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ABSTRACT 

RSA public key cryptosystem provides encryption and digital signatures. With growth of key size an efficient 
design of RSA in terms of area, frequency, throughput and power consumption is hard to achieve. Also with 
the different type of attacks possible, a need for secure RSA cryptosystem which is attack resistant has arisen. 
This study presents RSA design with Montgomery powering ladder and proposed carry save common 
multiplicand Montgomery on FPGAs. Since the modular exponentiation is based on Montgomery powering 
ladder therefore it is power attack resistant. Common multiplicand Montgomery modular multiplication 
reduces the complexity by computing once the common operations in modular squaring and modular 
multiplication. The proposed carry save common multiplicand Montgomery modular multiplication maintains 
intermediate results in carry save form and utilizes the DSP slices to convert the redundant results into binary 
at the end of the modular multiplication. The proposed RSA design implemented on FPGAs is efficient in 
terms of area, frequency, power consumption and is power attack resistant. 
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1. INTRODUCTION 

 RSA is a  popular  public key cryptosystem 
(Rivest et al., 1978). The security of RSA lies in large 
size operands which are 1024 bits or more. RSA 
encryption and decryption are modular exponentiation 
functions. Classical binary exponentiation methods- left to 
right and right to left perform modular squaring in each 
iteration but modular multiplication only when 
exponentiation bit is one. Montgomery powering ladder 
has a regular structure with parallel modular squaring and 
modular multiplication and prevents the implementation 
attacks due to its regular behavior (Joye and Yen, 2002). 
Common multiplicand multiplication takes the advantage 
of parallel modular squaring and multiplication and 
reduces the complexity by computing once the reductions 
on common multiplicand. Common multiplicand 
Montgomery design suitable for hardware implementation 
is proposed in (Wu et al., 2013). Their word based radix 2 
and radix 4 architectures have been presented by the 
authors in (Wu et al., 2013). Various architectures: 

Systolic arrays and carry save designs (McIvor et al., 
2004; Fournaris, 2010) for Montgomery modular 
multiplication (Montgomery, 1985) are in literature. Carry 
save designs provide the advantage of high frequency at 
cost of large area when implemented on FPGAs. This is 
due to the mapping of carry and sum bit on different 
LUTs. A high performance fault attack and simple power 
attack resistant modular exponentiation with carry save 
Montgomery modular multiplication is proposed in 
(Fournaris, 2010). It employs carry save logic in all its 
inputs, outputs, intermediate values and computations. It 
is optimized in terms of area, frequency and throughput 
and is attack resistant. The work in this study aims in 
power attack resistant efficient RSA design with low 
power consumption so that it is energy efficient design. 
To achieve it, the RSA is based on Montgomery 
powering ladder, carry save common multiplicand 
Montgomery modular multiplication. It uses 2 DSP 
slices for redundant to binary conversion at end of 
common multiplicand Montgomery modular 
multiplication. Section 2 gives a brief introduction to 



Rupali Verma et al. / American Journal of Applied Sciences 11 (5): 851-856, 2014 

 
852 Science Publications

 
AJAS 

common multiplicand Montgomery modular 
multiplication. The proposed carry save common 
multiplicand Montgomery modular multiplication for 
RSA is presented in section 3. Section 4 presents its 
architecture. Section 5 presents the modular 
exponentiation for RSA based on Montgomery powering 
ladder and carry save common multiplicand 
Montgomery. Section 6 gives the implementation results 
and comparison with related carry save designs in 
literature. Section 7 concludes the paper.  

2. COMMON MULTIPLICAND 
MONTGOMERY MODULAR 

MULTIPLICATION 

Common multiplicand Montgomery modular 
multiplication takes the advantage of the common 
multiplicand in the modular squaring and modular 
multiplication and divides them into two parallel 
processes (Wu et al., 2013). Let R and P be k bit 
numbers, n is k bit modulus and MMM is Montgomery 
modular multiplication.  
 
