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Introduction 

The Bendixson-Dulac criterion consists of a sufficient 

number of conditions for the nonexistence of periodic 

orbits in planar dynamical systems (Farkas, 1994). The 

modified Liouville equation (Abdelrahman et al., 2015; 

Salam et al., 2012) plays an important role in various 

areas of mathematical physics, from plasma physics and 

field theoretical modeling to fluid dynamics, using various 

transformations the differential equation can be written as 

a dynamic system that under some conditions does not 

have periodic orbits (Marin et al., 2014; 2013a; Osuna and 

Villaseñor, 2011). The system in (Marin-Ramirez et al., 

2015) coincides to our system. A generalization of a 

dynamical system was made in (Yan-Min et al., 2016; 

Qiu-Peng et al., 2015; Xiangwei et al., 2016). A Dulac 

function for a quadratic system was found in (Marin et al., 

2013b). A Dulac function and a geometric method for a 

quadratic system was studied in (Marin-Ramirez et al., 

2014).   In this article our objective is construct dynamical 

systems that does not have periodic orbits using Dulac 

functions and we use the following criterion to show the 

non-existence of periodic orbits. The Dulac criterion was 

used in (Rana, 2015). 

Theorem 1.1 (Bendixson-Dulac criterion) Let f1(x1, 

x2), f2(x1, x2) and h(x1, x2) be functions C
1
 in a simply 

connected domain 2
D ⊂ R  such that 

( ) ( )1 2

1 2

hf hf

x x

∂ ∂
+

∂ ∂
 

does not change sign in D and vanishes at most on a set 

of measure zero. Then the system: 

 

1 1 1 2

2 2 1 2 1 2

'

'

= ( , )

= ( , ), ( , )

x f x x

x f x x x x D∈

 (1) 

Does not have periodic orbits in D. 

We need to find a function h(x1, x2), which satisfies 

the conditions of the theorem of Bendixson-Dulac, that 

is called a Dulac function. 

Preliminary Results 

Techniques to Construction of Dulac Functions 

Definition 2.1 Let 0
( , )C D R  be the set of continuous 

functions and define 0
= { ( , ) :f C D fΩ ∈ R  does not 

change sign and vanishes only on a measure zero set}. 

Theorem 2.2 If there exist c(x1, x2)∈Ω such that h is 

a solution of the system: 
 

1 2

1 2 1 2

1 2 1 2

= ( , )
h h f f

f f h c x x
x x x x

  ∂ ∂ ∂ ∂
+ − +  

∂ ∂ ∂ ∂  
 (2) 

 

with h∈Ω, then for Equation 1 h is a Dulac function on 

D. (Osuna and Villaseñor, 2011). 

The Modified Liouville Equation 
 

2
= 0

xx tt
a u u be

βµ
− +  (3) 

 

where, a, b and β are non zero and arbitrary coefficients. 

Using the wave transformation u(x, t) = u(ξ) ξ = 

kx+wt with: 
 

2 2

2

=

ln( )
= , =

u

xx

v e

v k v v v
u u

v

β

β β

′′ ′−  (4) 

 
 and: 
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2 2

2
=

tt

w v v v

u

vβ

′′ ′−
 

 
Equation 3 can be reduced to: 

 
2 3

= 0v v v bvδ δ′′ ′− +  (5) 
 

where, 
2 2 2

=

k a w
δ

β β
−  Taking µ(v) = v′(ξ) and 

( ) = ( ) ( )v v vξ µ µ′′ ′  then: 
 

3 2
( ) ( ) ( ) = 0bv v v v vδµ δ µ µ′− +  

 
We obtain: 

 

22 2
= 0

b
v

v
θ θ

δ
′− +  

 

where, θ = µ
2
. Multiplying in both sides by v

−2
 we get 

22
( ) = 0

b
v θ

δ

−

′+ . Integrating with respect to v: 

 

2

1

2
= 0

b
v C v θ

δ

−

+ +  

 

But θ = µ
2
 and also µ(v) = v′(ξ). Hence: 

 

3 2

1

2
( ) =

b
v v C vξ

δ
′ ± − +  

 

As v′(ξ) = dv/dξ we obtain: 
 

