
 

 
© 2016 Ashraf M. Aziz, Senior Member, IEEE, Mohamed A. Abdel-Rahman and Saeed A. Al-Ghamdi. This open access 

article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license. 

American Journal of Applied Sciences 

 

 

 

Original Research Paper 

A New Method for Multipath Clustering for Over-the-

Horizon Radar 
 

Ashraf M. Aziz, Senior Member, IEEE, Mohamed A. Abdel-Rahman and Saeed A. Al-Ghamdi 

 
Department of Electrical Engineering, AlBaha University, Saudi Arabia 

 
Article history 

Received: 17-03-2015 
Revised: 27-09-2016 
Accepted: 28-09-2016 
 
Corresponding Author: 
Ashraf M. Aziz 
Department of Electrical 
Engineering, AlBaha 
University, Saudi Arabia 
Email: amaziz64@ieee.org 

Abstract: Over-the-Horizon Radar (OTHR) exploits the refraction of 

high frequency radiation through the ionosphere layers to detect targets 

beyond the line-of-sight horizon. Multipath propagation between the 

radar and the detected targets may results in multiple spatially separated 

tracks for a single target to be observed at the receiver site. Consequently 

there is a heavy traffic, especially in case of multiple targets, to be 

associated and combined if there are tracks represent the same target. In 

this study, a new method for multipath clustering for OTHR is proposed. 

The proposed method describes the similarities between all tracks as 

fuzzy degrees of membership. This method can operate in real-time and 

can perform clustering and fusion of OTHR tracks with tracks from other 

sources such as targets reporting global positioning systems and 

microwave radars. The proposed method has the advantages of less 

computations and high efficiency compared to conventional fuzzy logic 

clustering techniques. It has also the advantage of treating all the tracks 

data at once rather than pairwise. The efficiency of the proposed method 

is demonstrated using simulated examples. 

 

Keywords: Over-The-Horizon Radar, Track Correlation, Track 

Association, Track Fusion 

 

Introduction 

Multisensor data fusion systems have many civilian 

and military applications (Aziz, 2014a; 2014b). Some of 

these applications are diversity communication systems 

(El-Ansary et al., 2013; Aziz, 2011a), target detection 

(Aziz, 2010; El-Ayadi et al., 1996), distributed radar 

surveillance networks (Aziz, 2014c; Aziz, 2008), 

wireless sensor networks (Aziz et al., 2011; Aziz, 

2011b), biomedical applications (El-Badawy et al., 

2014; 2013) and target tracking (Aziz, 2013; 2011c). An 

association technique is essential processing in 

multisensor data fusion systems (Hall, 1992). We focus on 

association in case of surveillance systems (Bogner et al., 

1998; Rutten et al., 2004; Aziz et al., 1999). 

Wide area surveillance can be achieved using a high 

frequency (3-30 MHz) skywave Over-the-Horizon Radar 

(OTHR) which uses the ionosphere layers in the sky as a 

reflection medium. The ionosphere refracts the high 

frequency signals incident upon it. Refracted signals 

from one target that return to earth cause multiple 

appearances of the same target track to be observed 

(Singh and Bailey, 1997; Zhu et al., 1994). For example, 

with three ionosphere layers, one target can produce up 

to six tracks. These tracks are due to the six possible 

reflection paths. This problem, which is called Multiple 

Tracks Common Source (MTCS) problem, causes 

serious problems in target detection, identification and 

tracking. An association approach is essentially needed 

to merge the MTCS tracks into unique set of tracks that 

represent the true number of targets. 

