

© 2016 Edison Ospina, Francisco Moreno and Jaime Guzmán. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

American Journal of Applied Sciences

Original Research Paper

Low-Sampling Trajectory Reconstruction using Criteria-

Based Routing over a Graph

Edison Ospina, Francisco Moreno and Jaime Guzmán

Department of Computer Science and Decisions Making, National University of Colombia, Medellín, Colombia

Article history

Received: 05-03-2015
Reviewed: 13-08-2015
Approved: 02-02-2016

Corresponding Author:
Francisco Moreno,
National Department of
Computer Science and
Decisions Making, National
University of Colombia,
Medellín, Colombia
E-mail: fjmoreno@unal.edu.co

Abstract: Location-based services mainly provide geo-location data.
However, a moving object’s detailed trajectory route is lost when there is
low-sampling of these location data. Previous works have been developed
in order to find the possible trajectories by using the location history logged
by users. These methods can be considered as reconstruction or imputation
processes. In this study, we reconstruct trajectories using personalization
features of the routing theory based on evaluation criteria over a graph. In
addition, this trajectory reconstruction has only been considered in a
confined environment, i.e., a road network.

Keywords: Trajectory Reconstruction, Personalized Routing, Graph
Theory, Imputation Process

Introduction

The fast development of technologies and mobile
applications has arisen the need of analyzing the huge
amount of geo-location data recorded regarding
Moving Objects (MO). For example, users in mobile
social networks such as Foursquare and Flickr use
checking-in and sharing geo-tagged photos features to
indicate their location.

However, usually it is difficult or impossible to get
detailed data about the movement of a user due to
privacy issues (Chow and Mokbel, 2011), energy saving
or simply because people do not check-in in every place
they visit. As a consequence, source (raw) trajectory data
are not very accurate since there are missing data during
the silent durations, i.e., the time durations of a
trajectory when no data are available to describe the
movement of an object (Hung et al., 2011). Thus, the
trajectory between two consecutive data records is
unknown. As a result, the following are some possible
questions to be addressed: How does an object move
during a silent duration? How well do the current
methods describe the actual trajectory followed by a
MO? Does an object move according to a certain
criterion, e.g., trying to avoid traffic jams or slopes?

Previous works have focused on historical trajectory
datasets of the same MO (Chang et al., 2011) or of
similar MOs (Chen et al., 2011) as a way of inferring the
routes or the movement patterns of a MO. For trajectory
reconstruction (i.e., the imputation process for silent

durations) some authors (Liu et al., 2011; Wei et al.,
2012) use an uncertainty reinforcement approach (i.e.,
uncertain + uncertain → certain). However, these
approaches may be inadequate if the silent durations
in the trajectories followed by the same MO are long
(they exceed an application threshold) and recurrent
(i.e., there are recurrent trajectory segments where no
trajectory data are available).

The problem of finding a route from one place to
another, i.e., in the Route Finding Problem (RFP) (Da
Silva et al., 2008; Schultes, 2008) is akin to the one of
finding a trajectory between two consecutive low-
sampled points. In recent years, several approaches
(Hochmair, 2005; Da Silva et al., 2008; Schultes, 2008)
have incorporated metrics other than distance (e.g., time)
and user criteria (e.g., preference for the path with most
touristic attractions) to the RFP in order to provide
customized solutions.

Hochmair (2005) offers a brief taxonomy to build the
“best” route based on criteria such as speed, safeness,
attractiveness and simplicity for traversing a Road
Network (RN). This same need is addressed by the route
planning theory, i.e., the integration of user criteria to get
“better routes” (Hochmair, 2005). A novel and relevant
task is the reconstruction of low-sampling trajectories
based on the movement patterns and the geographical
space where it occurs, e.g., the RN of a city (i.e., the
possible locations of the MO are constrained by the
geometry of the RN (De Almeida and Güting, 2005;
Trajcevski, 2011)).

Edison Ospina et al. / American Journal of Applied Sciences 2016, 13 (2): 171.183
DOI: 10.3844/ajassp.2016.171.183

172

Table 1. Research works including personalization and road network
 Include criteria/ Consider Perform trajectory
Reference personalization RN reconstruction Description
Orlando et al. (2007) No No Yes A simple interpolation is done for reconstructing
 trajectories as a previous step in a TDW proposal.
Marketos and No No Yes The trajectory reconstruction is included in a module of a
Theodoridis (2009) TDW using parameters such as temporal and spatial gap
 between trajectories, maximum speed and tolerance distance.
Yuan et al. (2010; No Yes No Uses a Pattern-based approach for the offline preprocessing
Chen et al., 2011; of historical trajectory data for discovering mining patterns
Zheng et al., 2012) to infer routing information. However a route is inferred, not
 a trajectory.
Chen et al. (2010) No Yes Yes The K best connected trajectories are given when a set of
 locations (queried points) is the input.
Chang et al. (2011) Yes Yes No A familiar RN followed by a specific user is built using
 historical data. Routes are inferred from this familiar RN for
 the user. Chang et al. (2011) infers routes, not trajectories.
Hsieh and Li (2013) Yes Yes No Uses Greedy search approaches, i.e., optimal local choices at
 every decision stage providing an online recommendation
 based on the best immediate location to be visited for
 constructing the route. However a route is inferred, not a
 trajectory.

