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Abstract: The support used when a tunnel is excavated by a shielded TBM 

is complex because it consists of two different materials: A concrete 

segmental lining and a filler annulus between the lining and the tunnel wall. 

A detailed analysis of the behavior of such a support system requires a 

three-dimensional numerical modeling and should also consider the 

presence of the TBM machine. This article presents an analytical 

calculation procedure that allows to assess the interaction between the 

support system and the tunnel using the convergence-confinement method 

and Vlachopoulos-Diederichs method. Furthermore, it is defined the overall 

stiffness of the support system starting from the detailed analysis of the 

stresses and strains developed in the two constituent materials. From the 

analysis of the evolution of the radial displacements in the longitudinal 

section, it was then possible to evaluate another fundamental parameter: 

The radial displacement of the tunnel wall at the point of installation of the 

support system. The computational procedure was then applied to a specific 

case, showing the influence of the stiffness of the filling material on the 

final loads acting on the segmental lining. 
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TBM, Shielded TBM, Segmental Lining, Filling Material, Reaction Line, 

Support Stiffness 

 

Introduction 

Often nowadays tunnels are excavated through the 

use of machines TBMs (Benato and Oreste, 2015). 

The construction of a tunnel with shielded TBM 

machines requires the realization of a concrete lining 

(segmental lining) in the tail of the machine, at a 

certain distance from the excavation face (10-12 m). 

Such a lining is put into operation within the shield 

and the hollow space between the tunnel wall and the 

lining extrados is generally filled with gravel material, 

sometimes cemented. The support system is, 

therefore, represented by a less rigid outer ring (ring 

composed by natural or cemented gravel) and an inner 

ring of concrete (the segmental lining) (Fig. 1). 

The assessment of the overall stiffness of the support 

system is very important because this stiffness influences 

the loads acting on the support itself: The higher the 

stiffness, the greater the loads which act on the lining. 

Furthermore, it appears to be very important to know the 

radial displacement uR,in of the tunnel wall in the moment 

in which the lining is inserted. This radial displacement 

also has effect on the final applied loads. 

A thorough analysis of the interaction between a 

tunnel excavated by shielded TBM and segmental lining 

can be developed with the numerical modeling, 

preferably of three-dimensional type (Do et al., 2014a; 

2014b). This modeling turns out to be quite complex and 

computation times are typically high. 

For this reason, in this study an analytical procedure 
for the assessment of the interaction between the lining 
and the tunnel, when a shielded TBM machine is used, is 
presented. The analytical methods are widespread in 
tunnelling and help solve problems of great 
importance in relation to the stability around the 
tunnel and on the excavation face and to the design of 
the support and reinforcement structures (Oreste, 2009; 
2013; Osgoui and Oreste, 2007). The procedure is based 
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on the convergence-confinement method and uses the 
results of the studies developed by (Vlachopoulos and 
Diederichs, 2009) for the evaluation of the longitudinal 
profile of the radial displacements of the tunnel wall. 

The convergence-confinement method is an 

analytical calculation method widespread in the 

tunneling field (Ribacchi and Riccioni, 1977; Panet, 

1995; AFTES, 1993). It allows to study the behavior of a 

tunnel in a simple and intuitive way, obtaining the 

evaluation of the relationship between the applied 

internal pressure and the radial displacement of the wall. 

The method appears to be fast and analyzes the 

interaction between the tunnel and the support through 

the intersection of the characteristic curve of the tunnel 

with the reaction line of the support. Precisely for the 

speed of calculation and for the accuracy of the results, 

this method was also used in the past for studies of 

probabilistic (Oreste, 2005) and back-analysis type. 

The reaction line of the support is, therefore, essential 

to be able to analyze the behavior of a segmental lining 

in tunnels excavated by a shielded TBM. For this reason 

will be evaluated in the following the stiffness of the 

composite support system consisting of the segmental 

lining and of an outer ring of filler material. 

Furthermore, in order to position with some precision the 

reaction line with respect to the characteristic curve of 

the tunnel, it is necessary to understand the evolution of 

the radial displacements of the wall in the longitudinal 

section. The theoretical profile of (Vlachopoulos and 

Diederichs, 2009) will be modified to take into account 

the presence of the TBM shield. 