MMM(R, P, n) = R · P · 2-k mod n           (1)  
 
MMM (P, P, n) = P · P · 2-k mod n           (2)  
 

Equation 1 and 2 represent modular multiplication 
and modular squaring respectively where P is the 
common multiplicand. A common multiplicand approach 
performs the two independent operations by common 
modular reduction on P as in Equation 3 and two 
separate accumulations in Equation 4 and 5 (Wu et al., 
2013) where ri and pi are ith digit of R and P respectively:  
 

i
iT P.2 mod n, for i 1,2, ..,k−= = …  (3) 

  
k i

ii 1
X r P2 modn−

=
=∑   (4)  

 
i

i

k

i 1
Y p P 2 modn−

=
=∑  (5) 

  
Algorithm 1. Common multiplicand Montgomery 
modular multiplication 
Input: P and R are k+g bit numbers: 
g = 1+log2(k+1) 

i
i

k g 1 k g 1i
ii 0 i 0

P p 2 , R r 2
+ − + −

= =
= =∑ ∑  

Modulus, n with 2k-1 < n < 2k, gcd (n, 2) = 1 
Output: X = P. R. 2 –(k+2g) mod n , Y = P2 2 –(k+2g) mod n 
with 0 ≤ X< 2k+g , 0 ≤ Y< 2k+g  

1: X: = 0, Y: = 0; 

2: T: = P; 
3:  for i = 1 to k+2g do 
4: q[i]: = T0 mod 2; 
5:  T: = (T+ q[i] n )/2; 
6:   if g+1≤ i ≤ k+2g then 
7:  X:= X+ r k+2g-i · T,   Y:= Y+ p k+2g-i · T; 
8:  end if; 
9: end for; 
10.  return X, Y. 
 

Algorithm 1 is common multiplicand Montgomery 
modular multiplication proposed by authors (Wu et al., 
2013). Algorithm 2 is the proposed carry save method 
for common multiplicand Montgomery modular 
multiplication. All the intermediate addition operations 
of large numbers are done with carry save adders. The 
input operands to algorithm are in binary form. To 
convert the results from redundant to binary few extra 
cycles are required. Also it is essential to perform the 
conversion of result from redundant to binary at the 
end so that in successive common multiplicand 
Montgomery modular multiplication in 
exponentiation, the accumulation of partial products 
can start from most significant bit of multiplier. 

3. PROPOSED CARRY SAVE COMMON 
MULTIPLICAND MONTGOMERY 

MODULAR MULTIPLICATION 

Algorithm 2 takes input P, R and n, computes 
modular reduction on T which is initialized to the 
common multiplicand P. To reduce the iteration time the 
various steps are parallelized by making them 
independent computations. Step 5 performs modular 
reduction whereas step 8 performs accumulation. Steps 
(4, 5) and 8 are pipelined for parallel computation.  

Algorithm 2. Proposed Carry Save Common 
Multiplicand Montgomery Modular Multiplication 
(CSCMMM) 

Input: P and R are both (k+g) bit numbers with  
g = 1+log2(k+1)  

i
i

k g 1 k g 1i
ii 0 i 0

P p 2 , R r 2
+ − + −

= =
= =∑ ∑  

Modulus, n with 2k-1 < n < 2k and gcd (n, 2) = 1 
Output: X = P. R. 2 –(k+2g) mod n , Y = P2 2 –(k+2g) mod n 
with 0 ≤ X< 2k+g , 0 ≤ Y< 2k+g  

1: X1: = 0, X2:= 0, Y1: = 0, Y2: = 0; 
2: T1[1]: = 0, T2[1]: = P; 
3:  For i = 1 to k+2g do 
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4: q[i]: = (T1[i]0⊕ T2[i]0) mod 2;  
5: T1[i+1], T2[i+1]: = (T1[i]+T2[i]+q[i] ·n)/2;  
6:  end for; 
7:    for i = g+2 to k+2g+1 do 
8:  X1,X2:= X1+X2+rk+2g-(i-1).(T1[i]+T2[i]); 
               parallel 
         Y1,Y2:= Y1+Y2+pk+2g-(i-1).(T1[i]+T2[i])  
9:  end for; 
10:  X: = X1+X2; Y: = Y1+Y2; /* conversion from 
redundant to binary */ 
11: return X, Y. 
 