The route among check-in data of a low sampling

trajectory is built (filled in) with additional geo-
referenced data points and time-stamps. To help in this
task, a graph that represents the RN is built where the
vertices save geo-related information (longitude and
latitude) and the edges describe the cost for reaching two
vertices (Speičvcys et al., 2003). The routing algorithms
rely on this representation to build the trajectory between
two location points (Dijkstra, 1959; Hart et al., 1968).

Low-sampling data uncertainty management is a hard
task to tackle. To facilitate this task, the trajectory
reconstruction can rely on user preferences (a criterion),
such as (minimize) distance or (visit) tourist attractions
to try to fill in those silent durations. To the best of our
knowledge, user preferences have not been considered in
the low-sampling trajectory reconstruction problem. Our
claim is that the movement of an object based on user
preferences would generate some clues which may help
in the trajectory reconstruction (Hung et al., 2011).
Moreover, this may help to analyze the movement from
different perspectives, i.e., depending on the criterion
used for the reconstruction process.

In order to clarify the contribution of our paper, in Table
1 we refer to some research works based on route finding
(or reconstruction of trajectories) using personalization and
RN. Chang et al. (2011) and Hsieh and Li (2013) are the
only ones who find the routes based on the RN and the
user preferences. However, they only infer the route and
the trajectory is not reconstructed.

Representation of Trajectories

Several models for representing trajectories have
been proposed in the literature (Orlando et al., 2007;
Spaccapietra et al., 2008; Chang et al., 2011). Most of

them, except Spaccapietra et al. (2008), represent a
trajectory as a sequence of geo-referenced points
temporally ordered.

According to Orlando et al. (2007), a trajectory Ti =
(IDi, Li) where IDi is the unique identification of the MO
and Li is a sequence of M observations 1 2, ,..., M

i i i
L L L=< > .

Each observation (), ,j j j

i

j

ii ix y tL = represents the MO at

location (),j j

i ix y where j

i
x , j

i
y ∈ ℝ and at time j

i
t ∈ �,

where � is a set of time-points. Li ∈2L, where L is the set
of all possible observations. Li is temporally ordered, i.e.,

1j j

i i
t t +< , ∀ 1≤ j<M. TS = {Ti} is a set of trajectories

(possibly low-sampled).

Reconstruction of Low-Sampled

Trajectories

Given a trajectory Ti of a MO where some pairs of
observations j and j+1, 1≤j<M, may be separated spatially
and temporally in such a way that they exceed a spatial
user threshold β and a temporary user threshold τ, i.e., they
are considered as low-sampled, our goal is to fill in each
of these pairs with imputed observations so that β and τ

thresholds are met. Our reconstruction process is based on
a set of criteria Cset from the personalized route planning
theory (Hochmair, 2005; Da Silva et al., 2008; Nadi and
Delavar, 2011), such as time and distance.

We consider the network-constrained trajectories (TS,
Ga), where TS is a set of trajectories and Ga is a directed
and labeled graph representing the underlying
constrained RN where the set of trajectories TS is
constrained. The graph Ga is a two-tuple. Ga = (V, E),
where V is a set of vertices {vi} (representing the
intersections of the streets) and E is a set of edges {ek}

Edison Ospina et al. / American Journal of Applied Sciences 2016, 13 (2): 171.183
DOI: 10.3844/ajassp.2016.171.183

173

(representing the segments of the streets). An edge ek has
a source vertex (the initial part of an edge) denoted by

vk,s, a target vertex (the end part of an edge), which is
denoted by vk,t (the edge ek is traversed from vk,s to vk,t,
but not the other way around) and an associated cost for
traversing it denoted by ck ∈ ℝ, i.e., an edge is a tuple ek

= (vk,s, vk,t, ck). Each vertex v ∈ V can be described by a
location x, y (longitude, latitude). We consider the graph
Ga, which is derived from a RN, to be fully connected
and without any isolated network segments. We consider
the following functions, see also Fig. 1:

• get_vertex_source: E → V. Function applied to an

edge to get its source vertex
• get_vertex_target: E → V. Function applied to an

edge to get its target vertex
• get_cost: E → ℝ. Function applied to an edge to get

the cost of traversing the edge
• get_x: V → X. Function applied to a vertex to get its

longitude
• get_y: V → Y. Function applied to a vertex to get its

latitude

The function road_distance: L X L X Cset →ℝ
receives a pair of consecutive observations and a
criterion of movement c and generates the road
distance between them according to the given
criterion. The road distance refers to the distance of a
particular path followed by a MO between the two
observations. It depends on the underlying RN and on
the criterion c. Figure 2 shows three possible roads
(depicted in solid lines) between consecutive
observations A and B according to some criteria. The
criterion c1 (distance) used in the road drawn in green
has the shortest road distance, followed by the road
distance of the road drawn in blue using the criterion

c2 (time). Finally, the road distance is the longest
when the criterion c3 (tourist attraction) is used, i.e.,
road_distance(A, B, c1) ≤ road_distance(A, B, c2) ≤
road_distance(A, B, c3). Note how the distance
between these observations changes according to the
criterion of movement and the RN that were used.
Note also that the Euclidean distance, depicted as a
dashed line, does not correspond to the road distance
in any of the three cases.

