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ABSTRACT  

Most of the electromagnetic problems can be stated in terms of an inhomogeneous equation Af = g in which 
A is a differential, integral or integro-differential operator, g in the exitation source and f is the unknown 
function to be determined. Methods of Moments (MoM) is a procedure to solve the equation above and, by 
means of an appropriate choice of the Basis/Testing (B/T), the problem can be translated into an equivalent 
linear system even of bigger dimensions. In this work we investigate on how the performances of the major 
Krylov’s subspace iterative solvers are affected by different choice of these sets of functions. More 
specifically, as a test case, we consider the algebric linear system of equations obtained by an electrostatic 
problem of evaluation of the capacitance and electrostatic charge distribution in a cylindrical conductor of 
finite length. Results are compared in terms of analytical/computational complexity and speed of 
convergence by exploiting three leading iterative methods (GMRES, CGS, BibGStab) and B/T functions of 
Pulse/Pulse (P/P) and Pulse/Delta (P/D) type. 
 
Keywords: Krylov’s Subspaces, Electrostatic Parameters  

1. INTRODUCTION 

As well known, capacitance C and electrostatic 
charge distribution q represent important parameters in 
electrostatic computation above all in applications in 
which problems of electrostatic charge can determine 
situations of danger (for example in aeronautics field). 
Because the computation of C and q leads to the 
formulation of the problem in terms of integral 
equations of type Equation (1): 
 
Af g=  (1) 
 
where, A is an integro/differential operator, g a known 
forcing and f to be determined (Sadiku, 2000), it is 
imperative the exploitation of a procedure of resolution 
which, through a reduced computational charge 
(particularly useful in real-time applications), 
reformulates the problem in the algebrical field in more 
accessible resolution terms. In such a context, the 

Method of Moment (MoM) can be considered an 
excellent candidate for the problem resolution because, 
by means of a suitable couple of Basis and Testing 
functions (B/T), it translates the integral equation into a 
correspondent matrix equation whose solvability requires 
an iterative numerical procedure above all in those cases 
in which the matrix dimension is too high to exploit 
direct procedures. The exploitation of MoM has become 
popular since in 1967 published a pioneering work about 
the MoM application in electrostatic problems and the 
scientific community has produced meaningful works of 
electrostatic modelling on different geometries 
exploiting MoM (Chakrabarty et al., 2002; Alad and 
Chakrabarty, 2012; Prarthan and Chakrabarty, 2001) in 
which the choice of the B/T couple was asked to the 
accuracy of the solution, the dimension of the matrix and 
the evaluation of the elements of the matrix and to 
problems linked to the conditioning of the same matrix 
and more, MoM has been applied to many problems in 
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several scientific domains. In Electromagnetics MoM 
has been applied to radiation problems, scattering 
problems, analysis and design of microstrips; analysis 
abd design of antennas; lossy structures, propagation 
problems (Sadiku, 2000; Angiulli and Versaci, 2002; 
2003; Misran et al., 2008; Elangovan and Perinbam, 
2012; Sultan et al., 2012; Wu et al., 2012; Zhang et al., 
2013; Mouheddin and Jamel, 2009; Apaydin and Sevgi, 
2012; Kumar and Parvathi, 2012). Surely, as Harrington 
suggests, the choice of B/T functions of Pulse/Delta 
(P/D) and Pulse/Pulse (P/P) type leads, from one hand, to 
easy formulations of the elements of the matrix L but, 
from the other, to slow convergences and reduced levels 
of accuracy, so, even willing to restore the desired 
accuracy, it results imperative the increase of the number 
of subsections, leading sometimes tobad conditionings of 
the same matrix. In this study, the authors report a 
comparative study on P/D and P/P functions used in 
MoM in terms of complexity, convergence and 
conditioning of the matrix for the evaluation of C and q in 
a cylindrical conductor of finite length. The numerical 
data are presented for each B/T couple in terms of 
conditioning number and convergence. Furthermore, they 
have been compared three leading iterative methods for 
the solution of the respective linear systems in Krylov’s 
subspace. Specifically, GMRES with and without 
restarting procedure, a biorthogonalization algorithm 
adapted from the bi-Conjugate Gradient Iteration (CGS) 
and bi-conjugate stabilized method (BicGStab) testing 
methods on matrixes with number of elements different 
from zero increasing step by step, evaluating the execution 
times and the number of necessary iterations. The study is 
organized as follows. Section 2 is dedicated to a quick 
overview of the MoM methodology and the analytical 
formulation and numerical translation of the electrostatic 
problem under examination. Section 3 describes the 
philosophy of the resolution of linear systems through 
Krylov’s subspaces and the numerical results, obtained 
through the translation into MatLab® code, are presented 
in section 4. Dutiful conclusions and plausible future 
perspectives close the present work. 

