig. 10) criteria were used. We also 
show the original trajectory, see Fig. 11. 

Measuring and Comparing the Resulting 

Reconstructed Trajectories using Different Criteria 

with the real Ones 

There are many approaches for measuring the 
similarity between trajectories in the literature review 
(Zhao et al., 2009; Tiakas et al., 2009; Hung et al., 
2011). A similar approach proposed by Zhao et al. 
(2009) is followed: 

Two trajectories T1 and T2 are spatio-temporally 
similar, iff (a) Trajectories T1 and T2 have the same 
temporal granularity and the trajectories are spatially 
similar, i.e., SIMPOI (T1,T2,θ) < θ, where SIMPOI(T1,T2,θ) 
is a spatial similarity measure, see Equation 8, θ is a 
threshold to consider that two trajectories are spatially 
similar and that the Point Of Interest (POI) represents an 
interesting place. 

 

( ) 1 2

1 2

1 2

   
, ,  

  
T T

POI

T T

POI POI
SIM T T

POI POI
θ

∩
=

∪
 (8) 

 
The reconstructed trajectories have the same 

temporal granularity according to Zhao et al. (2009) 
because they have similar time-stamp assignment 
according to the method proposed here, in which the 
time-stamps are assigned proportionally. We consider 
the POIs as the road segments that a trajectory 
traverses. Next, we compute the SIMPOI measured for 
80 high- sampled trajectories in Medellín. The check-
in data were simulated (time and location data were 
deleted) for those trajectories to get low-sampled 
trajectories and the (sub)trajectories were computed 
based on some criteria using the traj function between 
the simulated check-ins, see Fig. 12. 
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Fig. 8. Reconstructed trajectory using distance criterion 
 

 
 

Fig. 9. Reconstructed trajectory using time criterion 

 

 
 

Fig. 10. Reconstructed trajectory using tourist attraction criterion 
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Fig. 11. Original trajectory 

 

 
 

Fig. 12. The average similarity measure between the reconstructed trajectories and the original ones for a set of 80 users 

 
Table 2. Check- in data of a particular user 
User  Data Point  POI Name  (x,y,t) 
15307763 Check-in A Shop (-75.562555, 6.249437, 20140809134345) 
15307763 Check-in B Restaurant (-75.576790, 6.244406, 20140809145517) 
15307763 Check-in C Shop (-75.591672, 6.257514, 20140809173745) 

 
Note how the average SIMPOI is higher when the 

distance criterion was used followed by the tourist 
attraction criterion, i.e., the best imputation process for 
this 80 trajectories could be achieved when some of 
these criteria were used. However, remember that the 
purpose of the trajectory reconstruction proposed here is 
to discover the new possibilities of reconstruction as an 
imputation process of the actual trajectories. The 
trajectory reconstruction procedure takes place in order 
to transform low-sampled location data into trajectories 

with a better sampling so that we can acquire some 
useful knowledge. 

Technical Details 

This technical details are intended to offer a more 
comprehensive understanding of the solution and it 
serves as a reference for future implementation of the 
system. It also pretends to provide the technical details to 
replicate the previously executed experiments. We used 
the following software tools:  
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• Apigee. An infrastructure for creating and operating 
APIs and apps 

• Foursquare API. Foursquare for developers. Access 
to world-class places database of Foursquare 

• Openstreetmap is a map of the world free to use 
under an open license 

• Osm2po-4.8.8. Routing On OpenStreetMap is both, a 
converter and a routing engine, the converter parses 
OpenStreetMap's XML-Data and makes it routable 

• Pentaho Data Integration 5.0.1. Delivers extraction, 
transformation and loading capabilities 

• Postgress 9.2. An Object-Relational Database 
Management System (ORDBMS) 

• PgRouting. Extends the PostGIS/PostgreSQL 
geospatial database to provide geospatial routing 
functionality 

• Qgis Desktop 2.0.1. A Free and Open Source 
Geographic Information System. Create, edit, 
visualise, analyse and publish geospatial information 

 
Next, we detail our sources. The source data can be 

extracted from multiple location-based devices and 
applications. For this technical proposal, JSON files 
were generated using Foursquare API and then read 
using Pentaho Data Integration. The Foursquare API was 

accessed using Apigee. We got details of the users from 
Foursquare 
(https://developer.foursquare.com/docs/users/users). 

Data of the venues (POIs) registered in Foursquare in 
the city of Medellín, Colombia were also collected. For 
the points where the people make check-in, data of 80 
active random users living in the Medellin, Colombia 
city were collected. Figure 13 shows an instance of the 
file gotten with this response. 

Data of a list of check-in of the users described above 
were gathered during a week. A list of touristic points of 
Medellín, Colombia city were defined. Those were 
extracted from OpenStreetMap were people can tagged 
those places as touristic. See an example of this file in 
Fig. 14. The location for each one was also included. 
The idea behind this definition is to assign a lower cost 
to segments of the streets near to those touristic points. 
The Graph Map was gotten using osm2po-4.8.8. The traj 
function was implemented and carries out the 
reconstruction task proposed in this study. The 
implementation of the traj function, additional 
documents and all the software can be found at 
https://www.dropbox.com/sh/3mlfrveicpwjrgp/AADzZQ
8jneo9jpBFlofFkGSba?dl=0. 

 

 
 

Fig. 13. Instance of the file of check-in data 
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Fig. 14. Instance of the file of points of interest 
 
Conclusion 

Valuable information can be extracted from 
trajectories. It can be useful for location-based services 
applications including trip planning, personalized 
navigation routing services, mobile commerce and 
location-based recommendation services. In this study, 
we reconstructed low-sampling trajectories using the 
personalization features of the routing theory based on a 
criterion evaluation over a graph. The traj function with 
different criteria can be used as an input for different 
mining algorithms over trajectories as a way to deal with 
analytics using uncertain trajectories. Here, we claim that 
analytics over reconstructed trajectories can change 
depending on the criterion used for their reconstruction. 
Moreover, this criteria-based reconstruction can be used 
to perform analytical tasks and to offer the possibility of 
formulating questions based on user criteria, such as: 

 
• How do regions of interest (Cao et al., 2005) change 

according to a chosen criterion of reconstruction 
during a determined time? 

• What are the main bottlenecks in the city in a 
determined period according to a certain movement 
reconstruction criterion? 

• What would be the fuel consumption if the vehicles 
moved according to a certain criterion in a 
determined period? 
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