We regard the trajectory Ti as low-sampled if ∃j, 1≤ j

≤ M, (road_distance (1, ,j j

i i
cL L +) ≥ β ⋀ 1j

i
t + - j

i
t ≥ τ), i.e.,

the road distance according to a criterion c and a RN
between two consecutive observations is longer than β (a
user distance threshold) and their time difference

()1j j

i it t+ − is longer than τ (a user time threshold). We

consider the function traj(Li,c) where Li∈2L is the
sequence of M observations of a trajectory Ti and c∈

Cset, is a criterion of reconstruction. The result of the
traj function is a more detailed sequence of
observations 'iL so that the thresholds β and τ are met for

j

i
L and 1j

i
L + , ∀j, 1≤ j < M.

The idea behind the trajectory reconstruction
function is to fill in the trajectory with imputed
observations between observations j

i
L and 1j

i
L + (∀j, 1

≤ j < M, where both thresholds β and τ are not met)
considering the criterion c and the RN. Next, we
explain the effect of the traj function over a pair of
observations j

i
L and 1j

i
L + where the thresholds β and τ

are not met in order to show how the sequence of low-
sampling data are imputed.

As presented by Zhixian (2011) for the correct
(cleaned) network-constrained trajectory datasets,
given any of its spatio-temporal observations

(), ,j j j

i i ix y t , its location (),j j

i ix y should be over a road

edge ∈E (set of edges of Ga). Consider two sampled
observations j

i
L and 1j

i
L + where the β and τ thresholds

are not met. Each observation is associated with the
nearest edge in a road map (represented by the graph
Ga) using the get_edge function, i.e., get_edge(j

i
L ,Ga)

and get_edge(1j

i
L + ,Ga). The signature of the get_edge

function is L X G → E, where G is the set of the
directed and labeled graphs representing RNs. Here, the
nearest edge in the graph Ga = (V, E) is the output of
the get_edge function. Therefore, a point (j

i
x , j

i
y , j

i
t)

that is not over an edge ∈ E is replaced by a point
(j

i
x′ , j

i
y′ , j

i
t) where (j

i
x′ , j

i
y′) is over an edge of E, see

Fig. 3. That is, when we consider raw trajectories with
a RN, each point is mapped over a road segment by
searching for its closest road segment. Because of this
and following the approach of Zhixian (2011), the
minimum distance between j

i
L and a road segment ek is

computed by Equation 1:

()
()

()()
()()

j
i

j j
i i

j
i

j
i

L ,

L , L

 L , _ _ ,

L , _ _

k

k k

k

k

d e

d e if e

d get vertex source e
min otherwise

d get vertex target e

 ∈

  =  
  
  

′



 (1)

where, 'iL is the projection of j

i
L over ek, d(j

i
L ,ek) is the

perpendicular distance between j

i
L and ek and d(j

i
L ,

get_vertex_source(ek)) and d(j

i
L , get_vertex_target(ek))

is the Euclidean distance between j

i
L and the

source/target vertex of ek. Note that the d function is
overloaded with the signatures L X E → ℝ and L X V →
ℝ. The ek segment, which has the minimum distance

Edison Ospina et al. / American Journal of Applied Sciences 2016, 13 (2): 171.183
DOI: 10.3844/ajassp.2016.171.183

174

d(j

i
L ,ek) among all the RN segments is where the point j

i
L is mapped. i.e. get_edge(j

i
L ,Ga) = ek.

Fig. 1. A street segment and its corresponding edge ek

Fig. 2. Road distance according to three criteria Vs the Euclidean distance between two observations A and B

Fig. 3. Edges of the graph Ga where j

i
L and 1j

i
L + fit better

Edison Ospina et al. / American Journal of Applied Sciences 2016, 13 (2): 171.183
DOI: 10.3844/ajassp.2016.171.183

175

Getting the Location Point from Routing

Algorithms

Let a and b be observations where a =
(get_x(get_vertex_target(get_edge(j

i
L ,Ga))),

get_y(get_vertex_target(get_edge(j

i
L ,Ga))), set_time(j

i
L))

and b = (get_x(get_vertex_target(get_edge(1j

i
L + ,Ga))),

get_y(get_vertex_target(get_edge(1j

i
L + ,Ga))),

set_time(1j

i
L +)).

We use the set_time function: V→� to assign a time-
stamp to observations a and b. This function is explained
in the next subsection.