2. CAPACITANCE AND CHARGE 
DISTRIBUTION IN CYLINDRICAL 

CONDUCTORS OF FINITE LENGTH 

MoM is a procedure which allows to solve 
numerically non homogeneous equations of type (1). In 
Particular, expanding f with a series of functions defined 

in Lthrough 
N

n nn 1
f f

=
= α∑ with constant fn base function 

αnto determine and substitute in (1), we obtain Equation (2): 
 

N

n n
n 1

g Af
=

= α∑  (2) 

 
Introducing a set of functions weight W = {w1, w2, ..., 

wn} in the range of L and supposing fixed an appropriate 
internal product <g1, g2> in the data space, the (2) can be 
reformulated as Equation (3): 
 

N

n n, n n
n 1

w Af w ,g
=

α < =< >∑  (3) 

 
with m = 1,2,3,... that in the matrix form gets the form 
Equation (4): 
 
Af g=  (4) 
 

The possible implementations differentiate 
themselves for the choice of fn and wn and the order of 
the summation breaking off (Sadiku, 2000; 2010). MoM 
consists of four basic steps: (a) formulation of an 
appropriate integral equation; (b) by operation of 
discretization, transformation of the integral formulation 
into the equivalent algebraic formulation by means of 
Basis (B) and Testing (T) functions; (c) computation of 
the matrix elements; (d) resolution of the corresponding 
linear system to derive the parameters (Sadiku, 2000). 
Let us consider a metal cylinder with a circle section of 
L length and d diameter. Expressing the charge 
distribution q through functions of expansion, we obtain 
Equation (5): 

 
N

n n
n 1

q(y ') f
=

= α∑  (5) 

 
where, fn are known basis functions and αn unknown 
coefficients. So, the potential at position r due to any 
charge distribution on the cylinder at position r’can be 
expressed by Equation (6): 
  

N

n nn 1

n n

fq(y ')
(y) d d

4 | r r ' | 4 | r r ' |

B(y y ')
f d

4 | r r ' |

=
Ω Ω

Ω

α
Ψ = Ω = Ω =

π∈ − π∈ −
−α Ω ==

π∈ −

∑
∫ ∫

∫

 (6) 

 
with Ω as source region and B(y'-y) as basis functions. 
Under the hypothesis according to which the axis of the 
cylinder is place of source points and on the surface they 
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lay points of observation, the problem formulation is 
one-dimensional, so the basis functions B (due to their 
localized formulation) restrict the integral to be over the 
n-th segment. On each ym (computed as m∆y) it is 
centred a new function, the so called Testing Function 
T(y-yn), for which, known the difference of potential V 
and the number of subsections N, the expression gets the 
following form Equation (7): 
 

Nm y

n(m 1) y
n 1

n y m y

2 1/2(n 1) y (m 1) y

4 T(y)dy

T(y y ')v(y)
dydy'

((y y ') (d / 2)

∆

− ∆
=

∆ ∆

− ∆ − ∆

π∈ == α

−
− +

∑∫

∫ ∫
 (7) 

 
with m =1,...,N. Indicating with Equation (8): 
 

n y m y

mn 2 2 1/2(n 1) y (m 1) y

T(y y')V(y)
A dydy '