In OTHR, all the measured tracks are processed to 

decide whether two or more tracks represent the same 

target or not. Track association correlates redundant 

tracks, which are provided from multiple reflection paths 

on the same targets, into a unique set of tracks that 

represents the actual number of targets. Track fusion 

combines two or more tracks when it is decided that they 

represent the same target. Fusing data can enhance the 

quality of information to the end user of an OTHR 

(Sengupta and Iltis, 1989; Root, 2003). Track fusion is a 

part of level 1 processing (fused position and identity) in 

a data fusion model which incorporates level 2 

processing (situation assessment) and level 3 processing 

(threat assessment) (Aziz, 2007). 
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There are many approaches in the literatures to 

perform track association and track fusion (Hall, 

1992; Aziz et al., 1999). The first track association 

technique was developed by (Singer and Kanyuck, 

1970). Their correlation technique simply represents a 

gating technique. Two track estimates, from two 

different systems, are said to be correlated if and only 

if the difference between all their features fall within 

certain gates. The gate sizes depend on the system 

accuracy in terms of the feature noise standard 

deviations. Singer and Behnke (1970) considered the 

same problem and developed a track association 

technique based on a test statistic assuming that the 

estimation errors of different systems are independent. 

The common test statistic is a weighted estimates 

difference that depends on the covariance associated 

with each estimate. The classical technique for track 

association and fusion for OTHR requires 

hypothesizing the states of the ionosphere conditions, 

including the number of ionosphere layers and the 

height for each layer and testing each hypothesized 

track against observed tracks (Bogner et al., 1998; 

Rutten et al., 2004). This solution is computationally 

expensive. Furthermore, it assumes stationarity of the 

ionosphere layers which might not be realistic, since 

the ionosphere layers tend to change rapidly due to 

many phenomena related to wind, season and sun. The 

neural networks are also used to solve this problem 

(Zhu et al., 1994; Sengupta and Iltis, 1989). The 

major drawbacks to the neural network 

implementations are that they require unreasonable 

numbers of neurons and require training with a very 

large set of tracks. Furthermore, they require training 

of such approaches with a very large set of tracks 

representing the OTHR tracking system. 

Fuzzy techniques are also used to solve the 

problems of track association and track fusion (Root, 

2003; Aziz, 2009a; 2009b). Using fuzzy techniques, the 

features are fuzzified using membership functions. The 

outputs from the fuzzification are soft values between 

zero and one and represent the correlation between all 

the tracks. These outputs are called fuzzy outputs. The 

fuzzy outputs from the fuzzification process are 

processed using fuzzy rules represented as IF THEN 

rules. The defuzzification process converts the fuzzy 

outputs to non-fuzzy outputs, which are called crisp 

data. The defuzzification outputs are analyzed and 

compared with each other or with thresholds to 

determine whether two/more tracks, obtained from 

two or more different sensors, represent the same 

target. Unfortunately, the extension of fuzzy track 

association to the case of a large number of 

tracks/targets is fairly complex due to the required large 

number of IF THEN rules (Aziz, 2014c; Aziz et al., 

1999). Furthermore, as the system complexity 

increases, it becomes difficult to determine the right 

set of rules and membership functions to describe the 

system behavior. In addition, the solution of the 

conventional fuzzy logic approach to the track 

association problem is an approximate solution and 

the accuracy depends on several factors including the 

number of input variables, the number of linguistic 

variables, the choice of membership function and the 

accuracy of the fuzzy rules and statements. In general, the 

computational cost in generating the optimal solutions to 

the problems of track association and track fusion is 

usually excessive and infeasible for real-time surveillance 

systems. Furthermore, they assume idealized modeling 

assumptions and a prior knowledge of the signal 

environment, which is limited in practice. 

This paper proposes a new method for multipath 

clustering for OTHR. The proposed method solves the 

problem of MTCS and also able to fuse target tracks to 

enhance the quality of target estimate. It reduces the 

number of target tracks and associate duplicate tracks by 

determining a similarity matrix of degrees of 

membership for all tracks. It generates a fuzzy likelihood 

measure instead of the Euclidean distance. The degrees 

of memberships are then compared to decide whether the 

tracks represent the same target or not. The proposed 

method is able to perform track association and fusion 

with a little prior knowledge. It can handle different 

types of information without excessive computation. 

