
American Journal of Applied Sciences 11 (5): 851-856, 2014
ISSN: 1546-9239
©2014 Science Publication
doi:10.3844/ajassp.2014.851.856 Published Online 11 (5) 2014 (http://www.thescipub.com/ajas.toc)

Corresponding Author: Rupali Verma, Computer Science and Engineering, PEC University of Technology, Chandigarh, India

851 Science Publications

AJAS

CARRY SAVE COMMON MULTIPLICAND
MONTGOMERY FOR RSA CRYPTOSYSTEM

1Rupali Verma, 2Maitreyee Dutta and 3Renu Vig

1Computer Science and Engineering, PEC University of Technology, Chandigarh, India

2Computer Science and Engineering, National Institute of Technical Teachers’ Training and Research, Chandigarh, India
3University Institute of Engineering and Technology, Panjab University, Chandigarh, India

Received 2014-01-13; Revised 2014-02-13; Accepted 2014-03-08

ABSTRACT

RSA public key cryptosystem provides encryption and digital signatures. With growth of key size an efficient
design of RSA in terms of area, frequency, throughput and power consumption is hard to achieve. Also with
the different type of attacks possible, a need for secure RSA cryptosystem which is attack resistant has arisen.
This study presents RSA design with Montgomery powering ladder and proposed carry save common
multiplicand Montgomery on FPGAs. Since the modular exponentiation is based on Montgomery powering
ladder therefore it is power attack resistant. Common multiplicand Montgomery modular multiplication
reduces the complexity by computing once the common operations in modular squaring and modular
multiplication. The proposed carry save common multiplicand Montgomery modular multiplication maintains
intermediate results in carry save form and utilizes the DSP slices to convert the redundant results into binary
at the end of the modular multiplication. The proposed RSA design implemented on FPGAs is efficient in
terms of area, frequency, power consumption and is power attack resistant.

Keywords: Carry Save, Common Multiplicand, FPGA, Montgomery, RSA

1. INTRODUCTION

 RSA is a popular public key cryptosystem
(Rivest et al., 1978). The security of RSA lies in large
size operands which are 1024 bits or more. RSA
encryption and decryption are modular exponentiation
functions. Classical binary exponentiation methods- left to
right and right to left perform modular squaring in each
iteration but modular multiplication only when
exponentiation bit is one. Montgomery powering ladder
has a regular structure with parallel modular squaring and
modular multiplication and prevents the implementation
attacks due to its regular behavior (Joye and Yen, 2002).
Common multiplicand multiplication takes the advantage
of parallel modular squaring and multiplication and
reduces the complexity by computing once the reductions
on common multiplicand. Common multiplicand
Montgomery design suitable for hardware implementation
is proposed in (Wu et al., 2013). Their word based radix 2
and radix 4 architectures have been presented by the
authors in (Wu et al., 2013). Various architectures:

Systolic arrays and carry save designs (McIvor et al.,
2004; Fournaris, 2010) for Montgomery modular
multiplication (Montgomery, 1985) are in literature. Carry
save designs provide the advantage of high frequency at
cost of large area when implemented on FPGAs. This is
due to the mapping of carry and sum bit on different
LUTs. A high performance fault attack and simple power
attack resistant modular exponentiation with carry save
Montgomery modular multiplication is proposed in
(Fournaris, 2010). It employs carry save logic in all its
inputs, outputs, intermediate values and computations. It
is optimized in terms of area, frequency and throughput
and is attack resistant. The work in this study aims in
power attack resistant efficient RSA design with low
power consumption so that it is energy efficient design.
To achieve it, the RSA is based on Montgomery
powering ladder, carry save common multiplicand
Montgomery modular multiplication. It uses 2 DSP
slices for redundant to binary conversion at end of
common multiplicand Montgomery modular
multiplication. Section 2 gives a brief introduction to

Rupali Verma et al. / American Journal of Applied Sciences 11 (5): 851-856, 2014

852 Science Publications

AJAS

common multiplicand Montgomery modular
multiplication. The proposed carry save common
multiplicand Montgomery modular multiplication for
RSA is presented in section 3. Section 4 presents its
architecture. Section 5 presents the modular
exponentiation for RSA based on Montgomery powering
ladder and carry save common multiplicand
Montgomery. Section 6 gives the implementation results
and comparison with related carry save designs in
literature. Section 7 concludes the paper.