((y y ') (d / 2) )

∆ ∆

− ∆ − ∆

−==
− +∫ ∫  (8) 

 
The matrix of the coefficients (square of N order) 

and with Equation (9): 
  

m y

m (m 1) y
V 4 T(y y')V(y)dy

∆

− ∆
= π∈ −∫  (9) 

 
Known the supposed forcer, the problem can be 

presented in the matrix form Equation (10): 
 
A Vα =  (10) 
 

For which the coefficients of expansion αn, obtainable 
through the resolution of the system (10), give q and C 
values as follows Equation (11): 
 

N

n
n 1

2

1
q y;c

V=

= α ∆ =∑  (11) 

 
2.1. P/D Forms as B/T Functions 

In this case, the basis functions, defined through 
rectangles of unitary height and basis localized on each 
subsection of width yn+1-yn get the form of (Alad and 
Chakrabarty, 2012) Equation (12 and 13): 
 

n n n 1B (y) 1 if y [y y += ∈ ] (12) 

 

nB (y) 0otherwise=  (13) 

 
So that the formulation of the elements of the matrix 

A and respective integration get the form Equation (14): 

n y

mn 2 2 1/2(n 1) y
m

1/22

m m

1/22 2

m n 1 m

2

1
A

(y y') (d / 2) )

n 1 n 1 d
y y y y

2 2 2
log

d
y(n 1) / 2 y ) y y

2

∆

− ∆

−

=
− +

 + +     − − +             =
     − − + − +       

∫

 (14) 

 
with yn+1/2=yn+∆y/2and yn-1/2=yn-∆/2 while the forcer 
becomes Equation (15): 
 

m y

m (m 1) y
V 4 (y y ')V(y)dy 4 V

∆

− ∆
= π∈ δ − = π∈∫  (15) 

 
and q and C calculated as in (11).  

2.2. P/P Forms as B/T Functions 

Similarly, as for the P/D case, the evaluation of the 
coefficients of the matrix A and relative integration lead to 
the expression (Alad and Chakrabarty, 2012) Equation (16): 
 

( )( )
( )

( )( )

2 2 1/2

1/22 2

2 2 1/2

2 2

n y m y

mn (n 1) y (m 1)

(m 1)/2 (n 1)/2 (m 1) (n 1)/2

(m 1)/2 (n 1)/2 m 1 n 1
2 2

1/2

m (n 1)/2 m (n 1)/2

B(y y')B(y y')
A dydy

(y y ') (d / 2) )

y y (d / 2) (y y )

*log y y (d / 2) ) y y

y y (d / 2) (y y ) *
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∆ ∆

− ∆ −

+ + + +

+ + + +

+ +

− −=
− +
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∫ ∫

( )

( )( )
( )( )

2 1/2
m m

2 2

1/22 2

(n 1)/2 n 1
2

1/2

(n 1)/2 (m 1)/2 (n 1)/2 (m 1)/2*

(m 1) /2 (n 1)/2 m 1 n 1)
2 2

y y (d / 2) y y

y y y (d / 2) y

*log (y ) y (d / 2) y y

+ +

− + − −

− − − −

 
− + − + 

 

+ + − + +

− + − +

  (16) 

 
where, yn+1/2 = yn+∆y/2 and yn-1/2 = yn-∆y/2, ym+1/2 = 
ym+∆y/2 and ym-1/2 = ym-∆y/2. Finally, the forcer gets the 
form of Equation (17): 
 

m y

m (m 1) y
V 4 B(y ' y)V(y)dy

∆

− ∆
= π∈ −∫  (17) 

 
In both cases it appears imperative to use an 

appropriate procedure of resolution of linear systems. 
Cramer’s method cannot, obviously, be suggested 
because of the prohibitive costs of execution (O(n+1)!) 
and the direct methods, even they factorize the matrix 
Ain the product of triangular matrixes, in presence of 
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random matrixes it’s not obvious that they are random, 
too. So, we drive our attention towards iterative methods 
and, in particular, towards projective methods based on 
Krylov’s subspaces, because they fit well the resolution 
of linear systems of big dimensions even in presence of 
scattering of the coefficient matrix. 