Through the developed procedure will be possible to 

arrive at estimating the load acting on the segmental 

lining and, therefore, define the value of its thickness and 

the steel reinforcement necessary to ensure the stability 

of the tunnel. 

Materials and Methods 

The convergence-confinement method expects to 

obtain the intersection between the characteristic 

curve of the tunnel (convergence-confinement curve) 

and the reaction line of the support (Fig. 1). 

The slope of the reaction line with respect to the 

horizontal is a function of the stiffness of the support 

system sostegno ksys (tgϑ = ksys). In order to properly 

evaluate the stiffness of the composite system consisting 

of the segmental lining and the outer ring of filler 

material, it is necessary to analyze in detail the stresses 

and strains developed in the two materials, when the 

tunnel wall has radial displacements subsequent to the 

lining installation (uR-uR,in) (Fig. 2). 
 

 
 
Fig. 1. The characteristic curve of the tunnel (convergence-confinement curve) and the reaction line of the support. The 

intersection point is used to determine the final load acting on the support (σR,eq) and the final displacement of the 

tunnel wall (uR,max). Key: uR,in: Displacement of the tunnel wall at the time of installing the support; σR: Radial 

pressure applied on the tunnel wall; uR: Radial displacement of the tunenl wall; p0: Lithostaticstress to the depth of the 

tunnel; ϑ: Slope of the reaction line of the support with respect to the horizontal (tgϑ = ksys, with ksys the stiffness of 

the support system) 
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Fig. 2. Composite support system when the tunnel is excavated by a shielded TBM. The outer ring is formed by the filling material 

(material 1), the inner ring is the segmental lining (material 2). The extrados of the outer ring coincides with the tunnel wall, 

having a radius R; tg: Thickness of the outer ring; tc: Thickness of the inner ring 

 

For the radial symmetry, the radial displacement u in 

the two rings is expressed by the following general 

formulation, in function of the generic distance from the 

center of the tunnel r (Ribacchi and Riccioni, 1977): 
 

B
u A r

r
= ⋅ +  (1) 

 

Because the shear deformation εϑ is the ratio u/r and 

the radial deformation εr is the derivative of u with 

respect to r (εr = du/dr), we have: 
 

2

B
A

r
ϑ
ε = +  (2) 

 

2r

B
A

r
ε = −  (3) 

 

Furthermore, for the radial symmetry in a field of 

plan deformations, one can write the following relations 

between stresses and strains: 

 

r
C D

ϑ ϑ
σ ε ε+⋅ ⋅=  (4) 

 

r r
C D

ϑ
σ ε ε= +⋅ ⋅  (5) 

 

Where: 

 

( ) ( ) ( ) ( )

1

1 2 1 1 2 1
C E D E

ν ν

ν ν ν ν

−

⋅ ⋅

⋅ ⋅ ⋅ ⋅

= =

− + − +

 (6) 

 

E = The elastic modulus of the material; 

ν = The Poisson ratio of the material. 

 

The following boundary conditions of the support 

system are posed: 

• Radial displacement on the extrados of the outer 

ring (material 1) equal to: (uR-uR,in) for r = R, where 

uR,in is the displacement of the tunnel wall at the 

time when the lining is installed and uR is the 

generic displacement of tunnel wall 

• Radial stress σr at the interface between the two 

materials (r = R-tg), equal for the two materials 

• Radial displacement u at the interface between the 

two materials (r = R-tg), equal for the two materials 

• Nil radial stressσr at the intrados of the second 

material: σr = 0 for r = (R-tg-tc) 
 

For condition 1 one can write the following relation 

(from Equation 1): 

 

( ) 1

, 1R R in

B
u u u A R

R
⋅= − = +  (7) 

 
From which: 

 

( )1 , 1R R in
B R u u A R⋅= − ⋅ −   (8) 

 
For the second condition one can write the following 

relation (from Equation 2-5): 
 

( ) ( )

( ) ( )

1 1

1 1 1 12 2

2 2

2 2 2 22 2

g g

g g

B B
C A D A

R t R t

B B
C A D A

R t R t

   
   − + +
   − −   

   
   = − + +
   − − 

⋅

⋅ ⋅



⋅



 (9) 

 
where, A1 and B1, A2 and B2: A and B parameters, 

respectively for material 1andmaterial 2; C1 and D1, C2 

and D2: C and D parameters, respectively for material 1 

and material 2; tg is the thickness of external annulus 

(the gravel stratum, material 1); this thickness is 
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typically equal to the thickness of the shield in the tail 

zone tsh, but may be higher when there is a significant 

over break by the TBM head (this aspect will be 

discussed in more detail below). 