2. COMMON MULTIPLICAND
MONTGOMERY MODULAR

MULTIPLICATION

Common multiplicand Montgomery modular
multiplication takes the advantage of the common
multiplicand in the modular squaring and modular
multiplication and divides them into two parallel
processes (Wu et al., 2013). Let R and P be k bit
numbers, n is k bit modulus and MMM is Montgomery
modular multiplication.

MMM(R, P, n) = R · P · 2-k mod n (1)

MMM (P, P, n) = P · P · 2-k mod n (2)

Equation 1 and 2 represent modular multiplication
and modular squaring respectively where P is the
common multiplicand. A common multiplicand approach
performs the two independent operations by common
modular reduction on P as in Equation 3 and two
separate accumulations in Equation 4 and 5 (Wu et al.,
2013) where ri and pi are ith digit of R and P respectively:

i
iT P.2 mod n, for i 1,2, ..,k−= = … (3)

k i

ii 1
X r P2 modn−

=
=∑ (4)

i

i

k

i 1
Y p P 2 modn−

=
=∑ (5)

Algorithm 1. Common multiplicand Montgomery
modular multiplication
Input: P and R are k+g bit numbers:
g = 1+log2(k+1)

i
i

k g 1 k g 1i
ii 0 i 0

P p 2 , R r 2
+ − + −

= =
= =∑ ∑

Modulus, n with 2k-1 < n < 2k, gcd (n, 2) = 1
Output: X = P. R. 2 –(k+2g) mod n , Y = P2 2 –(k+2g) mod n
with 0 ≤ X< 2k+g , 0 ≤ Y< 2k+g

1: X: = 0, Y: = 0;

2: T: = P;
3: for i = 1 to k+2g do
4: q[i]: = T0 mod 2;
5: T: = (T+ q[i] n)/2;
6: if g+1≤ i ≤ k+2g then
7: X:= X+ r k+2g-i · T, Y:= Y+ p k+2g-i · T;
8: end if;
9: end for;
10. return X, Y.

Algorithm 1 is common multiplicand Montgomery
modular multiplication proposed by authors (Wu et al.,
2013). Algorithm 2 is the proposed carry save method
for common multiplicand Montgomery modular
multiplication. All the intermediate addition operations
of large numbers are done with carry save adders. The
input operands to algorithm are in binary form. To
convert the results from redundant to binary few extra
cycles are required. Also it is essential to perform the
conversion of result from redundant to binary at the
end so that in successive common multiplicand
Montgomery modular multiplication in
exponentiation, the accumulation of partial products
can start from most significant bit of multiplier.

3. PROPOSED CARRY SAVE COMMON
MULTIPLICAND MONTGOMERY

MODULAR MULTIPLICATION

Algorithm 2 takes input P, R and n, computes
modular reduction on T which is initialized to the
common multiplicand P. To reduce the iteration time the
various steps are parallelized by making them
independent computations. Step 5 performs modular
reduction whereas step 8 performs accumulation. Steps
(4, 5) and 8 are pipelined for parallel computation.

Algorithm 2. Proposed Carry Save Common
Multiplicand Montgomery Modular Multiplication
(CSCMMM)

Input: P and R are both (k+g) bit numbers with
g = 1+log2(k+1)

i
i

k g 1 k g 1i
ii 0 i 0

P p 2 , R r 2
+ − + −

= =
= =∑ ∑

Modulus, n with 2k-1 < n < 2k and gcd (n, 2) = 1
Output: X = P. R. 2 –(k+2g) mod n , Y = P2 2 –(k+2g) mod n
with 0 ≤ X< 2k+g , 0 ≤ Y< 2k+g

1: X1: = 0, X2:= 0, Y1: = 0, Y2: = 0;
2: T1[1]: = 0, T2[1]: = P;
3: For i = 1 to k+2g do