The remainder of this paper is organized as follows. 
Problem formulation and track clustering are briefly 

mentioned in section 2. The proposed multipath 
clustering for OTHR are presented in section 3. 
Performance evaluation and numerical results based on 
Monte Carlo simulations are reported in section 4. 
Performance comparisons with other multipath 
clustering techniques are also presented in section 4. 

Finally, section 5 contains a summary. 

Problem Formulation 

We assume that there is a multipath propagation 

due to three ionosphere layers. In this scenario, we 

assume two OTHRs observe four targets. Due to the 

three ionosphere layers, the number of reported tracks 

will be 24 tracks (although we only have 4 targets). 

We assume that each track, Tij, i = 1, 2, 3, 4 j = 1, 2, 

..., 6, has two features, which are the x and y positions 

of the observed targets. Each report, Tij, represents a 

track j due to observing target i. The goal is to find 

out which tracks represent the same target and which 

tracks represent different targets. The second goal is 

to fuse the tracks together, when it is decided that they 

are similar. These problems can be solved using 

clustering techniques. 
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Measurements clustering determines a partition 

matrix U of elements µik, which represents the degree 

of membership of a data point xk in a fuzzy cluster i 

(with a cluster center vi) (Singh and Bailey, 1997; 

Dubios and Prade, 1980). The degrees of membership 

are established by minimizing the sum of the squared 

errors weighted by the corresponding m
th
 power of the 

degree of membership. The results are: 
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where, c is the number of clusters and n is the total 

number of measurements. 

For given observations and prototype (initial) 

values, the optimum degrees of membership are given 

by Equation 2. Thus the optimum degrees of 

membership are determined from the following matrix 

(assume n = c = 2): 
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The degrees of membership describe the 

similarities between the elements of the matrix D. It is 

required to utilize fuzzy clustering to match our 

problem. Let Ti be the column vector of nf features 

with corresponding accuracies Ai, i = 1, 2,..., nt where 

nt is the total number of targets. The features (such as 

range, bearing and speed) have certain accuracies. It is 

required to decide whether the two tracks represent 

the same target or not. The idea of the proposed 

method is to convert all the feature’s differences to 

one degree of membership. This degree of 

membership is compared with a threshold (another 

degree of membership). The threshold value 

represents the known physical limitations or 

specifications of the sensors. In case of OTHRs, it is 

based on bearing resolution, range resolution and 

speed error. Thus the threshold value for a given 

sensor is a single degree of membership that 

represents all its attribute resolutions. We consider 

this problem as a binary hypothesis-testing problem. 

The two hypotheses are: 

1, the two tracks are the same

0, the two tracks aredifferent
H


= 


  (4) 

 

Proposed Multipath Clustering for OTHR 

We assume that due to ionosphere layers 

environment, there is nt number of tracks, Ti, i = 1, 2, 

.....,nt, reported from no number of OTHRs. Each track 

has nf number of features, i.e.: 
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The features may be range, bearing and speed with 

corresponding accuracies. Our goal is to find out which 

tracks are similar (represent the same target) and 

dissimilar (represent different targets) to each other and 

to fuse two or more tracks together, when it is decided 

that they are similar. 

The distance between two tracks, p and q, is defined 

in terms of the norm of the difference vector as: 
 

1
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where, 1

pq
C

−  is the covariance matrix of the uncertainties 

of the least accurate track. The idea of the proposed 

method is to convert all the feature’s differences to one 

soft value. This soft value is compared with a threshold 

(another soft value). The threshold value represents the 

known physical limitations or specifications of the 

sensors. In case of OTHRs, it is based on bearing 

resolution, range resolution and speed error. Thus the 

threshold value is a single soft value that represents all 

feature accuracies. By this way we define: 
 

1

'

,

,

p q pq p q

pq

p p

T T C T T p q

A A p q

δ

−
 ′   − − ≠    =
  ≠ 

  (8) 

 
For nt reported tracks, all the comparison terms can 

be defined in a matrix Λ as: 
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Define Φ as a similarity matrix of elements ϕij, ∀i& j 

which represents the similarity measure between tracks i 

and j, such that: 
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Given an integer N define DN as the sum of distance 

measures weighted by the N
th
 power of the 

corresponding similarity, i.e.: 
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For a given N and {δij ∀i,j}, it is required to obtain 

the similarity measures {ϕij, ∀i, j}. This is a clustering 

problem and can be solved using clustering techniques 

(Aziz, 2011c; Dubios and Prade, 1980; Bezdek, 1986). 