For condition 3 one can write the following relation 

(from Equation 1): 

 

( )
( )

( )
( )

1 2

1 2g g

g g

B B
A R t A R t

R t R t
− + = − +⋅

− −

⋅  (10) 

 

From which, substituting Equation 8 to B1: 

 

( ) ( ) ( )
2 2

2

2 1 2 ,g g R R inB A R t R A R t u u R = − − − − + −  
⋅ ⋅ ⋅  (11) 

 

For Condition 4 one can write the following relation 

(from Equation 2-5): 

 

( ) ( )
2 2

2 2 2 22 2
0

g c g c

B B
C A D A

R t t R t t

   
   − + + =
   − − − − 

⋅

 

⋅  (12) 

 

where,  tc is the thickness of the inner annulus (concrete 

lining, material 2). 

Substituting Equation11 in Equation 12, after a few 

steps we get: 

 

( )1 2 ,R R in
A A u uξ ρ⋅ ⋅= + −  (13) 

 

Where: 
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Replacing Equation 8 and 11 in Equation 9, after 

some steps we get: 

 

( )1 2 2 ,
2

R R in
A C A u uω χ⋅ = ⋅ ⋅ + ⋅ −  (14) 

 

Where: 
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Solving the system composed of the Equation 13 and 

14 in the two unknowns A1 and A2, we get: 

( )1 ,

2
2

R R in
A u u

C

χ ω ρ
ξ ρ

ω ξ

 − ⋅
= ⋅ + ⋅ − 

⋅ − ⋅ 
 (15) 

 

( )2 ,

2
2

R R in
A u u

C

χ ω ρ

ω ξ

 − ⋅
= ⋅ − 

⋅ − ⋅ 
 (16) 

 

The stiffness of the support system Ksys is given by 

the ratio between the radial stress σRon the tunnel wall (r 

= R) and the displacement at that point: 

 

( ) ( )

( )
( )

( )
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1 1
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,

R
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R R in R R in
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R
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− −

−
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=
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 (17) 

 

From which, by replacing the Equation 15 and 8 in 

Equation 17, after a few steps we get: 

 

( )1 1 1

2

1
2

2
sys
k C D C

C R

χ ω ρ
ξ ρ

ω ξ

 − ⋅
= ⋅ ⋅ ⋅ + + ⋅ − 

⋅ − ⋅ 
 (18) 

 

The other fundamental parameter in order to draw 

the reaction line of the support of Fig. 1 is the radial 

displacement of the tunnel wall at the moment in 

which the support is installed (uR,in) (Oreste, 2009; 

2013). According to Vlachopoulos and Diederichs 

(2009) radial displacements uR have the following 

evolution (curve 1 in Fig. 3): 

 

( )

( )

,

0.15

,max

1

3

pl R eqR x

R R

R R
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u u e e

σ
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 (19) 
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3
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  = ⋅ − − ⋅ ⋅

  
  

×

 (20) 

 

where, Rpl(σR,eq): Plastic radius of the tunnel in the presence 

of an internal pressure equal to the final pressure (σR,eq) 

applied by the support structure to the tunnel wall. 

In the absence of over break, the presence of a shielded 

TBM involves blocking of the radial displacements 

immediately behind the TBM head, in correspondence of 

the excavation face. For the whole length L of the TBM 

shield radial displacements of the tunnel wall are 

stationary equal to the uR,in value which is present in 

correspondence of the excavation face (curve 2 of Fig. 3): 
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( )
,

0.15

, ,max

1

3

pl R eqR

R

R in R
u u e

σ

− ⋅

 
 = ⋅ ⋅
 
 

 (21) 

 
It can be assumed that for x>L the trend of uR remains 

the same as the curve 1, shifted by L along the x axis. 
In practice, the effect of the shielded TBM is to 

freeze the radial displacements along the whole of the 
TBM shield (from x = 0 to x = L) and to transfer the 
position of the face at the installation point of the lining. 