Then the function traj({ j

i
L , 1j

i
L + }, c) returns a

sequence of observations {a, o1, o2, …, op, b} describing
the route between j

i
L and 1j

i
L + according to a criterion c

and a RN, see Fig. 4. Note that the sequence of
observations is imputed from the application of a routing
algorithm over the graph Ga between its edges
get_edge(j

i
L , Ga) and get_edge(1j

i
L + , Ga). In this way,

the (sub) trajectory obtained between j

i
L and 1j

i
L +

according to a criterion c can be described by the
Equation 2:

1

1

1

1

,

(_ (_ _ ()),

_ (_ _ ()),

_ (_ _ ())),

....,

(_ (_ _ ()),

(, ,) _ (_ _ ()),

_ (_ _

j

i

k

j j

i i k

L

get x get vertex target e

get y get vertex target e

set time get vertex target e

get x get vertex target e

traj L L c get y get vertex target e

set time get vertex ta

+ =

1

1

1

1

())),

...,

(_ (_ _ ()),

_ (_ _ ()),

_ (_ _ ())),

k

p

p

p

j

i

rget e

get x get vertex target e

get y get vertex target e

set time get vertex target e

L

−

−

−

+

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
  

 (2)

According to the RN mapping defined by

Speičvcys et al. (2003) the end vertex of an edge ek is
the initial vertex of the edge ek+1, see Fig. 5. Therefore,
get_x(get_vertex_target(ek)) =

get_x(get_vertex_source(ek+1)) and
get_y(get_vertex_target(ek)) =

get_y(get_vertex_source(ek+1)). Note that
get_edge(j

i
L ,Ga) = e1 and get_edge(1j

i
L + ,Ga) = ep.

Fig. 4. Imputed observations between the observations a and b

Fig. 5. The end vertex of an edge ek is the initial vertex of the edge ek+1.

Edison Ospina et al. / American Journal of Applied Sciences 2016, 13 (2): 171.183
DOI: 10.3844/ajassp.2016.171.183

176

Fig. 6. Example of time assignment to a reconstructed (sub)trajectory

For each imputed observation used for the
reconstruction of the trajectory between j

i
L and 1j

i
L + a

time-stamp must be set. For this purpose, we define the
set_time function.

Getting the Time-Stamps from Routing Algorithms

To compute the time-stamp of each imputed
observation of the reconstructed trajectory segment, the
difference get_time(1j

i
L +)-get_time(j

i
L) is proportionally

assigned to each of them. Then, the time-stamp of an
imputed point can be computed as follows. Let:

• get_distance: E → ℝ. Function applied to an edge to

get the distance of the edge
• j

iL
D : The distance from the observation j

i
L to

get_vertex_source(get_edge(j

i
L ,Ga))

• 1j
iL

D + : The distance from 1j

i
L + to

get_vertex_source(get_edge(1j

i
L + ,Ga))

Then, see Equation 3:

1

1

1

2

_ (,)

(_ (,))

_ ()

_ j
i

j
i

j j

i i

j

i L

p

k L
k

total distance L L

get istance get edge L Ga D

get distance e D

d

+

+

−

=

=

−

+ +∑

 (3)

Note that the addition begins at k = 2 since we

suppose that get_edge(j

i
L ,Ga) = e1 and ends at p-1

because get_edge(1j

i
L + ,Ga) = ep. That is, both e1 and ep

are part of the resulting sequence. Then, the time-stamp
of a get_vertex_target(ek) vertex is computed by
Equation 4:

()() ()

()

()
()

()

j
i

1

j 1
i1

j j 1 j
i i i

_ _ _ _ L

_ _ L
*

_ L ,L _ L

j
i

k

p

k L
k

set time get vertex target e get time

get distance e D
get time

total distance get time

−

+

=

+

= +

 
−   

   
 − 

∑ (4)

For example. Let us consider the reconstructed
trajectory between the observations 1

1L and 2
1L shown

in Fig. 6 where we get the edges e1, e2, e3, e4. The
get_time(1

1L) = 2 pm and get_time(2
1L) = 3pm, then

get_time(2
1L)- get_time(1

1L) = 1 hour, i.e., an hour

must be proportionally divided among the edges. Then
get_distance(e1) = 12, get_distance(e2) = 10,
get_distance(e3) = 10, get_distance(e4) = 10, 1

1L
D = 2,

2
1L

D = 2. Note that get_edge(1
1L ,G) = e1 and

total_distance(1
1L , 2

1L) = 40.

For k = 1
set_time(get_vertex_target(e1)) = get_time(1

1L) +

((get_distance(e1)- 1
1L

D)/total_distance(1
1L , 2

1L)) *

get_time(2
1L)- get_time(1

1L) = 2 pm + 1/4 = 2:15 pm

For k = 2
set_time(get_vertex_target(e2)) = get_time(1

1L) +((

get_distance(e1) + get_distance(e2)-

1
1L

D)/total_distance(1
1L , 2

1L)) * get_time(2
1L)-

get_time(1
1L) = 2 pm + 2/4 = 2:30 pm

For k = 3
set_time(get_vertex_target(e3)) = get_time(1

1L) +((

get_distance(e1) + get_distance(e2) + get_distance(e3)-

1
1L

D)/total_distance(1
1L , 2

1L)) * get_time(2
1L)-

get_time(1
1L) = 2 pm + 3/4 = 2:45 pm

Note that, after the reconstruction, it is possible
that the imputed data points do not meet the β and τ
thresholds. In this case, the longitude of the street
segments is longer than the β threshold because this
imputation stage only gets location points based on
the edges of a graph Ga that represents the segments
of a RN where a MO moves. Additional imputed data
points can be obtained using interpolation methods
between the imputed points, i.e., the start and the end
vertex of an edge. The following equations find
additional data points over a segment ek based on the
line equation, see Equation 5:

Edison Ospina et al. / American Journal of Applied Sciences 2016, 13 (2): 171.183
DOI: 10.3844/ajassp.2016.171.183

177

()() ()()
()() ()()
()()() ()()

_ _ _ _ _ _
*

_ _ _ _ _ _

 _ _ _ _ _ _

k k

k k

k k

get y get vertex target e get y get vertex source e

get x get vertex target e get x get vertex source e

x get x get vertex target e get y get vertex r

y

ta get e

−

−

− +

=
 (5)

where, get_x and get_y are found slicing the segment ek
in such a way that A ≤ β ⋀ road_distance(1, ,j j

i i
cL L +) ≤

A*β. Where A is the amplitude of the sub segments of ek,
see Equation 6 and 7.