The solution for {ϕij, ∀i, j ≠ 0} is given by: 
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Thus we obtain the following similarity matrix: 
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where, ϕii represents the degree of membership of the 

accuracy of track i and ϕij represents the degree of 

membership of the difference between two tracks Ti and 

Tj with respect to track j (the degree of similarity 

between a pairs of tracks). The association (correlation) 

between two tracks p and q (track p is assumed to be 

more accurate than track q, i.e., Ap (j)<Aq (j)∀j) can be 

determined based on the most accurate track (Tp) or on 

the least accurate track (Tq), i.e.: 
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With the diversity in the relative tracks accuracies, 

the global correlation of the central processor is always 

based on the least accurate track (Aziz, 2011c; Aziz et al., 

1999). In this case, the correlation between any two 

tracks p and q (q is less accurate) is defined as: 
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1 if same tracks

,
0 if different tracks
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where, in general, CORR(p,q) is the association decision 

based on the least accurate track (min(ϕpp, ϕqq)). 

When it is decided that two or more tracks are 

aligned, i.e., they represent the same target, the next step 

is to fuse them into a unique global track. One approach 

to obtain the global track is to adopt the superior of the 

tracks (Tsup: Best accurate track). The second approach is 

to combine the tracks (Tc: Combined tracks) according to 

some weights. Aziz (2007) it is shown that under certain 

conditions the performance of the fused track may 

perform worse than the performance of the superior 

track. In this case, it is recommended to adopt the 

superior track and track fusion is not recommended. The 

superior track can be chosen according to tracks accuracies. 

If the tracks have the same accuracies, the superior track is 

chosen according to the operating performance and the 

relative distance to the target (Aziz et al., 1999). The 

smaller the distance to the target the more accurate is the 
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track. In our approach, the superior track is determined 

automatically from the data. The superior track, Tsup, is 

the track that has maximum degree of membership in the 

diagonal elements of the similarity matrix i.e., maxi {φii}. 

By this way, the superior track is determined according 

to the OTHRs accuracies as well as the similarity 

between all the estimated tracks. The same tracks can 

also be fused as a weighted sum of the tracks estimates. 

The weights are the corresponding degrees of 

membership. The fused estimate can be defined as a 

fuzzy average to yield an overall association score for 

the tracks which represent the same target, i.e., (assume s 

tracks are the same): 
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The value N in (8) is called the exponential weight. 

Its value reduces the influence of small degrees of 

membership (measurements further away from target) 

compared to that of large degrees of membership 

(measurements close to targets). The larger N > 1, the 

stronger is this influence. The exponential weight N also 

influences the values of the degrees of membership. The 

larger the exponential weight, the fuzzier becomes the 

degrees of membership (the values of the elements of the 

similarity matrix Φ). No any theoretical justifications for 

choosing N exist (Dubios and Prade, 1980; Bezdek, 

1986). We choose N = 2. 