3 2

1 2

2
/ =

b
dv v C v Cξ

δ
− + ± +∫  

 

If C1 = 0 then 2

2

=

i
b

C
v

δ

ξ± + . In consequence 

2

2

2
=

( )
v

b C

δ

ξ
−

± +

. 

and: 
 

2

2

1 2
= ln

( )
u

b C

δ

β ξ

−

± +

 (6) 

 

 If C1 ≠ 0 with the substitution 1

2
=

bv
w C

δ
− +  such 

that ( )2

1
=
2

v w C
b

δ
+ , then: 

 

2
2

1
1

1 2 1
= = 2

2
( )

2

dv wdw dw
i i i

v w b w w C
w C

b

δ

δ
− − −

+
+

∫ ∫ ∫  

 

and: 

1

1

1

2

1

2

tan

2 =

bv
C

C

i C
C

δ

ξ

−

 
− + 

 
 
 
 − ± +  

 
or: 
 

( )

( )

1
1

2

1

1

2

2

= tan
2

= tanh
2

bv
C

C
i C

C

C
i C

δ
ξ

ξ

− +  
± +  

 

 
± +  

 

 

 
It follows that: 

 

( )12

1 1 2

2
= tanh

2

bv C
C C Cξ

δ

 
− + − ±  

 
 

 
Hence: 

 

( )2

1 1 1 2

1
( ) = tanh

2 2
v C C C C

b

δ
ξ ξ

  
− ±  

  
 

 
If δc1 = C and c2 = B then the general solution of this 

differential equation is: 
 

2

2 2 2

( )

2

( ) =
2

C
B

k a w

C
v sech

b
ξ

β

ξ

 
 
 
 +
 − 
  

 

 

where, C and B are constants, k
2
 a

2
-w

2
 ≠ 0.  

From Equation 4 and C = 2b then: 
 

2

2 2 2

2
( )

2

1
= ln

b
B

k a w

u sech ξ

β

β

 
 
 
 +
 − 
  

 (7) 

 
From Equation 3 and u(x, t) = u(ξ) we obtain: 

 

( )2 2 2
= 0

u

a k w u be
β

′′− +  (8) 

 
Integrating and taking the constant of integration 

equal to 0: 
 

2
2 2 2

( ) = 0
2

u
u be

a k w

β

β

′

− +

 
 

Integrating the last equation with respect to ξ and 

taking u, u′→0 when ξ→ ± ∞, we get the constant of 

integration 
b

β
 in the solution given in Equation 7. 



José-Luis Rovira-Florián et al. / American Journal of Applied Sciences 2016, 13 (11): 1326.1329 

DOI: 10.3844/ajassp.2016.1326.1329 

 

1328 

Dynamical System 

 From Equation 5 and making a change of variables: 
 

2 1
= , =v x v x′  

 
2 3

2 1 2 1
' = 0x x x bxδ δ− +  

 

with 
2 2 2

=

k a w
δ

β β
− . We obtain the following system: 

 
'

1 2

2

' 22

2 1

1

=

=

x x

x b
x x

x δ




 −


 (9) 

 

with x1 ≠ 0. Let us show that the previous dynamical 

system does not have periodic orbits. From Equation 2: 
 

2 2

2 1 2

2

1 1 2 1

2
=

h x bx h x
x h c

x x x xδ

   ∂ ∂
+ − −   

∂ ∂   
 (10) 

 

Supposing that 
1

= 0
h

x

∂

∂
, 

2

=

h
h

x

∂

∂
, 2

=
x

h e  then 

Equation 10 becomes: 
 

2 2

2 2 1

1 2

1 1

2
( , ) =

x x bx
c x x

x x δ
+ −  (11) 

 

where, c(x1, x2)< 0 for b, δ>0 then some of the plane 

regions are: 
 

2

1 2 11
3( , ) : <= x x x

b
D

δ  −
∈ 

  
R  

 

( ) 2 3

2 1 2 11 2

3= , : < < 0, < 1 1
b

D x x x x x
b

δ

δ

 −
∈ − + − 

 
R  

 

( ) 2 3

1 2 1 2 12

3= , : < <0, > 1 1
b

D x x x x x
b

δ

δ

 −
∈ + − 

 
R  

 

4

3 3
= >0, 1 1< < 1 11 21 1

b b
D x x x x

δ δ

 
− + − + − 

 
 

 

Main Results 

Theorem 4.1 The system of Equation 9 can be 

generalized as: 

 

2

1 2 2

2 2

2 1

2 1 1

1

= ( )

= ( )
x

x c x

x bx
x c x e

x δ

−





+ −


ɺ

ɺ
 

and does not have periodic orbits at simply connected 

domains 2

1,2,3,4
D ⊂ R .  