()()

()
()()

()()

j j 1
i i

_ _ _

 *
_ L ,L , c

_ _ _

 _ _ _

i k

i

k

k

x get x get vertex source e

d

road distance

get x get vertex target e

get x get vertex source e

+

+

 




=


 − 

 (6)

()()

()
()()

()()

j j 1
i i

_ _ _

 *
_ L ,L , c

_ _ _

_ _ _

i k

i

k

k

y get y get vertex source e

d

road distance

get y get vertex target e

get y get vertex source e

+

+

 




=


 − 

 (7)

where, di = A* i, 1 ≤ i ≤ N-1. N is the number of intervals
so that road_distance(j

i
L , 1j

i
L + ,c) = N * A.

In Fig. 7 we show an example for finding additional
data points for a segment ek, where
get_x(get_vertex_source(ek)) = 3,
get_y(get_vertex_source(ek)) = 1,
get_x(get_vertex_target(ek)) = 6,
get_y(get_vertex_target(ek)) = 5. Let β = 1.25,
road_distance(j

i
L , 1j

i
L + ,c) = 5, then we choose A = 1.25

and N = 4:

• d1 = 1.25, then x1 = 3.75, y1 = 2
• d2 = 2.5, then x2 = 4.5, y1 = 3
• d3 = 3.75, then x3 = 5.25, y1 = 4

Thus, the set of additional data points between (3, 1)

and (6, 5) is {(3.75, 2), (4.5, 3), (5.25, 4)}. The time-
stamps for each of these points can be found by the
proportional assignment of the time difference between
observations. The results are also shown in Fig. 8, where
we suppose that set_time(get_vertex_source(ek)) = 12 pm
and set_time(get_vertex_target(ek)) = 4pm.

Implementation of the traj Function

Given (a) users check-in records describing a set of
trajectories TS = {Ti} from a certain location-based
service and (b) a user criterion c; we claim that a “good”

route should (a) meet the user criterion and (b) returns a
more detailed trajectory T’I (as long as Ti has at least a
pair of low-sampled observations). Algorithm 1 calls the
Function 1 (traj) for each pair of consecutive low-
sampled observations of a trajectory Ti.

INPUT: { j

i
L , 1j

i
L + |road_distance(j

i
L , 1j

i
L + ,c) ≥ β ⋀ 1j

i
t + -

j

i
t ≥ τ}

 c: criterion of movement

OUTPUT: { j

i
L , 1j

i
L + |road_distance(j

i
L , 1j

i
L + ,c) ≥ β’ ⋀

1j

i
t + - j

i
t ≥ τ’ ∧ β’< β ⋀ τ’ < τ}

BEGIN

1. // To apply a routing algorithm according to

criterion c between get_edge(j

i
L , Ga) and

get_edge(1j

i
L + ,Ga)

2. FOR EACH ek

3. // Use set_time function for setting the time to

each vertex resulting from the routing

algorithm

4. Ok ← (get_x(get_vertex_target(ek)),
get_y(get_vertex_target(ek)),
set_time(get_vertex_target(ek)))

5. IF road_distance(Ok, Ok+1,c) ≥ β∧

get_time(Ok+1)- get_time(Ok) ≥ τ THEN

6. // Interpolate between Ok and Ok+1

Use Equation 6 and 7

7. Trajectory ← { j

i
L ,(get_x(get_vertex_target(e1)),

get_y(get_vertex_target(e1)),
set_time(get_vertex_target(e1))), …,
(get_x(get_vertex_target(ek)),
get_y(get_vertex_target(ek)),
set_time(get_vertex_target(ek))), …,
(get_x(get_vertex_target(ep-1)),
get_y(get_vertex_target(ep-1)),
set_time(get_vertex_target(ep-1))),

1j

i
L + }

8. END

9. RETURN Trajectory

END

Edison Ospina et al. / American Journal of Applied Sciences 2016, 13 (2): 171.183
DOI: 10.3844/ajassp.2016.171.183

178

Fig. 7. Additional imputed data points and time-stamps data points for the start and end vertex of a same edge

Reconstruction of a Trajectory Algorithm

INPUT: TS: set of sampled trajectories
 c: criterion of movement

OUTPUT: {TS’|∀Ti ∈ TS’ |road_distance(j

i
L , 1j

i
L + ,c) ≥

β’ 1j

i
t + - j

i
t ≥ τ’ β’ < β τ’ < τ}

BEGIN

1. TS’ ← ø, T’i← ø

2. FOR EACH Ti IN TS

3. FOR EACH j

i
L in Ti

4. IF road_distance(j

i
L , 1j

i
L + ,c) ≥ β 1j

i
t + - j

i
t ≥ τ

THEN

5. Trajectory ← traj({ j

i
L , 1j

i
L + },c)

6. APPEND Trajectory TO T’i

7. ELSE

8. APPEND { j

i
L , 1j

i
L + } TO T’i

9. NEXT j

i
L

10. END

11. END

12. END

13. RETURN TS’

END

How the Traj Function Works: An Example

To explain how the traj function works, let us
consider a set of check-in data describing a trajectory of
a particular user as shown in Table 2 and the RN of the
city of Medellín, Colombia.