The proposed clustering approach has the following 

advantages: (1) Unlike most of previous OTHR 

clustering techniques, the proposed method can easily be 

applied to multi OTHRs as well as a single OTHR, (2) 

The membership functions are generated automatically 

from the data using fuzzy clustering, i.e., they are not 

chosen heuristically, (3) The degrees of membership of 

the tracks accuracies are affected by the received 

measurements. This means that the values of the 

membership functions are changed according to the 

relative positions of the targets with respect to the 

sensors (adaptation to the environment), (4) The 

similarity between tracks is obtained by treating all the 

tracks at once rather than pairwise. (5) Since the 

proposed approach assigns only one degree of 

membership to each track rather than assigning one 

degree of membership for each feature, it reduces the 

computational complexity with a factor of nf and the 

number of comparisons does not grow with the number 

of features. This also reduces the sensitivity of the final 

decision to individual features fluctuations and has the 

advantage of the soft decision over the hard decision, (6) 

The superior track is determined automatically from the 

tracks accuracies as well as the measurements, (7) Using 

the proposed clustering method, features containing 

kinematics and non-kinematics data can be clustered and 

combined and (8) This method can perform clustering 

and fusion of OTHR tracks with tracks from other 

sources such as targets reporting global positioning 

systems and microwave radars. 

Performance Evaluation and Comparison 

To demonstrate the feasibility of the proposed 

approach to solve MTCS problem, it is applied to an 

example of two OTHRs detecting two targets in a two 

ionosphere layer environment. The two targets are 

tracked simultaneously by the two OTHRs. Due to 

multipath propagation, the number of tracks, reported 

to a central processor, by the two OTHRs is 16 tracks 

although there is only two targets. The center 

processor receives 16 tracks representing four 

reflections for each target. Each track consists of 

bearing (θ) and range (r) information of the observed 

target, i.e., (Aziz, 2014c; 2007): 
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The uncertainties of the two OTHRs are represented 

by the covariance matrix: 
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where, 2

jθ
σ and 2

rj
σ  represent the variances of the 

measurements error of bearing and range information, 

respectively. The reflections from ionosphere layers 

cause additional errors in bearing and range 

measurements. These errors are assumed to be normally 

distributed with zero means and variances 2

L jθ
σ and 

2

Lrj
σ in bearing and range respectively, k = 1, 2 (two 

layers). The resolution of each OTHR is defined in terms 

of the measurement uncertainties as: 
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The noise uncertainties of the OTHRs are assumed to 

be σθ1 = 0.5 Radians, σr1 = 20 km, σθ2 = 0.55 Radians 

and σr2 = 30 km. The layers variances are σLθ1 = 0.6 

Radians, σLr1 = 50 km, σLθ2 = 0.65 Radians and σLr2 = 

55 km. The actual targets trajectories are shown in Fig. 

1. The tracks received from both OTHRs, due to 

multilayer environment, are shown in Fig. 2 and 3. Eight 

tracks are received from each OTHRs, thus there is 

sixteen tracks reported to the central processor as shown 

in Fig. 4. The central processor has to process all the 
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reported tracks and fuse the redundant tracks into a 

unique set of tracks. The fused tracks, after applying the 

proposed clustering technique, are shown in Fig. 5. Since 

the objective of any clustering approach is to determine 

the right number of targets (2 targets in our example), it 

is clear from Fig. 5 that the proposed approach 

successfully associates all the reported tracks and yields 

satisfactory results. 

 

 
 

Fig. 1. Actual target tracks 

 

 
 

Fig. 2. Displayed tracks for OTHR 1 (before clustering) 
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Fig. 3. Displayed tracks for OTHR 2 (before clustering) 

 

 
 

Fig. 4. Displayed tracks for two OTHRs (before clustering) 

 
The performance of the proposed method is 

compared with the performance of Euclidean clustering 

(Aziz, 2013; Hall, 1992) and conventional fuzzy logic 

clustering (using IF-THEN rules) (Singh and Bailey, 

1997) in a simple example. We consider the case of a 

single target tracked by a single OTHR in a two 

ionosphere layers environment. Due to multipath 

propagation, the number of tracks, reported to a central 

processor is 4 tracks (Fig. 6) although there is only one 

target. The central processor receives 4 tracks 

representing four reflections for the single target. The 

objective of any clustering approach is to determine the 

right number of clusters (one target in our case). For a 

given scan, a correct clustering occurs if the central 

processor decides that the four reflections represent a 

single target, otherwise an incorrect clustering occurs. 