Proof. Replacing Equation 11 and 2
=

x

h e  with their 

derivatives into Equation 2: 

 
2 2

2 2 2 1

2

2 1 1

2
=

f x x bx
f

x x x δ

∂
+ + −
∂

 

 

 Solving the previous differential equation by 

integrating factor, we have: 

 

2

2 2

2 1

2 1 1

1

= ( )
x

x bx
f c x e

x δ

−

+ −  

 

Then, from 1

1

= 0
f

x

∂

∂
, ( )21 2

= xf c  and we have proved 

the theorem. 

Example 4.2 If we consider that c2 has a first 

derivative and it is invertible such that 1' ( )
2 2

c c z 
 
 
−  exists 

for all z  in which 1

2
( )zc

−  is defined, then we have the 

generalized modified Liouville equation: 

 

) ( )( ( )
32 1

1 1 ( ) 12 1
2 1 2 1 1 1 11 1 2
( )= ' c x

bx
c x c x c x e xx x c

δ

−

− − −

 
  + −    

ɺ
ɺ ɺɺɺ  

 

If c1(x1) = 0 and c2(x2) = x2 we have the modified 

Liouville equation  

The parametrization 
1

=

d
x

d

ξ

τ
 transforms the system of 

Equation 9 into: 

 

2 32 2 2

2 1 1 2 1
= = = =

dx dx d dx b
x x x x x

d d d d

ξ

ξ ξ τ τ δ
−ɺ  

 

1 1 1

2

1
= = =

dx dx d dx
x

dd d d d

d

τ

ξξ τ ξ τ

τ

 

 

Then 1

2 1 2
= =

dx d
x x x

d d

ξ

τ τ
 we have an equivalent system: 

 

1 1 2

2 3

2 2 1

=

=

x x x

b
x x x

δ





−


ɺ

ɺ

 

 

Theorem 4.3 The system of Equation 9 can be 

generalized to: 

 

2

1 1 2 2 2

3

2 1

2 2 1 1

= ( )

= ( )
x

x x x c x

bx
x x c x e

δ

−

+



+ −


ɺ

ɺ
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and does not have periodic orbits at simply connected 

domain in 2
R . 

Proof. Replacing ( ) 2 3

1 2 2 2 1
, = 3

b
C x x x x x

δ
+ −  with 

3

1
9 4 < 0

b
x

δ
+  in Equation 2, we obtain: 

 
3

22 1

2 2 2

2

= 2
f bx

f x x
x δ

∂
+ + −
∂

 

 

Solving the previous differential equation, we have: 

 

2

3

2 1

2 2 1 1
= ( )

x
bx

f x c x e
δ

−

+ −  

 

Then, from 1

2

1

=

f
x

x

∂

∂
, ( )

1 1 2 2 2= xf x x c+  and we have 

proved the theorem. 

Conclusion 

Several solutions were obtained taking different 

values of the constant of integration. The 

corresponding system of the modified Liouville 

equation was generalized. Using travelling waves, the 

modified Liouville equation was transformed into a 

dynamical system and, with the use of Dulac’s 

criterion, we gave sufficient conditions for the 

nonexistence of periodic orbits in four domains. By 

differentiable transformations other dynamical 

systems can be obtained first set of equations. Here, 

we can get a new generalization of this system. These 

results are important for the study of nonlinear partial 

differential equations. Very interesting future work is 

the generalization of the original partial differential 

equation to the modified Liouville equation in time 

and space. Also, we can consider a family of Dulac 

functions h = exp (ax2) for different values of the 

parameter a. In this study, we worked with a = 1.  
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