We get the nearest edges get_edge(Check-in A,

Ga), get_edge(Check-in B, Ga) and get_edge(Check-

in C, Ga) for each check-in observation. Next, the
change of the imputed data of the reconstructed
trajectories is shown as the criterion c changes. Let β

be less than the actual road distance between each pair
of check-in and c be less than the difference between
time check-ins. Distance (Fig. 8), time (Fig. 9) and
tourist attraction (Fig. 10) criteria were used. We also
show the original trajectory, see Fig. 11.

Measuring and Comparing the Resulting

Reconstructed Trajectories using Different Criteria

with the real Ones

There are many approaches for measuring the
similarity between trajectories in the literature review
(Zhao et al., 2009; Tiakas et al., 2009; Hung et al.,
2011). A similar approach proposed by Zhao et al.
(2009) is followed:

Two trajectories T1 and T2 are spatio-temporally
similar, iff (a) Trajectories T1 and T2 have the same
temporal granularity and the trajectories are spatially
similar, i.e., SIMPOI (T1,T2,θ) < θ, where SIMPOI(T1,T2,θ)
is a spatial similarity measure, see Equation 8, θ is a
threshold to consider that two trajectories are spatially
similar and that the Point Of Interest (POI) represents an
interesting place.

() 1 2

1 2

1 2

, ,

T T

POI

T T

POI POI
SIM T T

POI POI
θ

∩
=

∪
 (8)

The reconstructed trajectories have the same

temporal granularity according to Zhao et al. (2009)
because they have similar time-stamp assignment
according to the method proposed here, in which the
time-stamps are assigned proportionally. We consider
the POIs as the road segments that a trajectory
traverses. Next, we compute the SIMPOI measured for
80 high- sampled trajectories in Medellín. The check-
in data were simulated (time and location data were
deleted) for those trajectories to get low-sampled
trajectories and the (sub)trajectories were computed
based on some criteria using the traj function between
the simulated check-ins, see Fig. 12.

Edison Ospina et al. / American Journal of Applied Sciences 2016, 13 (2): 171.183
DOI: 10.3844/ajassp.2016.171.183

179

Fig. 8. Reconstructed trajectory using distance criterion

Fig. 9. Reconstructed trajectory using time criterion

Fig. 10. Reconstructed trajectory using tourist attraction criterion

Edison Ospina et al. / American Journal of Applied Sciences 2016, 13 (2): 171.183
DOI: 10.3844/ajassp.2016.171.183

180

Fig. 11. Original trajectory

Fig. 12. The average similarity measure between the reconstructed trajectories and the original ones for a set of 80 users

Table 2. Check- in data of a particular user
User Data Point POI Name (x,y,t)
15307763 Check-in A Shop (-75.562555, 6.249437, 20140809134345)
15307763 Check-in B Restaurant (-75.576790, 6.244406, 20140809145517)
15307763 Check-in C Shop (-75.591672, 6.257514, 20140809173745)

Note how the average SIMPOI is higher when the

distance criterion was used followed by the tourist
attraction criterion, i.e., the best imputation process for
this 80 trajectories could be achieved when some of
these criteria were used. However, remember that the
purpose of the trajectory reconstruction proposed here is
to discover the new possibilities of reconstruction as an
imputation process of the actual trajectories. The
trajectory reconstruction procedure takes place in order
to transform low-sampled location data into trajectories

with a better sampling so that we can acquire some
useful knowledge.

Technical Details

This technical details are intended to offer a more
comprehensive understanding of the solution and it
serves as a reference for future implementation of the
system. It also pretends to provide the technical details to
replicate the previously executed experiments. We used
the following software tools:

Edison Ospina et al. / American Journal of Applied Sciences 2016, 13 (2): 171.183
DOI: 10.3844/ajassp.2016.171.183

181

• Apigee. An infrastructure for creating and operating
APIs and apps

• Foursquare API. Foursquare for developers. Access
to world-class places database of Foursquare

• Openstreetmap is a map of the world free to use
under an open license

• Osm2po-4.8.8. Routing On OpenStreetMap is both, a
converter and a routing engine, the converter parses
OpenStreetMap's XML-Data and makes it routable

• Pentaho Data Integration 5.0.1. Delivers extraction,
transformation and loading capabilities

• Postgress 9.2. An Object-Relational Database
Management System (ORDBMS)

• PgRouting. Extends the PostGIS/PostgreSQL
geospatial database to provide geospatial routing
functionality

• Qgis Desktop 2.0.1. A Free and Open Source
Geographic Information System. Create, edit,
visualise, analyse and publish geospatial information

Next, we detail our sources. The source data can be

extracted from multiple location-based devices and
applications. For this technical proposal, JSON files
were generated using Foursquare API and then read
using Pentaho Data Integration. The Foursquare API was

accessed using Apigee. We got details of the users from
Foursquare
(https://developer.foursquare.com/docs/users/users).