The for loop of step 3 runs for k+2g iterations with 
each iteration computing quotient q[i] and 
T1[i+1],T2[i+1]. This loop computes modular reduction 
on common multiplicand P and has delay of 1 XOR, 1 
full adder and 2:1 MUX. The computed T1, T2 values 
are added in successive iteration. Therefore the 
accumulation of partial product starts from g+2 iteration. 
Hence for loop of step 7 runs from i = g+2 to k+2g+1. 
The multiplier bits for partial product accumulation are 
taken from k+g-1 to 0:  
 

( )When i g 2,k 2g i 1  k g 1= + + − − = + −  

 
( )and i k 2g 1,k 2g i 1 0= + + + − − =  

 
The accumulation of partial products in X1, X2 and 

Y1, Y2 are computed in parallel with delay of 2 full 
adders and 2:1 MUX.  

4. ARCHITECTURE OF CARRY SAVE 
COMMON MULTIPLICAND 
MONTGOMERY MODULAR 

MULTIPLICATION 

Figure 1 shows the architecture of carry save 
common multiplicand Montgomery modular 
multiplication. It consists of: 
• I/O Interface 
• Control unit 
• Registers  
• Counter  
• Common reduction unit 
• X, Y accumulation units  
• Adders  

The I/O interface takes three inputs P, R and n and 
gives two outputs X and Y in binary. The control unit 
controls the sequence of computations to achieve 
modular multiplication. Common reduction unit 
computes quotient and reduction on common 
multiplicand. Common reduction unit, X and Y 
accumulation units are pipelined so that common 
reduction and accumulation are computed in parallel. 
The counter keeps track of the computations. Adders 
convert the result from redundant to binary. The 
number of cycles in conversion from redundant to 
binary depends on the adder and its implementation. 

5. RSA MODULAR EXPONENTIATION 

Algorithm 3 is the modular exponentiation based on 
Montgomery powering ladder and common multiplicand 
Montgomery modular multiplication to compute Me mod 
n (Wu et al., 2013). M is converted to Montgomery 
domain and R is reassigned pre-computed value Z. This 
is done to have one modular multiplication unit in 
exponentiation. If exponent bit is set then: 

 R = P. R. 2 –(k+2g) mod n , P = P2 2 –(k+2g) mod n. 
 If exponent bit is zero then values are  

P = R.P. 2 –(k+2g) mod n , R= R2 2 –(k+2g) mod n.  
At step 8 and 9 the result is converted to integer 

domain and stored in C respectively. 
Hence C= 1. R .2 –(k+2g) mod n. 

Algorithm 3. RSA modular exponentiation with 
Montgomery powering ladder and common multiplicand 
Montgomery modular multiplication 

Input: 0≤ M< n< 2k,
k 1 i

ii 0
e e 2

−

=
=∑ ,  

 λ = 2(2k+4g) mod n, δ = 2k+2g mod n 
 Z = δ mod n (pre-computed value), gcd (n, 2) = 1 
Output: C = Me mod n, 0≤ C≤ n. 

1. P, R = CSCMMM (M, λ, n)  
 // to convert M into Montgomery domain  
2. R = Z;  
3. for i = k-1 to 0 do 
4. if ei = 1 then R, P = CSCMMM(P,R, n); 
5. else P, R = CSCMMM(R, P, n); 
6. end if; 
7. end for; 
8. P,R = CSCMMM(1, R, n);  
 // convert to integer domain  
9. C: = P;  
10. return C. 
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Fig. 1. Architecture of carry save common multiplicand montgomery 
 

6. IMPLEMENTATION RESULTS 

 RSA modular exponentiation with Montgomery 
powering ladder and carry save common multiplicand 
Montgomery modular multiplication is coded in VHDL 
and synthesized in Xilinx ISE design suite 12.4. The 
target device is xc5vlx50t (package ff65 target speed -
3). The size of operands is 1024 bits and encryption 
exponent is e = 216+1. Figure 2 shows DSP48E chosen 
for addition. To convert the results from redundant to 
binary (algorithm 2) two DSP48E are used that work in 
parallel to add X = X1+X2 and Y = Y1+Y2. 48 bit 
operands and carry bit are taken in each cycle and 
added to give 48 bit result and 1bit carry out that 
becomes carry in for next cycle. For RSA 1024 bits the 
operand size in common multiplicand is 
1036(1024+12) bits which requires approximately 22 
cycles for addition using DSP48E. 

Using IP core and architecture wizard DSP48E is 
selected and the instruction:  
 

C CONCAT CARRYIN+ +  

 
Is given and CARRYOUT is selected which is 

shown in Figure 2.  

