

© 2016 Talal Talib Jameel. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0

license.

American Journal of Applied Sciences

Investigations

A Proposal for Standardized Data Attribution and Ownership

in the Cloud Environment

Talal Talib Jameel

Department of Dentistry, Al Yarmouk University College, Baghdad, Iraq

Article history

Received: 27-10-2016

Revised: 09-12-2016

Accepted: 26-12-2016

Email: talal.alhabeeb@gmail.com

Abstract: Since the earliest days of cloud computing there has been a

steady migration of data from local data stores to the cloud. As more and

more cloud platforms become available, this inflow of data has only

increased dramatically. By some estimates, “the cloud” will hold 50% of all

data by 2020. Localized management of data is typically handled using

tools, policies and access control methods that are appropriate to the local

environment in question. Once data has been migrated to the cloud, these

local tools and policies are rarely applicable and a new approach must be

taken. Other works have focused on the problems associated with cloud

security. This paper try to determine attribution and ownership for data in

the cloud. Just because data is stored in account X that does not necessarily

mean that X owns all the data in that account. An approach based on the use

of a Public Key Infrastructure (PKI) is addressed to provide cryptographically

strong data attribution and attestation for data in the cloud.

Keywords: Cloud Computing, PKI, Certificate Authority

Introduction

PKIs have been deployed for a variety of difference
forms of distributed data management. The cloud PKI
(CPKI) proposed in this study allows cloud users to
manage their data as a resource, or as a set of resources.
In this CPKI the resources managed are blocks of data as
defined by the user. The semantics of the data under
management is completely separated from the syntax of
the data under management (Aye et al., 2013). Thus, an
individual user can declare that any type or collection of
data is a “resource” to be managed. This allows for very
fined grained control of data attribution and ownership
with the CPKI. Attribution and ownership are asserted
through a special type of cryptographic certificate,
namely a customized ×509v3 certificate. In order use a
certificate-based PKI one must also deal with the
infrastructure associated with such a PKI, namely
Certificate Revocation Lists (CRLs) (Kent et al., 2000),
trust anchors (Tas), publication points and so forth.
Given the large amount of data that is already in the
cloud, there are very different implementation challenge
from a typical PKI, in that in the CPKI every data user
needs to validate every certificate and CRL at time of
use. This level of granularity, when imposed over a vast
array of data objects makes validation performance in
the CPKI a very high priority. In a typically PKI one can
often rely on a transaction rate on the order of hours, but
in the CPKI the transaction rate may be seconds or less.

This paper describes software under development that
can be used to perform data attestation and ownership for
data objects stored in the cloud, in an efficient manner,
with a special focus on the means and methods used to
realize a high performance design. Theoretical
discussions are augmented with actual performance data.

Background

An ×509 certificate is a digital certificate that is used
by a PKI to assert that a digital object possesses certain
properties. Such certificates are issued by a Certificate
Authority (CA), which is considered to be the parent of
the certificate (Housley et al., 1999). In the PKI model
the chain of certificates that form the parent,
grandparent, etc. of a given certificate must terminate in
a top level certificate, known as a Trust Anchor (TA)
(Montana and Reynolds, 2008). A TA must be a self-
signed certificate issued by a well-known trusted
authority, such as one of the five top-level Regional
Internet Registries (RIRs). An ×509 certificate may be
given the authority to issue subordinate certificates (so
that it known as a CA certificate), or it may be a leaf
node in the tree of certificates (known as an End Entity
(EE) certificate) (Cittadini et al., 2010). An ×509
certificate is bound to a distinguished name, an issue, a
validity period and, in our proposed implementation
(Jensen et al., 2009; Muñoz et al., 2004), with issuer and
subject unique identifiers. There have been three

Talal Talib Jameel / American Journal of Applied Sciences 2016, 13 (12): 1470.1475

DOI: 10.3844/ajassp.2016.1470.1475

1471

versions of the ×509 standard; we will restrict ourselves
to only using v3, since that is the only version that
permits user-defined extensions. An extension is
expressed by an Object Identifier (OID) which is merely
a set of values with semantics that may be interpreted by
the user in a context-specific manner (Oppliger, 2001).

Certificate contents, in particular, the contents of

specific extensions, is expressed using a data definition

language known as abstract syntax notation 1 (ASN.1)

(Rose and McCloghrie, 1990; Huff et al., 1998). There

are a small set of predefined OIDs, as expressed in the

IETF RFC5280, but none of these will overlap with the

OIDs that will be used for the CPKI.