Data of the venues (POIs) registered in Foursquare in
the city of Medellín, Colombia were also collected. For
the points where the people make check-in, data of 80
active random users living in the Medellin, Colombia
city were collected. Figure 13 shows an instance of the
file gotten with this response.

Data of a list of check-in of the users described above
were gathered during a week. A list of touristic points of
Medellín, Colombia city were defined. Those were
extracted from OpenStreetMap were people can tagged
those places as touristic. See an example of this file in
Fig. 14. The location for each one was also included.
The idea behind this definition is to assign a lower cost
to segments of the streets near to those touristic points.
The Graph Map was gotten using osm2po-4.8.8. The traj
function was implemented and carries out the
reconstruction task proposed in this study. The
implementation of the traj function, additional
documents and all the software can be found at
https://www.dropbox.com/sh/3mlfrveicpwjrgp/AADzZQ
8jneo9jpBFlofFkGSba?dl=0.

Fig. 13. Instance of the file of check-in data

Edison Ospina et al. / American Journal of Applied Sciences 2016, 13 (2): 171.183
DOI: 10.3844/ajassp.2016.171.183

182

Fig. 14. Instance of the file of points of interest

Conclusion

Valuable information can be extracted from
trajectories. It can be useful for location-based services
applications including trip planning, personalized
navigation routing services, mobile commerce and
location-based recommendation services. In this study,
we reconstructed low-sampling trajectories using the
personalization features of the routing theory based on a
criterion evaluation over a graph. The traj function with
different criteria can be used as an input for different
mining algorithms over trajectories as a way to deal with
analytics using uncertain trajectories. Here, we claim that
analytics over reconstructed trajectories can change
depending on the criterion used for their reconstruction.
Moreover, this criteria-based reconstruction can be used
to perform analytical tasks and to offer the possibility of
formulating questions based on user criteria, such as:

• How do regions of interest (Cao et al., 2005) change

according to a chosen criterion of reconstruction
during a determined time?

• What are the main bottlenecks in the city in a
determined period according to a certain movement
reconstruction criterion?

• What would be the fuel consumption if the vehicles
moved according to a certain criterion in a
determined period?

Author’s Contributions

All the authors contributed equally to the writing of the
manuscript. All the authors discussed and conceptualized
the idea, contributed to analyses and interpretation of the
results and to the preparation of the final manuscript.

Ethics

All the authors believe that there are no ethical
issues that may arise after the publication of this
manuscript.

References

Cao, H., N. Mamoulis and D.W. Cheung, 2005.
Mining frequent spatio-temporal sequential
patterns. Proceedings of the 5th IEEE
International Conference on Data Mining, Nov.
27-30, IEEE Xplore Press, Houston, Texas.

 DOI: 10.1109/ICDM.2005.95
Chang, K.P., L.Y. Wei, M.Y. Yeh and W.C. Peng, 2011.

Discovering personalized routes from trajectories.
Proceedings of the 3rd ACM SIGSPATIAL
International Workshop on Location-Based Social
Networks, Nov. 1-4, ACM, Chicago, Illinois, pp:
33-40. DOI: 10.1145/2063212.2063218

Chen, Z., H. Shen, X. Zhou, Y. Zheng and X. Xie, 2010.
Searching trajectories by locations: An efficiency
study. Proceedings of the ACM SIGMOD
International Conference on Management of data,
Jun. 6-11, ACM, Indianapolis, Indiana, USA, pp:
255-266. DOI: 10.1145/1807167.1807197

Chen, Z., H.T. Shen and X. Zhou, 2011. Discovering
popular routes from trajectories. Proceedings of the
IEEE 27th International Conference on Data
Engineering, Apr. 11-16, IEEE Xplore Press,
Hannover, Germany, pp: 900-911.

 DOI: 10.1109/ICDE.2011.5767890
Chow, C.Y. and M.F. Mokbel, 2011. Privacy of Spatial

Trajectories. In: Computing with Spatial Trajectories,
Zheng, Y. and X. Zhou (Eds.), Springer, New York,
ISBN-10: 978-1-4614-1628-9, pp: 109-141.

Edison Ospina et al. / American Journal of Applied Sciences 2016, 13 (2): 171.183
DOI: 10.3844/ajassp.2016.171.183

183

Da Silva, E.R., C. de Baptista, L. Menezes and A. Paiva,
2008. Personalized path finding in road networks.
Proceedings of the 4th International Conference on
Networked Computing and Advanced Information
Management, Sep. 2-4, IEEE Xplore Press,
Gyeongju, Korea, pp: 586-591.

 DOI: 10.1109/NCM.2008.211
De Almeida, V.T. and R.H. Güting, 2005. Supporting

uncertainty in moving objects in network databases.
Proceedings of the 13th Annual ACM International
Workshop on Geographic Information Systems,
(GIS’ 05), ACM, pp: 31-40.