Table 1 gives the number of cycles for RSA 1024 bit 
modular exponentiation and taking encryption exponent 
e = 216+1. For 1024 bits, g has value 12 (Wu et al., 
2013). For 17 bit exponent the total calls for Common 
multiplicand Montgomery are 17+1 (from integer to 
Montgomery domain) +1 (Montgomery to integer 
domain). The total cycle count for RSA 
exponentiation is 20368.Table 2 gives area results in 
terms of slice registers, LUTs and DSP48Es. These 
results are obtained from place and route report 
generated in Xilinx ISE 12.4. Table 3 gives results of 
RSA modular exponentiation in terms of area, 
frequency, throughput, power and simple power 
attack. Throughput of the proposed RSA design is 
calculated by the formula Equation 6: 
 

Bit length Frequency
Throughput

Numberof Cycles

×=  (6) 

 
The power consumption is generated in Xilinx x 

power analyzer. The power consumption of our RSA 
1024 bits is 43 mW. RSA in our work is based on 
Montgomery powering ladder, hence it is simple 
power attack resistant. 
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Fig. 2. DSP48E to add 48 bit data with carry in 
 
Table 1. Cycle count in RSA 1024 bit modular exponentiation 
Design Exponentiation cycles No of cycles in proposed Montgomery  Total cycle count 
RSA 19 1050+22(addition) 20368 

 
Table 2. Detailed Area results of RSA 1024 bit modular exponentiation (Virtex XC5VLX50T) 

Slice Registers LUTs DSP48Es 

14948 12447 2 

 
Table 3. RSA 1024 bit modular exponentiation (Virtex XC5VLX50T) 
 Area Freq Throughput  Power 
 (Slices) (MHz) (Mbps) (mW) SPA 
Fournaris, 2010 7158 274.00 14.50 - Yes 
Our 4977 327.38 16.45 43 Yes 
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RSA exponentiation based on carry save 
Montgomery modular multiplication was proposed by 
the authors (McIvor et al., 2004) and its implementation 
results on Virtex 2 FPGAs was presented. They used 
carry save adders for addition of operands during 
modular multiplication and there was no conversion of 
results from carry-save to binary at end of modular 
multiplication. The proposed carry save common 
multiplicand Montgomery in this work requires a format 
conversion from carry save to binary at end since each 
successive modular multiplication in exponentiation 
starts the accumulation of partial products from the most 
significant bit of multiplier. Our proposed modular 
multiplication uses two DSP48E for addition. It adds 48 
bits in one cycle and requires 22 cycles for addition of 
1036 bits. The proposed RSA is implemented on virtex 5 
FPGAs. Its implementation on virtex 2 FPGAs is not 
possible due to lack of DSP slices in virtex 2 FPGAs. 
Compared to RSA (Fournaris, 2010) which is based on 
carry save Montgomery modular multiplication and is 
attack resistant, our RSA is efficient in terms of area, 
frequency and throughput. Also the implementation of 
RSA with Montgomery powering ladder naturally protects 
it from many implementation attacks (Joye and Yen, 
2002). The power consumption of our RSA design is 
very less as compared to the power consumption of 
1024 bit modular multiplication in (Ye et al., 2013). 
The addition cycles in our work for redundant to 
binary conversion can be further reduced by using fast 
adders presented in (Zicari and Perri, 2010). The use 
of reversible logic in Montgomery modular 
multiplication to prevent power attacks was presented 
in (Nayeem et al., 2009). The performance of common 
Multiplicand Montgomery modular multiplication with 
reversible adder proposed in (Haghparast and Navi, 
2008) can be analyzed.  

7. CONCLUSION 

In this study, RSA modular exponentiation based on 
Montgomery powering ladder and carry save common 
multiplicand Montgomery modular multiplication uses 
DSP48E to convert result from carry save to binary at 
end of modular multiplication. The design is efficient in 
terms of area, throughput and power. Also the design is 
power attack resistant. The throughput is inversely 
proportional to the cycle count. The number of cycles of 
carry save common multiplicand Montgomery modular 
multiplication can be reduced with the use of efficient 
adders used to convert redundant results to binary. Also 
area results can be improved by efficiently mapping the 
carry save design on FPGAs.  
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