Rupali Verma et al. / American Journal of Applied Sciences 11 (5): 851-856, 2014

853 Science Publications

AJAS

4: q[i]: = (T1[i]0⊕ T2[i]0) mod 2;
5: T1[i+1], T2[i+1]: = (T1[i]+T2[i]+q[i] ·n)/2;
6: end for;
7: for i = g+2 to k+2g+1 do
8: X1,X2:= X1+X2+rk+2g-(i-1).(T1[i]+T2[i]);
 parallel
 Y1,Y2:= Y1+Y2+pk+2g-(i-1).(T1[i]+T2[i])
9: end for;
10: X: = X1+X2; Y: = Y1+Y2; /* conversion from
redundant to binary */
11: return X, Y.

The for loop of step 3 runs for k+2g iterations with
each iteration computing quotient q[i] and
T1[i+1],T2[i+1]. This loop computes modular reduction
on common multiplicand P and has delay of 1 XOR, 1
full adder and 2:1 MUX. The computed T1, T2 values
are added in successive iteration. Therefore the
accumulation of partial product starts from g+2 iteration.
Hence for loop of step 7 runs from i = g+2 to k+2g+1.
The multiplier bits for partial product accumulation are
taken from k+g-1 to 0:

()When i g 2,k 2g i 1 k g 1= + + − − = + −

()and i k 2g 1,k 2g i 1 0= + + + − − =

The accumulation of partial products in X1, X2 and

Y1, Y2 are computed in parallel with delay of 2 full
adders and 2:1 MUX.

4. ARCHITECTURE OF CARRY SAVE
COMMON MULTIPLICAND
MONTGOMERY MODULAR

MULTIPLICATION

Figure 1 shows the architecture of carry save
common multiplicand Montgomery modular
multiplication. It consists of:
• I/O Interface
• Control unit
• Registers
• Counter
• Common reduction unit
• X, Y accumulation units
• Adders

The I/O interface takes three inputs P, R and n and
gives two outputs X and Y in binary. The control unit
controls the sequence of computations to achieve
modular multiplication. Common reduction unit
computes quotient and reduction on common
multiplicand. Common reduction unit, X and Y
accumulation units are pipelined so that common
reduction and accumulation are computed in parallel.
The counter keeps track of the computations. Adders
convert the result from redundant to binary. The
number of cycles in conversion from redundant to
binary depends on the adder and its implementation.

5. RSA MODULAR EXPONENTIATION

Algorithm 3 is the modular exponentiation based on
Montgomery powering ladder and common multiplicand
Montgomery modular multiplication to compute Me mod
n (Wu et al., 2013). M is converted to Montgomery
domain and R is reassigned pre-computed value Z. This
is done to have one modular multiplication unit in
exponentiation. If exponent bit is set then:

 R = P. R. 2 –(k+2g) mod n , P = P2 2 –(k+2g) mod n.
 If exponent bit is zero then values are

P = R.P. 2 –(k+2g) mod n , R= R2 2 –(k+2g) mod n.
At step 8 and 9 the result is converted to integer

domain and stored in C respectively.
Hence C= 1. R .2 –(k+2g) mod n.

Algorithm 3. RSA modular exponentiation with
Montgomery powering ladder and common multiplicand
Montgomery modular multiplication

Input: 0≤ M< n< 2k,
k 1 i

ii 0
e e 2

−

=
=∑ ,

 λ = 2(2k+4g) mod n, δ = 2k+2g mod n
 Z = δ mod n (pre-computed value), gcd (n, 2) = 1
Output: C = Me mod n, 0≤ C≤ n.

1. P, R = CSCMMM (M, λ, n)
 // to convert M into Montgomery domain
2. R = Z;
3. for i = k-1 to 0 do
4. if ei = 1 then R, P = CSCMMM(P,R, n);
5. else P, R = CSCMMM(R, P, n);
6. end if;
7. end for;
8. P,R = CSCMMM(1, R, n);
 // convert to integer domain
9. C: = P;
10. return C.

