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Abstract: Rapid progress in nanotechnology requires the production of 

novel nanomaterials. This study aims to synthesize Graphene Oxide (GO) 

via the Liquid Exfoliation (LE) method using a self-custom-made tweeter 

piezoelectric system as the ultrasound generator. Linear Alkylbenzena 

Sulfonate (LAS) surfactant contained in commercial detergent is used to 

assist the exfoliation process. This synthesis method is simple, inexpensive 

and may produce GO in a large quantity. Furthermore, the effect of the 

sonication time on the synthesis of GO is studied. The UV-Vis 

spectrophotometer and Scanning Electron Microscope (SEM) are used to 

characterize the synthesis results. UV-Vis analysis shows that the longer the 

sonication time spent, the thinner the GO layers produced. Moreover, 

images from SEM show that the surface morphology of the GO forms 

transparent layers which are stacked together on top of each other. 
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Introduction 

Graphene is known as the thinnest and strongest 

material in the world today which is formed from a 

single layer of hexagonal honeycomb-shaped carbon 

atom bounded by covalent bonds (Wang et al., 2013; 

RSAS, 2010). Many carbon-based materials, such as 

graphite, carbon nanotube and fullerene are formed by 

graphene as their basic structure (Basu and Bhattacharyya, 

2012). Graphene was first synthesized by Novoselov et al. 

(2004) using the Mechanical Exfoliation (ME) method 

involving the application of a sticky tape. 

Graphene has been an interesting material to be 
investigated because of its superior properties such as 
high electron mobility, high conductivity, high thermal 
conductivity, good optical transparency and high 
Young's modulus (Terrones et al., 2010). Furthermore, 
graphene can be applied in various fields such as 
electronics industry for the manufacture of supercapacitors 
and transistors (Li et al., 2013; Zhao et al., 2009;           
El-Kady and Kaner, 2013). 

The excitement in graphene leads to the finding of 

large scale production of graphene layers for the 

aforementioned application purposes without losing the 

above novel properties. One way of achieving this is by 

graphite oxidation via strong oxidizing agents such that 

graphite oxide or GO is obtained (Dreyer et al., 2009). 

Although GO is considered as a forerunner in obtaining 

graphene, the material itself is being extensively 

studied for its various uses, such as in biomedical 

(Chung et al., 2013) and optical (Loh et al., 2010) 

applications, antibacterial material especially integrated 

with silver nanoparticles and bacterial cellulose     

(Zhang et al., 2011; Tang et al., 2013; Shao et al., 2015), 

bio-sensors (Shao et al., 2010; Liu et al., 2010), 

hydrogen storage (Wang et al., 2009; Tylianakis et al., 

2010;    Kim et al., 2012) and filtration membranes 

(Joshi et al., 2014; Xu et al., 2013). 

Many methods has been used in synthesizing 

graphene or GO. These methods are quite established in 

various literatures, e.g., ME method (Yi and Shen, 2015), 

Chemical Vapor Deposition (CVD) (Obraztsov, 2009; 

Chen et al., 2011), epitaxial growth (Sutter et al., 2008; 

Yang et al., 2013) and Hummer’s method (Reina et al., 

2009; Marcano et al., 2010). Another synthesis 
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method called reduction of Graphene Oxide (rGO) 

(Stankovich et al., 2007; Pei and Cheng, 2012) is 

promising due to the large production of graphene, 

although this method can reduce the electronic 

performance of graphene (Risley, 2013). 

The LE method offers an easier, more efficient and 

simpler way to synthesize graphene in a large quantity 

and a good quality (Wang et al., 2016; Hernandez et al., 

2008). In this way, surfactant is utilized to assist the 

exfoliation process of graphene layers from graphite 

material (Murat et al., 2012). The LE method can 

produce a stable and good quality of graphene in spite of 

the defects brought by surfactant (Park and Rouff, 2009; 

Li et al., 2008). Many researchers then adopted and 

developed this method in order to optimize the 

production and quality of graphene or GO. For example, 

exfoliation of graphite material may be conducted by 

combining the LE method with electrolysis process 

(Tang et al., 2012), using kitchen blender (Yi and Shen, 

2014), or even sonication (Khan et al., 2010; Bang and 

Sulick, 2010; Durge et al., 2014). 