Many solutions (Fujishiro et al., 2010; Kent, 2006)

have been put forth to strengthen cloud security and to

provide stronger forms of attribution and ownership

information than is currently available. All of these

solutions have been predicated upon the existence of

some form of PKI that binds data resources to the

entities to which they have been allocated, e.g., the

owner of the account in which the data has been stored.

These solutions have typically not been adopted due to

the changes required cloud account management and the

associated infrastructure requirements that would thereby

be imposed (Nasreldin et al., 2015; Liu et al., 2015). We

propose a method for creating the requisite infrastructure

without any changes required by cloud vendors. This

approach is based new, digitally signed object, the Data

Attribution Object (DAO), together with a PKI to

validate, manage and process such objects. Associated

with the DAO is another, already existing, digitally

signed object, the Manifest. The manifest has been

created to help protect the contents of CPKI object

repositories. Manifest processing (in the context of other

PKIs) has proven to be significantly more complicated

that its straightforward nature would imply (Ghazi et al.,

2016; Zhao et al., 2012). Thus, performance

optimization therefore continues to be a critical

requirement of the proposed software architecture. This

paper describes the function of DAOs and manifests within

the CPKI. It then discusses the challenges associated with

efficiently processing very large collections of such objects

together with their associated certificates and certificate

revocation lists. It then describes in detail the key

components of the implementation that will provide for

high performance, scalable processing. In a typical PKI

the validation problem for each data user is fairly simple

in concept, although it may be complex in practice.

Typically, a relying party receives an End Entity (EE)

certificate that must be validated prior to verifying the

signature on an object (in this case, a data object). The

data user may be provided with additional Certification

Authority (CA) certificates needed to complete the

certificate path to one or more Trust Anchors (TA)

recognized by that relying party.

The validation of a certification path from a TA to an

EE certificate, including processing of revocation status

data contained in one or more CRLs (Housley et al.,

2002), is well defined and specified in IETF standards.

The non-standard part of the process is the discovery of a

suitable certification path. Given this typical task for a

user, strategies for optimizing the performance of

certificate validation within a typical PKI are under

development. They are based on the assumption that a

user will, within a reasonable time interval (say, 24 h),

validate only a very small fraction of all the certificates

issued in the context of the traditional PKI. This is a

reasonable assumption for most applications, which will

only user a portion of the data under management.

Presents a very different challenge for relying parties with

regard to validation. In this CPKI it is anticipated that

every user may need to validate a large number of

certificates within (roughly) a 24 h interval. This dramatic

difference in the scope of validation motivated the

development of a novel performance-optimized approach.

The recent addition of manifests, which are designed

to authoritatively assert the contents of a repository of

CPKI objects using a signed list of file hashes, adds an

additional layer of complexity and makes it even more

imperative that CPKI processing be highly optimized.

This paper focuses on the software design and

implementation choices associated with providing high

performance processing that have arisen as part of the

proposed implementation of the CPKI. Our approach uses

several strategies for providing high performance; chief

among these is the use of a relational database to cache

information about all digital objects in the CPKI in order

to minimize costly disk accesses and also to almost

completely eliminate duplicate operations on such objects.

DAOs and Manifests

A DAO is a digitally signed object asserting that the

organizational entity associated with the OID named in

the DOA is the authorized owner of the data associated

with that OID. Block (s) contained in the DAO. As such,

a DAO is an integral component of the overall strategy

toward securing data in the cloud. A DAO is a binary

ASN.1 encoded data structure consisting of an envelope

and a body. The envelope is specified using the

Cryptographic Message Syntax (CMS) and, generally

speaking, contains metadata regarding the DAO. In

particular, we propose that the DAO’s CMS envelope

contains the EE certificate, the public key of which is

used to verify the signature on the DAO. The body of the

DAO contains the binding association between OIDs and

data blocks. The goal of the CPKI software under

development is to determine which DOAs are valid,

using a set of rules to be discussed shortly, in order to

produce output that can be used to assist with access

control decisions. DOAs enable a user to verify that the

Talal Talib Jameel / American Journal of Applied Sciences 2016, 13 (12): 1470.1475

DOI: 10.3844/ajassp.2016.1470.1475

1472

being used as input to some cloud application is

authentic, without needing to refer to coarser grained

attributes, such as the account owner of the cloud

resources where the data is stored. An attacker can

attempt to assert ownership of data by forging account

credential, for example, but will not be able to break the

digital signature on the DAO and thus will not be able to

create false attributions or ownership claims. Given just

the DAO file itself, a significant number of validity

checks can be performed.