Ashraf M. Aziz et al. / American Journal of Applied Sciences 2016, 13 (10): 1014.1026 

DOI: 10.3844/ajassp.2016.1014.1026 

 

1021 

 
 

Fig. 5. Displayed tracks for two OTHRs (after clustering) 

 

 
 

Fig. 6. Displayed tracks for an OTHR 

 
Table 1. Comparison of percentage of correct clustering 

 Percentage of correct clustering (%) 

 ------------------------------------------------------------------------------------------------------------------------------ 

Clustering method σθ = 0.5 Radians, σr = 20 km (%) σθ = 1.0 Radians σr 
= 50 km (%) σθ = 2.5 Radians, σr

 = 100 km (%) 

Euclidean 97 88 76 

Euclidean fuzzy logic 99 93 81 

Proposed method 100 97 90 
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Table 1 compares the percentage of correct clustering for 

different values of noise uncertainties. This percentage is 

obtained as an average value over 1000 runs. The 

percentage of correct clustering using Euclidean 

clustering varies from 76 to 97%, while it varies from 81 

to 99% using conventional fuzzy logic clustering and 

varies from 90 to 100% using the proposed clustering 

approach. The performance of the proposed clustering 

approach is always better than the performance of the 

Euclidean and conventional fuzzy logic clustering for all 

values of uncertainties. The results show that the 

proposed clustering approach is much more efficient 

than the Euclidean clustering and the conventional fuzzy 

logic clustering. 

We consider another example of moving 

maneuvering targets in a noisy environment. We assume 

an example of an OTHR detecting two targets in a two 

ionosphere layers environment (as the previous 

ionosphere environment and variances measurements). 

Due to multipath propagation, the number of tracks is 8 

tracks although there is only two targets. The dominant 

acceleration in deterministic target maneuvers is 

coordinated turn. The reasons are: (1) Turns generate 

higher accelerations (up to ~9 g for an aircraft turn 

versus ~1g for thrust), (2) targets prefer to maintain a 

high speed when in danger, turning rather than slowing 

down to avoid danger. Hence, turning motion models are 

the dominant models for target maneuver in tracking 

systems. The initial positions ((x, y) in meters)) of the 

three targets are assumed to be (6000, 8000) and (6100, 

8100) for target 1 and 2, respectively. The target motion 

model has the form of 
 

( )1 ( ) ( )x k Fx k v k+ = +   (22) 

 
and the corresponding measurement model is: 
 
( ) ( ) ( ) ( )z x H k x k w k= +   (23) 

 

where, x(k) is an n dimensional state vector of a target 

at scan k, z(k) is an m dimensional measurement 

vector (assuming z(k) is the correct measurement for 

the target), v(k) is a noise input vector, w(k) is a 

measurement noise vector, F is an n×n state transition 

matrix and H is an m×n measurement matrix. The 

process noise and the measurement noise are assumed 

to be uncorrelated, zero mean Gaussian with 

covariance matrices: 

 

( ) ( ( ))Q k Cov v k=   (24) 

 

( ) ( ( ))R k Cov w k=  (25) 

 

Each target track is predicted and updated based on 

correct measurements as follows (Aziz, 2014c; 2011c): 

( ) ( )ˆ ˆ1| |x k k Fx k k+ =   (26) 

 

( ) ( )1| ! ( )P k k F P k k F Q k′+ = +   (27) 

 

( ) ( ) ( ) ( )ˆ ˆ1| 1 1| 1 1x k k x k k K k z k+ + = + + + +ɶ   (28) 

 

( ) ( ) ( ) ( )1| 1 1 1 1|P k k I K k H k P k k+ + =  − + +  +    (29) 

 
where, the Kalman filter gain K(k) and the innovation 

( )1z k +ɶ  are given by: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

'

1
'

1 1| 1

1 1| 1 1

i i i

i i i

K k P k k H k

H k P k k H k R k
−

+ = + +

 × + + + + + 

  (30) 