This study reports the synthesis of GO using the 

LE method by applying a self-custom-made 

ultrasound generator consisting of tweeter 

piezoelectric probes as the ultrasound sources. These 

probes are used because they are easy to obtain and 

quite cheap, hence suggesting a reduction in the cost 

of producing GO. Moreover, they may produce 

audible and ultrasound frequency range of sound 

waves which are important in separating graphene 

layers. Thinner layers of graphene will separate from 

the thicker ones which are still in the form of cloud-

like graphite. The effect of sonication can be directly 

observed by the increase of the temperature and the 

change of the solution color into grayish black. 

Although the use of ultrasound for the exfoliation of 

graphite or graphite oxide in the LE method is already 

available in literatures, however, to the knowledge of 

the authors, the design and use of the ultrasound 

generator from tweeter piezoelectric probes in this 

study has not been conducted. Here, the effect of 

sonication time of the tweeter piezoelectric system 

towards the synthesis of GO is studied using the UV-

Vis spectrophotometer and SEM images. 

Meanwhile, LAS surfactants contained in 

commercial detergents are used to assist the 

exfoliation process. Surfactants weaken the Van der 

Waals bond between graphene layers in the graphite 

material, which is then followed by the separation of 

graphene layers due to vibrations during the 

sonication process. By using inexpensive commercial 

detergents which contain LAS surfactants, the cost of 

producing GO may be further reduced. 

Experimental Method 

The main materials employed in this study are (i) 

graphite powder from Faber-Castell 2B commercial 

pencil, (ii) commercial detergent containing 20% LAS 

surfactants and (iii) distilled water. Graphite and 

detergent powders are illustrated in Fig. 1 (below-right 

picture). The main equipments utilized are an audio 

generator (CSi/SPECO SS-1), an amplifier (Uchida TA-

2MS) and tweeter piezoelectric probes (Fig. 1 [top and 

below-left pictures]), which constitute the tweeter 

piezoelectric ultrasound generator. The ultrasound source 

apparatus (Fig. 1 top picture) is constructed from a 

second-hand (used) drinking bottle mounted on a large 

wooden board as the main pole supporting three 

piezoelectric probe assemblies which are hanging via 

flexible cables. Each assembly consists further of three 

probes (Fig. 1 below-left picture) with each probe attached 

to the side of a triangle-shaped wooden thinboard. 

In the sonication process, each of the assembly is 

then submerged into the liquid solution sample providing 

vibrations inside the liquid sample in three directions 

(Fig. 2 below). Moreover, each of the probes on each 

assembly may be turned on or off using switches on the 

large board, such that the number of probes sonicated in 

the liquid may be varied. On the other hand, the 

frequency of sound wave in audible and ultrasound 

ranges may be varied using the audio generator. The 

results of these two aforementioned variations are being 

reported elsewhere. 
 

 
 
Fig. 1. Tweeter piezoelectric ultrasound generator, consisting 

of an audio generator, an amplifier and an ultrasound 
source apparatus (top picture), a tweeter piezoelectric 
probe assembly (below-left) and graphite (black) and 
detergent (white) powders [below-right] 
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Fig. 2. Sonication process of the solution samples 

 

 
 
Fig. 3. Dip coating process of the sample from a liquid phase. 

 

 
 
Fig. 4. The solidified sample is moved onto a speciment 

 

The procedures of the experiment in this study are 

given as follows. Graphite powder as much as 0.5 gram 

is mixed into a surfactant solution with an amount of 

0.025 g mL
−1
. The surfactant solution is obtained by 

mixing 200 mL of distilled water with 5 grams of 

commercial detergent. The prepared graphite solution is 

then separated into four beaker glasses. Each one of the 

beaker glasses is sonicated for 1, 3 and 5 h (Fig. 2 

above). The last beaker glass is left without sonication 

process. All of the solutions are then left overnight. 

A UV-Visible spectroscopy is conducted upon the 

supernatant of the solution which has been left 

overnight. Characterization of the samples is done using 

a UV-Vis spectrophotometer (Shimadzu UV-2450) in 

the range of 200 to 700 nm. Moreover, some of the 

supernatant solution is transferred onto a glass substrate 

via a dip coating process. Figure 3 shows the dip coating 

process of the supernatant onto a glass substrate. The 

substrate is then annealed in an oven for 10 min at 

150°C. Subsequently, SEM (JEOL JSM T300) analysis 

is conducted at 30 kV for the sample on the substrate 

(Fig. 4). SEM is performed only for the sample with 5 h 

sonication time. 