The syntactic structure of the CMS envelope and

DAO body can be checked against their ASN.1

definitions; the field values in the envelope and body can

be checked against the specifications, the EE certificate

can be checked against its syntactic definition and

specifications and, finally, the DAO’s signature can be

checked. If any of these checks fail we say that the DAO

is locally invalid, while if all pass then we might say that

the DAO is locally valid. Local validity is a strict subset

of validity, since a path must still be discovered from the

DAO’s EE cert to a trust anchor in order for it to become

(globally) valid and thus be used to allow access.

Observe that a locally valid DAO may become (globally)

valid via this process; it may also become locally invalid,

if, for example, its EE cert is revoked. Observe carefully,

however, that a locally invalid DAO can never be

rehabilitated: It will always be locally invalid and

therefore need not enter into any further processing. This

seemingly trivial observation has proven to be a critical

component of the proposed implementation of validation

processing for all digital objects in the CPKI system, not

just DAOs. A data repository is a hierarchical collection

of files rooted at a distinguished directory.

Within the context of the CPKI, a data repository is

rooted at a publication point for the digital objects that

constitute the CPKI. A manifest is a digitally signed

object that makes a positive assertion about the contents

of a repository. Specifically, a manifest lists all files at a

repository publication point (other than itself) and

provides a hash for each file on the list (A manifest

cannot list itself since there would be no way to correctly

compute its own hash). A manifest actually makes two

assertions. For each file in the manifest, it asserts that

said file should be present in the repository and should

have the specified hash. It also asserts that if a file is not

listed on the manifest, it should not be present at the

publication point. The goal of having a manifest is to

enable users to detect tampering with repository

contents, thus removing the need for repositories to be

absolutely trusted. Tampering is detected when a local

copy of a repository is brought into synchronization with

a remote copy of that same repository.
Note that a manifest is an absolute list of contents,

not a relative or incremental list of contents; it asserts

membership (and hashes) or non-membership of all files

within the repository tree at a given instant of time. A

manifest is also a signed object. Like a DAO, a manifest

must be verified using an End Entity certificate. This EE

certificate is included within a CMS envelope that wraps

the manifest. At first glance it might seem that a

significant amount of local validity processing could be

performed using a manifest as a means for culling files

with bad hashes.

Regrettably, a more detailed look below the surface

reveals that this naïve strategy would leave the system

open to a different type of adversarial influence, namely

a denial of service attack. Specifically, since a manifest

is a signed object, in order for it to be valid it must be

both locally and globally valid and therefore it must have

a chain to a trust anchor. If a manifest were only locally

validated and that manifest were used to eliminate

objects with bad hashes, an adversary could construct a

locally valid manifest and provide deliberately bad

hashes for those files which he wished to deny to the

user. Thus, a manifest must be (globally) valid before it

can even enter into local validation of objects that it

names. There are actually many more points in the state

space for manifest processing than this brief analysis

indicates. Manifest processing is complicated and

therefore must be carefully implemented in order not to

have an unduly adverse effect on performance.

CPKI Software: Design Considerations

In order to create a high-performance implementation

for the CPKI software, while fully encompassing the

needs of the system’s end users, several optimizations

must be performed (Fig. 1). Two types of optimization

were used: One based on a particular type of functional

partitioning of the software and a second based on a

particular choice of implementation strategy. The first

optimization is to segment the system into components

with orthogonal functionality, so that those components

could be distributed across the operational timeline of

the user. Within the nominal twenty four hour processing

interval, several operations need to be performed. The

local repository needs to be synchronized with the

remote repositories; new and modified objects need to be

processed; and the side effects of deleted objects must be

handled. The presence of new or modified objects

provides the opportunity for new validation paths to be

discovered and thus for objects to move from an

incompletely validated state into a globally validated state.

A new or modified object may also be a CRL,

however, which can invalidate objects and therefore can

disassociate previously formed paths, causing objects to

move from a valid state to an incomplete state. Finally,

time passes and as a consequence objects expire.

Expiration also can have the side effect of disrupting

previously established paths.

Talal Talib Jameel / American Journal of Applied Sciences 2016, 13 (12): 1470.1475

DOI: 10.3844/ajassp.2016.1470.1475

1473

Fig. 1. Proposed approach

It is important to realize that while all these actions

(synchronization, local and global object validation,

expiration and revocation) must be performed before a

user may ask the system for access, it is certainly not

necessary or desirable to perform all these actions at

once. A suitable segmentation of the software

components helps distribute the processing burden more

evenly over the twenty four hour processing interval. A

second design optimization concerns the detailed nature

of the data being processed. All four types of digital

object (certificates, CRLs, DAOs and manifests) in the

CPKI can be thought of as a collection of (variable,

value) pairs, the values of which are immutable. Thus,

once it has been determined, for example, that the

expiration date on a certificate is 00:00:00 01-Jan-2017,

that certificate will always have that expiration date.