 DOI: 10.1145/1097064.1097070
Dijkstra, E.W., 1959. A note on two problems in

connexion with graphs. Numerische Mathematik, 1:
269-271. DOI: 10.1007/BF01386390

Hart, P.E., N.J. Nilsson and B. Raphael, 1968. A formal
basis for the heuristic determination of minimum cost
paths. IEEE Trans. Syst. Sci. Cybernet., 4: 100-107.
DOI: 10.1109/TSSC.1968.300136

Hochmair, H., 2005. Towards a Classification of Route
Selection Criteria for Route Planning Tools. In:
Developments in Spatial Data Handling, Hochmair,
H. (Ed.), Springer Berlin Heidelberg,

 ISBN-13: 978-3-540-22610-9, pp: 481-492.
Hsieh, H. and C. Li, 2013. Constructing trip routes with

user preference from location check-in data.
Proceedings of the ACM Conference on Pervasive
and Ubiquitous Computing Adjunct Publication,
Sep. 8-12, ACM, Zurich, Switzerland, pp: 195-198.
DOI: 10.1145/2494091.2494155

Hung, C.C., W.C. Peng and W.C. Lee, 2011. Clustering
and aggregating clues of trajectories for mining
trajectory patterns and routes. VLDB J., 24: 1-24.
DOI: 10.1007/s00778-011-0262-6

Liu, H., L.Y. Wei, Y. Zheng, M. Schneider and W.C.
Peng, 2011. Route discovery from mining uncertain
trajectories. Proceedings of the IEEE 11th
International Conference on Data Mining
Workshops, Dec. 11-11, IEEE Xplore Press,
Vancouver, Canada, pp: 1239-1242.

 DOI: 10.1109/ICDMW.2011.149
Marketos, G. and Y. Theodoridis, 2009. Mobility Data

Warehousing and Mining. VLDB PhD Workshop,
Philippe Rigaux and Pierre Senellart, (Eds.), Aug.
24, Lyon, France

Nadi, S. and M.R. Delavar, 2011. Multi-criteria,
personalized route planning using quantifier-guided
ordered weighted averaging operators. Int. J.
Applied Earth Observ. Geoinform., 13: 322-335.
DOI: 10.1016/j.jag.2011.01.003

Orlando, S., R. Orsini, A. Raffaetà, A. Roncato and C.
Silvestri, 2007. Trajectory data warehouses:
Design and implementation issues. J. Comput.
Sci. Eng., 1: 211-232.

Schultes, D., 2008. Route planning in road networks.
Doctoral dissertation, Universität Fridericiana zu
Karlsruhe. Karlsruhe, Germany.

Spaccapietra, S., C. Parent, M.L. Damiani, J.A. de
Macedo and F. Porto et al., 2008. A conceptual view
on trajectories. Data Knowledge Eng., 65: 126-146.
DOI: 10.1016/S0169-023X(08)00013-X

Speičvcys, L., C.S. Jensen and A. Kligys, 2003.
Computational data modeling for network-
constrained moving objects. Proceedings of the 11th
ACM International Symposium on Advances in
Geographic Information Systems, (GIS’ 03), ACM,
pp: 118-125. DOI: 10.1145/956676.956692

Tiakas, E., A.N. Papadopoulos, A. Nanopoulos, Y.
Manolopoulos and D. Stojanovic et al., 2009.
Searching for similar trajectories in spatial
networks. J. Syst. Software, 82: 772-788.

 DOI: 10.1016/j.jss.2008.11.832
Trajcevski, G., 2011. Uncertainty in Spatial Trajectories.

In: Computing with Spatial Trajectories, Zheng, Y.
and X. Zhou (Eds.), Springer, New York, ISBN-13:
978-1-4614-1628-9, pp: 63-107.

Wei, L.Y., Y. Zheng and W.C. Peng, 2012. Constructing
popular routes from uncertain trajectories.
Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining, Aug. 12-16, ACM, Beijing, China, pp:
195-203. DOI: 10.1145/2339530.2339562

Yuan, J., Y. Zheng, C. Zhang and W. Xie, 2010. T-drive:
Driving directions based on taxi trajectories.
Proceedings of the 18th SIGSPATIAL International
Conference on Advances in Geographic Information
Systems, Nov. 2-5, ACM, San Jose, California, pp:
99-108. DOI: 10.1145/1869790.1869807

Zhao, H., Q. Han, H. Pan and G. Yin, 2009. Spatio-
temporal similarity measure for trajectories on road
networks. Proceedings of the 4th International
Conference on Internet Computing for Science and
Engineering, Dec. 21-22, IEEE Xplore Press,
Harbin, China, pp: 189-193.

 DOI: 10.1109/ICICSE.2009.18
Zheng, K., Y. Zheng, X. Xie and X. Zhou, 2012.

Reducing uncertainty of low-sampling-rate
trajectories. Proceedings of the IEEE 28th
International Conference on Data Engineering, Apr.
1-5, IEEE Xplore Press, Washington, DC., pp:
1144-1155. DOI: 10.1109/ICDE.2012.42

Zhixian, Y.A.N., 2011. Semantic trajectories:
Computing and understanding mobility data.
Doctoral dissertation, École Polytechnique Fédérale
De Lausanne, Lausanne, Switzerland.