 

( ) ( ) ( ) ( )ˆ1 1 1 1|z k z k H k x k k+ = + − + +ɶ   (31) 

 
The covariance matrix of the innovation is given by: 

 

( ) ( ) ( ) ( ) ( )1 1 1| 1 1S k H k P k k H k R k+ = + + + + +   (32) 

 
If there is no validated measurement, then: 

 

( ) ( )ˆ ˆ1| 1 1|x k k x k k+ + = +   (33) 

 

( ) ( )1| 1 1|P k k P k k+ + = +   (34) 

 
The state transition matrix F is given by: 

 

1 0 0

0 1 0 0

0 0 1

0 0 0 1

T

F
T

 
 
 =
 
 
 

  (35) 

 
where, T is the sampling interval. 

The state vector x(k) contains the x- and y- target 

positions and velocities, i.e.: 
 

( )

( )

( )

( )

( )

x

y

x k

v k
x k

y k

v k

 
 
 

=  
 
 
 

  (36) 

 
The measurements are the x- and y- target positions, 

i.e., the measurement matrix H is given by: 
 

1 0 0 0

0 0 1 0
H

 
=  
 

 (37) 

 

The process noise v(k) has a covariance Q given by 

(Aziz, 2014c; Aziz et al., 1999; Aziz, 2007): 
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3 2

2

2

3 2

2

/ 3 / 2 0 0

/ 2 0 0

0 0 / 3 / 2

0 0 / 2

T T

T T
Q q

T T

T T

 
 
 =
 
  
 

  (38) 

 
where, q

2
 is a scalar given by: 

 
2 2

q a T=   (39) 
 
and a is the acceleration. 

The initial state estimates and the corresponding 
initial covariance matrix are obtained by two points 

differencing of the measurements with a 
corresponding covariance matrix as in (Aziz, 2013; 
Aziz, 2011c). Each target motion is initially in a 
straight line with constant velocity. The measurements 

are taken every 0.1 sec. After generating 250 
measurements, the targets institute a 10 g right turn (g 
= 9.8 m

2
/sec) and hold the turn for 100 measurements 

and then return to straight lines motion for an 
additional 250 measurements. The values of the noise 
uncertainties are taken as σx = σy = 140 m for all 

targets. The performance is evaluated based on 100-
run Monte Carlo simulations. 

 

 
 

Fig. 7. True target tracks (two maneuvering targets) 
 

 
 

Fig. 8. Displayed tracks for OTHR (before clustering) 
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Fig. 9. Displayed tracks for OTHR (after clustering) 

 

The actual targets trajectories are shown in Fig. 7. 

The tracks received from the OTHR, due to multilayer 

environment, are shown in Fig. 8. Eight tracks are 

received from the OTHR, thus there is eight tracks 

reported to the central processor as shown in Fig. 8. The 

central processor has to process all the reported tracks 

and fuse the redundant tracks into a unique set of tracks. 

The fused tracks, after applying the proposed clustering 

technique, are shown in Fig. 9. It is clear from Fig. 9 that 

the proposed approach successfully associates all the 

reported tracks and yields correct results. 

Conclusion 

The problem of MTCS due to multipath propagation 

has been considered. A new method for multipath 

clustering for OTHR is proposed. Similarity measures 

are obtained by taking into account all tracks accuracies 

and relative positions to targets. Unlike, conventional 

fuzzy clustering approaches in which the membership 

functions are chosen heuristically, the membership 

functions, using the proposed method, are generated 

automatically from the data. Performance evaluation of 

the proposed clustering method has been done and 

compared to Euclidean and conventional fuzzy logic 

clustering. It has been shown that the performance of the 

proposed method significantly outperforms the 

Euclidean and conventional fuzzy logic clustering. The 

proposed method also enables the fusion of OTHR tracks 

with other tracks from other sources. It has many 

advantages including reduction of the computational 

complexity, treating all the tracks data at once rather 

than pairwise and performance improvement. 
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