Rupali Verma et al. / American Journal of Applied Sciences 11 (5): 851-856, 2014

854 Science Publications

AJAS

Fig. 1. Architecture of carry save common multiplicand montgomery

6. IMPLEMENTATION RESULTS

 RSA modular exponentiation with Montgomery
powering ladder and carry save common multiplicand
Montgomery modular multiplication is coded in VHDL
and synthesized in Xilinx ISE design suite 12.4. The
target device is xc5vlx50t (package ff65 target speed -
3). The size of operands is 1024 bits and encryption
exponent is e = 216+1. Figure 2 shows DSP48E chosen
for addition. To convert the results from redundant to
binary (algorithm 2) two DSP48E are used that work in
parallel to add X = X1+X2 and Y = Y1+Y2. 48 bit
operands and carry bit are taken in each cycle and
added to give 48 bit result and 1bit carry out that
becomes carry in for next cycle. For RSA 1024 bits the
operand size in common multiplicand is
1036(1024+12) bits which requires approximately 22
cycles for addition using DSP48E.

Using IP core and architecture wizard DSP48E is
selected and the instruction:

C CONCAT CARRYIN+ +

Is given and CARRYOUT is selected which is

shown in Figure 2.

Table 1 gives the number of cycles for RSA 1024 bit
modular exponentiation and taking encryption exponent
e = 216+1. For 1024 bits, g has value 12 (Wu et al.,
2013). For 17 bit exponent the total calls for Common
multiplicand Montgomery are 17+1 (from integer to
Montgomery domain) +1 (Montgomery to integer
domain). The total cycle count for RSA
exponentiation is 20368.Table 2 gives area results in
terms of slice registers, LUTs and DSP48Es. These
results are obtained from place and route report
generated in Xilinx ISE 12.4. Table 3 gives results of
RSA modular exponentiation in terms of area,
frequency, throughput, power and simple power
attack. Throughput of the proposed RSA design is
calculated by the formula Equation 6:

Bit length Frequency
Throughput

Numberof Cycles

×= (6)

The power consumption is generated in Xilinx x

power analyzer. The power consumption of our RSA
1024 bits is 43 mW. RSA in our work is based on
Montgomery powering ladder, hence it is simple
power attack resistant.

Rupali Verma et al. / American Journal of Applied Sciences 11 (5): 851-856, 2014

855 Science Publications

AJAS

Fig. 2. DSP48E to add 48 bit data with carry in

Table 1. Cycle count in RSA 1024 bit modular exponentiation
Design Exponentiation cycles No of cycles in proposed Montgomery Total cycle count
RSA 19 1050+22(addition) 20368

Table 2. Detailed Area results of RSA 1024 bit modular exponentiation (Virtex XC5VLX50T)

Slice Registers LUTs DSP48Es

14948 12447 2

Table 3. RSA 1024 bit modular exponentiation (Virtex XC5VLX50T)
 Area Freq Throughput Power
 (Slices) (MHz) (Mbps) (mW) SPA
Fournaris, 2010 7158 274.00 14.50 - Yes
Our 4977 327.38 16.45 43 Yes

Rupali Verma et al. / American Journal of Applied Sciences 11 (5): 851-856, 2014

856 Science Publications

AJAS

RSA exponentiation based on carry save
Montgomery modular multiplication was proposed by
the authors (McIvor et al., 2004) and its implementation
results on Virtex 2 FPGAs was presented. They used
carry save adders for addition of operands during
modular multiplication and there was no conversion of
results from carry-save to binary at end of modular
multiplication. The proposed carry save common
multiplicand Montgomery in this work requires a format
conversion from carry save to binary at end since each
successive modular multiplication in exponentiation
starts the accumulation of partial products from the most
significant bit of multiplier. Our proposed modular
multiplication uses two DSP48E for addition. It adds 48
bits in one cycle and requires 22 cycles for addition of
1036 bits. The proposed RSA is implemented on virtex 5
FPGAs. Its implementation on virtex 2 FPGAs is not
possible due to lack of DSP slices in virtex 2 FPGAs.
Compared to RSA (Fournaris, 2010) which is based on
carry save Montgomery modular multiplication and is
attack resistant, our RSA is efficient in terms of area,
frequency and throughput. Also the implementation of
RSA with Montgomery powering ladder naturally protects
it from many implementation attacks (Joye and Yen,
2002). The power consumption of our RSA design is
very less as compared to the power consumption of
1024 bit modular multiplication in (Ye et al., 2013).
The addition cycles in our work for redundant to
binary conversion can be further reduced by using fast
adders presented in (Zicari and Perri, 2010). The use
of reversible logic in Montgomery modular
multiplication to prevent power attacks was presented
in (Nayeem et al., 2009). The performance of common
Multiplicand Montgomery modular multiplication with
reversible adder proposed in (Haghparast and Navi,
2008) can be analyzed.