There are two direct implications from this elementary

observation. The first implication is that since certificates

are stored in files and since disk access is intrinsically

more costly than in-memory operations, if an immutable

part of a file is needed, it may make sense to extract and

store that field (once) in a type of storage more highly

optimized for structured access, e.g., a database.

In order to read any field, in addition to the file

access cost (which must in any event be borne at least

once), there is also the cost associated with finding and

extracting the field in question. Certificates, CRLs,

DAOs and manifests are all defined by means of

complex, nested, data dependent structures, so that

accessing a particular field in such a digital object

involves a considerable amount of data structure

traversal; it certainly isn’t a random access operation.

Naturally, there is a performance tradeoff implicit in the

caching approach. Inserting an item in a database itself

has a cost and searching for it subsequently also has a

cost, so one must be ask whether a file-based approach

or a database approach has the least overall cost.

Performance Testing

Functional, operational and performance testing has

been conducted on an early prototype of the system. A

substantial suite of unit tests has been constructed and

executed, verifying that all software requirements have

been met. In addition, subsystem tests designed to

traverse the entire state space of possible processing

variants has also been created and successfully executed.

Most critically, a suite of performance tests has been run

in order to validate that the system is truly scalable to

real-world operational parameters. There are two

different scenarios of interest from the viewpoint of

performance. The first is the initial synchronization and

loading, when the software starts from a clean state and

does a full transfer of data into the cloud. The second is

an incremental update, when the software starts with a

local repository and database that reflects the state at the

time of last execution and then reads only the changes to

the state of the remote repositories.

The amount of work required for an incremental

update depends on the number of objects added, updated,

or removed since the previous update, which, in turn,

depends in large part on the time since the previous

update. We anticipate that an update will be performed

roughly once a day; since the number of objects updated

in this time period is typically only a fraction of the total

number of objects, we focused on the initial

synchronization and load as the performance bottleneck.

In order to construct a comprehensive performance

test, a very large number of digital objects stored in

multiple remote repositories are needed. Since DAOs

and are a new types of object, there is no real data

available. As a result, the author constructed a set of data

for performance testing based on a characterization of

the statistics of a typical cloud based account with a

twenty thousand object test repository. We found that the

Talal Talib Jameel / American Journal of Applied Sciences 2016, 13 (12): 1470.1475

DOI: 10.3844/ajassp.2016.1470.1475

1474

entire processing chain, including loading, garbage

collection, chasing and query processing took 34 min.

This figure is a worst case time, as the structure of the

test repository ensured that the manifest would be

delivered last. Because each signed object is checked

against the corresponding manifest, retrieving the

manifest last requires that each newly fetched object be

re-checked once the manifest arrives.

As a result, we fully anticipate that in a real-world

scenario the average processing time for a repository of

the same size be approximately 17 min (if, on average a

manifest is fetched in the middle of the retrieval

process). Under normal circumstances, the entire set of

repository contents would not be processed; only the

changes from the last processing cycle would need to be

processed. If one assumes a 5% turn-over rate per day,

then the total processing time would be less than a

minute. Finally, it is worth noting that our test results

were collected on a relatively slow (1.2 GHz) machine.

Theoretical Implications

The proposed solution adds to the current data

attribution and ownership architecture the ability to

accept long term storage of archival information by

transferring the ownership service with attribution to the

original source. In addition, CPKI can be used to provide

the necessary clues about the state of the received data at

a certain time period. This as a result would ensure the

efficiency of the provided information by determining

whether the certificate is issued by the original author as

specified in the certificate or not. On the other hand, the

proposed solution would help in archiving the information

through technical mechanisms and appropriate procedures

in which it verifies the received information by the time

the private key is used to sign a document.
CPKI can also help increase the data attribution from

the user side through the use of end entities based on the
certificate to determine the public key of another entity.

Conclusion

This paper has described a proposed implementation

of a software suite for a resource PKI in which the

resources are certificates, CRLs, manifests and, most

importantly Data Attributions Objects (DAOs). The

CPKI software performs all the syntactic and semantic

validation steps necessary in order to arrive at a set of

trusted access control decisions. In the course of creating

the early prototype CPKI software, several performance-

optimized algorithms were developed for the “validate

everything” paradigm of the CPKI. Performance testing

indicates that even for very large repositories it will be

possible to perform a complete validation run on a daily

basis with little computational impact on the cloud

operation center resources.

Acknowledgement

Thanks to the reviewers for their attention to detail

and many valuable suggestions.

Funding Information

This research received no specific grant from any

funding agency.