δ in Fig. 3 represents the prevented displacement by 
the presence of the TBM shield: 
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1
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xR

R
R

R
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 (22) 

 
To this displacement corresponds a radial pressure p 

acting on the extrados of the shield: This pressure can be 
evaluated by applying the displacement δ to the 
characteristic curve of the tunnel (Fig. 4). Since both δ and 
p vary along the shield (Fig. 3), the value of p along x (from 
x = 0 to x = L) can be integrated in order to evaluate the 
total frictional force on the interface shield-tunnel wall that 
it is necessary to win during the TBM advancement. 

Instead, if the TBM head realizes an over break ∆, 
i.e., the tunnel radius R is greater than the shield 
radius Rsh (∆ = R-Rsh), the profile of the radial 
displacements is given by the curve 3 of Fig. 3 and the 
initial displacement uR,in is given by the following 
equation, which replaces the Equation 21: 
 

( )
,

0.15
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1

3
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R

R in R
u u e

σ

− ⋅

 
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 
 

 (23) 

 

The distance d from the face at which the tunnel wall 

comes into contact with the shield is given by the 

following Equation 24: 

 

( )
( )

,

,

0.15
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2
ln 1

3
1

1
3

pl R eq
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R

R
R

d R

u e

σ

σ
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 
 
 ∆
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  
  ⋅ − ⋅
    

 (24) 

 

Then, in the presence of an over break ∆ is detected: 
 

• An increase in the value of uR,in; it has the effect of 

reducing the final load σR,eq on the lining (Fig. 1) 

• A reduction in the value of δ; it results in a 

reduction of the pressure applied by the tunnel wall 

to the shield extrados 
 

If then, due to a high over break, d turns out to be 

greater than the length L, the tunnel wall doesn’t come in 

contact with the shield and on it is not applied any radial 

pressure (except the reaction to the own weight); the 

average thickness of the outer ring of the filling material 

tg is no longer simply given by the thickness of the shield 

in the tail zone tsh, but by the following Equation 25: 
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1
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R

R

g sh R L

R

e

t t u

e

σ

σ
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⋅

−

⋅

  
  − ⋅
  
  = + ∆ − ⋅
  
  ⋅ −
  
  

 (25)

 
 
Fig. 3. Longitudinal profile of the radial displacements of the tunnel wall. Key: 1: Curve obtained from the equations of 

Vlachopoulos and Diederichs (2009) (Equation 19 and 20); 2: Modified curve to account for the presence of a shielded TBM 

in the absence of over break of the head; 3: Curve modified to take into account the presence of a shielded TBM with over 

break of the head equal to ∆; δ: Displacement prevented by the shield TBM which has as a consequence that a radial pressure 

is applied on the outer surface of the shield; L: Length of the TBM shield 
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Fig. 4. Evaluation of the pressure p that the tunnel wall applies to the TBM shield during its advancement, starting from the 

prevented displacement δ of Fig. 3. Key: F: Point of the tunnel characteristic curve which has a radial displacement uR,in 

 
In this case, uR,in is obtained by the following 

equation, which replaces the Equation 21 or 23: 
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    

 (26) 

 
The increase of the average thickness of the outer 

ring of filling material (tg) involves a reduction of the 

total stiffness of the support system ksys (Equation 18), 

with additional effects on the reduction of the final load 

on the concrete lining. 

Since both uR,max and σReq depend on uR,in and also 

uR,in (Equation 21, 23 or 26) depends in turn on uR,max and 

σReq, it is necessary to proceed iteratively, starting from an 

initial value of uR,in equal to 0, to obtain the convergence 

of the following three values: uRmax, σReq, uR,in. 
Once obtained uR,max and uR,in one can determine the 

load acting directly on the concrete lining (σr at r = R-tg) 
in the following way: 
 

• Replacing uR,max to uR in Equation 15 and 8, 

obtaining the A1 and B1 parameters 

• The radial stress σr at r = R-tg is then given by the 

following equation (starting from Equation 5, 2 and 3): 

 

( )
( ) ( )

1 1

1 1 1 12 2r g

g g

B B
r R t C A D A

R t R t

σ

   
   = − = ⋅ − + ⋅ +
   − −   

 (27) 