7. CONCLUSION

In this study, RSA modular exponentiation based on
Montgomery powering ladder and carry save common
multiplicand Montgomery modular multiplication uses
DSP48E to convert result from carry save to binary at
end of modular multiplication. The design is efficient in
terms of area, throughput and power. Also the design is
power attack resistant. The throughput is inversely
proportional to the cycle count. The number of cycles of
carry save common multiplicand Montgomery modular
multiplication can be reduced with the use of efficient
adders used to convert redundant results to binary. Also
area results can be improved by efficiently mapping the
carry save design on FPGAs.

8. REFERENCES

Fournaris, A.P., 2010. Fault and simple power attack
resistant RSA using Montgomery modular
multiplication. Proceedings of the IEEE
International Symposium on Circuits and Systems,
May 30-Jun. 2, IEEE Xplore Press, Paris, pp: 1875-
1878. DOI:10.1109/ISCAS.2010.5537879

Haghparast, M. and K. Navi, 2008. A Novel reversible
BCD adder for nanotechnology based systems. Am.
J. Applied Sci., 5: 282-288. DOI:

10.3844/ajassp.2008.282.288
Joye, M. and S.M. Yen, 2002. The Montgomery

powering ladder. Proceedings of the 4th
International Workshop on Cryptographic Hardware
and Embedded Systems, Aug. 13-15, Springer-
Verlag Berlin Heidelberg, CA, USA., pp: 291-302.
DOI: 10.1007/3-540-36400-5_22

McIvor, C., M. McLoone and J.V. McCanny, 2004.
Modified Montgomery modular multiplication and
RSA exponentiation techniques. Proceedings of the
Computers and digital Techniques, Nov.18-18,
IEEE Xplore Press, pp: 402-408. DOI: 10.1049/ip-
cdt:20040791

Montgomery, P.L., 1985. Modular multiplication without
trial division. Math. Computat., 44: 519-521.

Nayeem, N.M., L. Jamal and H.M.H. Babu, 2009.
Efficient reversible Montgomery multiplier and its
application to hardware cryptography. J. Comput.
Sci., 5: 49-56. DOI: 10.3844/jcssp.2009.49.56

Rivest, R.L, A. Shamir and L. Adleman, 1978. A method
for obtaining digital signatures and public-key
cryptosystems. Commun. ACM., 21: 120-126. DOI:
10.1145/359340.359342

Wu, T., S. Li and L. Liu, 2013. Fast, compact and
symmetric modular exponentiation architecture by
common-multiplicand Montgomery modular
multiplications. Intergrat. VLSI J., 46: 323-332.
DOI: 10.1016/j.vlsi.2012.09.002

Ye, J.H., T.W. Hung and M.D. Shieh, 2013. Energy-
efficient architecture for word-based Montgomery
modular multiplication algorithm. International
Symposium on VLSI Design, Automation and Test,
Apr. 22-24, IEEE Xplore Press, Hsinchu, pp: 1-4.
DOI: 10.1109/VLDI-DAT.2013.6533882

Zicari, P. and S. Perri, 2010. A fast carry chain adder for
virtex-5 FPGAs. Proceedings of the 15th IEEE
Mediterranean Electrotechnical Conference on
MELECON, Apr. 26-28, IEEE Xplore Press, Valletta,
pp: 304-308. DOI: 10.1109/MELCON.2010.5476275