References

Aye, N., H.S. Khin, T.T. Win, T. KoKo and M.Z.

Than et al., 2013. Multi-Domain Public Key

Infrastructure for Information Security with use of a

Multi-Agent System. In: Intelligent Information and

Database Systems, Selamat, A., N.T. Nguyen and H.
Haron (Eds.), Springer, pp: 365-374.

Cittadini, L., W. Mühlbauer, S. Uhlig, R. Bush and P.

Francois et al., 2010. Evolution of internet address

space deaggregation: Myths and reality. IEEE J.

Selected Areas Commun., 28: 1238-1249.

 DOI: 10.1109/JSAC.2010.101002

Fujishiro, T., A. Sato, Y. Kumagai, T. Kaji and K.

Okada, 2010. Development of hi-speed X.509

certification path validation system. Proceedings of

the 24th International Conference on Advanced
Information Networking and Applications

Workshops, Apr. 20-23, IEEE Xplore Press,

pp: 269-274. DOI: 10.1109/WAINA.2010.20
Ghazi, Y., R. Masood, A. Rauf, M.A. Shibli and O.

Hassan, 2016. DB-SECaaS: A cloud-based
protection system for document-oriented NoSQL
databases. Eurasip J. Inform. Security, 2016: 16-16.
DOI: 10.1186/s13635-016-0040-5

Housley, R., W. Ford, W. Polk and D. Solo, 1999. RFC
2459: Internet X. 509 public key infrastructure
certificate and CRL profile. Network Working
Group, Internet Engineering Task Force.

Housley, R., W. Polk, W. Ford and D. Solo, 2002. Internet

X. 509 public key infrastructure certificate and

Certificate Revocation List (CRL) profile. RFC 3280.

Huff, S.M., R.A. Rocha, H.R. Solbrig, M.W. Barnes and

S.P. Schrank et al., 1998. Linking a medical

vocabulary to a clinical data model using Abstract

Syntax Notation 1. Methods Inform. Med., 37: 440-

452. PMID: 9865042
Jensen, M., J. Schwenk, N. Gruschka and L.L. Iacono,

2009. On technical security issues in cloud computing.
Proceedings of the IEEE International Conference on
Cloud Computing, Sept. 21-25, IEEE Xplore Press, pp:
109-116. DOI: 10.1109/CLOUD.2009.60

Kent, S., 2006. An infrastructure supporting secure

internet routing. Proceedings of the 3rd European

Conference on Public Key Infrastructure: Theory

and Practice, Jun. 19-20, Turin, Italy, pp: 116-129.
DOI: 10.1007/11774716_10

Talal Talib Jameel / American Journal of Applied Sciences 2016, 13 (12): 1470.1475

DOI: 10.3844/ajassp.2016.1470.1475

1475

Kent, S., C. Lynn and K. Seo, 2000. Design and analysis

of the secure border gateway protocol (S-BGP).

Proceedings of the DARPA Information

Survivability Conference and Exposition, Jan. 25-27,

IEEE Xplore Press, pp: 18-33.

 DOI: 10.1109/DISCEX.2000.824939

Liu, Y., Y. Sun, J. Ryoo, S. Rizvi and A.V. Va-silakos,

2015. A survey of security and privacy chal-lenges in

cloud computing: Solutions and future di-rections.

JCSE, 9: 119-133.

Montana, D. and M. Reynolds, 2008. Validation

Algorithms for a Secure Internet Routing PKI.

Lecture Notes Comput. Sci., 5057: 17-30.

 DOI: 10.1007/978-3-540-69485-4_2

Muñoz, J.L., J. Forne, O. Esparza and M. Soriano, 2004.

Certificate revocation system implementation based

on the Merkle hash tree. Int. J. Inform. Security, 2:

110-124. DOI: 10.1007/s10207-003-0026-4

Nasreldin, M.M., M. El-Hennawy, H.K. Aslan and A.

El-Hennawy, 2015. New secure communication de-

sign for digital forensics in cloud computing. Int. J.

Comput. Sci. Inform. Security, 13: 8-17.

Oppliger, R., 2001. Secure Messaging with PGP and

S/MIME. Artech House, Boston,

 ISBN-10: 158053161X, pp: 305.

Rose, M.T. and K. McCloghrie, 1990. Structure and

Identification of Management Information for

TCP/IP-based internets. Structure, United States.
Zhao, M., J. Walker and C.C. Wang, 2012. Security

challenges for the intelligent transportation system.

Proceedings of the 1st International Conference on

Security of Internet of Things, Aug. 17-19, Kollam,

India, pp: 107-115. DOI: 10.1145/2490428.2490444