Results and Discussion 

Liquid Solution Sample after Sonication 

The solution sample after sonication may be observed 

in Fig. 5a. A temperature increase of the solution as a 

result of sonication is detected as the beaker glass 

becomes warm (upon touching it) during and right after 

the sonication process. It may be observed that the 

color of the solution after the sonication is blue on top 

of the solution and becomes darker going down to the 

bottom. Figure 5b shows the solution after it is being 

left overnight. There is obviously a change in the color 

of the solution. After being left overnight, the solution 

becomes grey. There are also dark sediments on the 

bottom of the solution. 

UV-Vis Characterization 

Figure 6 shows the UV-Vis result of the samples with 

0.025 g mL
−1
 of surfactant and varying sonication time, 

viz. (in hour): 0, 1, 3 and 5. The graph is obtained by 

subtracting the UV-Vis absorbance data of the solution 

from the corresponding absorbance data of the pure 

surfactant after sonication. The diamond (blue), square 

(red), triangle (green) and crossed (purple) point data are 

the absorbance of the sample solutions with 0, 1, 3 and 5 

h of sonication time, respectively. 

The graphs in Fig. 6 show different absorbance peaks 

for each sonication time. For 1, 3 and 5 h of sonication 

time, there are two absorbance peaks which occur at 

similar wavelengths, i.e.: 270 and 340 nm. However, the 

absorbance peaks take place in different absorbance 

values. The absorbance peaks on 270 and 340 nm are 

characteristics of GO or multilayered graphene    

(Murat et al., 2012). This is of course different from the 

absorbance characteristics of the solution without sonication 

(diamond [blue] data). Without sonication (0 h), the peak on 

270 nm is less pronounced, which indicates that the solution 

may still consist of graphite or graphite oxide. 

It may also be observed that as the sonication time 
spent gets longer, the value of the absorbance peaks 
decreases. This indicates that the longer the sonication 

time spent, the thinner the layers of the GO obtained. 
Moreover, this means that the solution with five hours of 
sonication time gives the thinnest layers of multilayered 
graphene. This is evidenced from the lowest peaks of the 
absorbance at 270 and 340 nm of the crossed (purple) 
data. This is because the layers of the multilayered 

graphene undergo more exfoliations as it is exposed to 
longer time of ultrasound vibrations. 
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 (a) (b) 

 
Fig. 5. (a) The solution sample after being sonificated and (b) the solution sample after being left overnight 

 

 

 

Fig. 6. UV-Vis results of the solution samples with 0.025 g mL−1 surfactant and varying sonication time of 0, 1, 3 and 5 h 

 

SEM Results 

The SEM analysis is conducted to determine the surface 

morphology of the material produced. The solution 

(supernatant) is initially solidified before being 

characterized using SEM. The supernatant part is solidified 

by deep coating the glass with the liquid sample solution. 

From the UV-Vis result it is obtained that the 

sample produced with five hours of sonication time 

gives the most optimize GO’s performance (thinnest 

layers of multi-layered graphene). Therefore, further 

analysis using SEM is only conducted on that sample. 

Figure 7 presents the surface morphology of the 

solution that undergoes sonication for five hours. 

Figure 7a displays the solidified material distribution 

of the sample with 100X magnification. It shows an 

island of materials on the left-bottom part of the 

figure. Additionally, smaller materials are scattered 

throughout the figure with widths ranging from 2.5 to 

28 microns. Figure 7b shows cloudlike graphene 

oxides with 1000X magnification. Layering may also 

be observed although it is less obvious. Figure 7c 

illustrates cloud-like graphene oxides with further 

magnification (2000X) which clearly shows stacking 

of graphene materials on top of each other. This 

illustrates that GO is produced in this study. 
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Fig. 7. SEM results for five hours of sonication time taken at different positions on the sample with (a) 100X, (b) 1000X and (c) 

2000X magnifications 

 

Conclusion 

Synthesis of GO with a simple and inexpensive 

method of LE has been conducted. Here, the 

production of GO uses a self-custom-made tweeter 

piezoelectric ultrasound generator and assisted by 

LAS surfactant from commercial detergent. The UV-

Vis analysis shows that the longer the sonication time 

spent, the thinner the GO layers produced. SEM 

results illustrate that the surface morphology of the 

GO layers consist of transparent layers of graphenes 

stacked together on top of each other. This study 

contributes to the many methods in synthesizing GO, 

especially using simple and inexpensive materials and 

tools. 
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