Results 

The procedure described in paragraph 2 has been 

applied to the case of a circular tunnel of radius 3 m, 

excavated in a rock mass of medium geomechanic 

quality with the following characteristic parameters: 

Elastic modulus E = 8434 MPa, Poisson's ratio ν = 

0.3, cohesion c = 0.19 MPa, friction angle ϕ = 35°, 

dilatancy Ψ = 25°. The lithostaticstress p0 to the depth 

of the tunnel is 5 MPa. The thickness of the shield in 

the tail zone tsh is equal to 10 cm. The thickness of the 

concrete lining tc is equal to 0.3 m. The mechanical 

characteristics of the used concrete are the following: 

E = 28000 MPa, ν = 0.15. 

It is assumed the use of natural or injected gravel as a 

fill of the outer ring of the support system, with an elastic 

modulus ranging from 100 MPa to 4000 MPa (Poisson's 

ratio of the filling material was assumed equal to 0.3). It is 

deemed null the over break (∆ = 0) and, therefore, the 

tunnel wall comes into contact with the shield 

immediately behind the excavating head (d = 0). 

Figure 5 shows the trend of the overall stiffness of 

the support system (ksys) varying the elastic modulus of 

the fill material. In Figure 6 is shown the trend of the 

load acting on the segmental lining (σr at r = R-tg) 

varying the elastic modulus of the fill material. 

The characteristic curve which is obtained from the 

calculation for an elastic modulus of the filling 

material equal to 1000 MPa (ksys= 602.45 MN/m3), is 

shown in Fig. 7. 
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Fig. 5. Trend of the overall stiffness of the support system (ksys) varying the elastic modulus of the material constituting the filling 

of the outer ring to the segmental lining 
 

 
 
Fig. 6. Trend of the radial load on the extrados of the segmental lining (r = R-tg) varying the elastic modulus of the material 

constituting the filling of the outer ring to the segmental lining 
 

 
 
Fig. 7. Tunnel convergence-confinement curve (characteristic curve of the tunnel) and reaction line of the support system, in the 

studied case and for elastic modulus of the filler material equal to 1000 MPa (ksys = 602.45 MN/m3) 
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Discussion 

From the analysis of Fig. 5 can be detected as the 

elastic modulus of the material filling the inter space 

outside the segmental lining has a certain influence on 

the overall stiffness of the support system, in particular 

for relatively low elastic moduli. With an increase of the 

elastic modulus of the filling material, the increase in the 

overall stiffness of the support system is attenuated, with 

a tendency to an asymptotic value. The elastic modulus 

of the fill, presents, instead, a significant influence on the 

load acting on the segmental lining, even for high values 

of the elastic modulus (Fig. 6). Increasing the elastic 

modulus of the fill material, the load on the segmental 

lining tends to decrease significantly. It can, therefore, be 

very convenient to be able to intervene on the filling 

material through the injection of cement mortar, thereby 

increasing its elastic modulus, in order to contain the 

loads on the segmental lining. This would result in a 

reduction of the thickness of the segmental lining, with 

significant operational and economic advantages and/or 

of incidence of steel reinforcing, which would be 

necessary to provide in its interior. 

Conclusion 

The support of a tunnel excavated using a shielded 
TBM machine requires the presence of two different 
materials: The concrete segmental lining mounted in 
the tail of the TBM shield and a filling material 
inserted in the inter space between the segmental 
lining and the tunnel wall. 

In order to effectively analyze the interaction between 

this support system and the tunnel, a computational 

procedure that is based on the convergence-confinement 

method and on the studies of Vlachopoulos and 

Diederichs (2009) was developed. It was possible, through 

a detailed analysis of the stresses and strains that develop 

in the two materials of the composite support system, to 

obtain the overall stiffness useful to draw the support 

reaction line of the convergence-confinement method. The 

study of the evolution of the radial displacements along 

the longitudinal section of the tunnel, in the presence of a 

shielded TBM, allowed to obtain the equations able to 

calculate the uR,in displacement in the wall at the point 

where the support system is installed. 

The calculation relating to a specific case has allowed 

to understand the importance of the stiffness of the 

filling material on the overall stiffness of the system and 

on the loads which affect the segmental lining. 
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