3. KRYLOV’S SUBSPACES FOR 
SOLVING LINEARSYSTEMS 

From the linear system (10) and writing the residual r in 
the form V-Aα, the k-th step is linked to the initial residual 
r(0) in polynomial basis through (Liu, 2011) Equation (18): 
 

k 1
(0)

j
j 0

r (I y A)r
−

=

= −∏  (18) 

 
With γ as relaxation or acceleration parameter. 

Setting r(k) = pk (A)r(0) pk(A), results a polynomial of k 
grade. Defining the vectorial subspace through the linear 
envelope Equation (19): 
 

m 1
mK (A;z) span{z,Az,...,A z}−=  (19) 

 
From (18), it is allowed to write rk∈Kk+1 (A, r(0)). Km 

(A; z) is a vectorial space called Krylov’s subspace of m 
order generated by all vectors u∈Rn of the form u = pm-1 
(A)z with ∂pm-1≤m-1. In absence of pre-conditioning, the 
iterated α(k) gets the form of Equation (20): 
 

k 1
(k) (0) (0)

j
j 0

r
−

=

α = α + γ∑  (20) 

 
Belonging to the Wk = {z= α(0) +y: y∈Kk (A; r(0))} 

space. In general, it can be thought to methods building 
solutions approximated in the form Equation (21): 
 

(k) (0) (0)
k 1q (A)r−α = α +  (21) 

 
Choosing qk-1 so that α(k) is the best possible 

approximation in Wk.. dim (Km (A; z)) = min (m, ∂z) and, 
as a consequence, dim (Km (A; z) = f(m)) not decreasing. 
Increasing m the basis could become numerically 
unsteady because the vectors tend to be linearly 
independent so, m fixed, it can be computed an 
orthonormal basis for Km(A; z) through Arnoldi’s 
procedure which, choosing z1 = z/||z||2 generates an 
orthonormal basis {zi} through Gram-Schmidt’s method 
and for k = 1,...,m computes T

ik i kh z Az= , i = 1,2,…,k and 
k

k k ik ii 1
w Az h z

=
= −∑ . k 1, k k 2

h w+ = With Wk = 0 the 

process ends with a breakdown, or zk+1 = wk/||w||2 and 
k=k+1 and, in step m, z1,…, zm form a base for Km (A; z) 
so it is solved the linear system computing αk ∈Wk as a 
vector minimizing the Euclidean norm of the residual ||r||2 
= minz∈wk ||V-Az||2 generating the so-called procedure 
Generalized Minimum Residual (GMRES) (Liu, 2011). 

3.1. GMRES  

The basis vectors for Km (A; r(0)) are memorized in 
columns of Zk with z1 = r(0)/||r(0)|| so the new iterate gets 
the form α(k) = α(0) +vk z(k) with z(k) minimizing 

(0) (k)
1 z2 2

ˆr e H− with H matrix of Hessenberg being 

superior. In terms of computational cost, Arnoldi’s 
procedure is of m2/2 order, while GMRES is of m2 order. 
Obviously, the procedure can be improved computing 
the residual at regular intervals and interrupting the 
algorithm when K gets the sufficient dimension to the 
tolerance required. Because GMRES requires a 
considerable computational effort, they have been 
developed different variables among which also GMRES 
(m) based on the use of the restarting after m steps. based 
on the use of the restarting after n steps, it is not certain 
that the method is not subjected to stagnations and, in 
particular, we would like not to be necessary to memorize 
all the vectors of the basis to compute the solution, 
eliminating also the necessity of two harboured cycles. In 
such a context, another class of projective methods is 
based on the algorithm of Lanczos’ bi-orthogonalization, 
in which the main benefits stands in memorizing only a 
reduced number of vectors (Liu, 2011). 

3.2. CGS and BicGStab 

Lanczos’ bi-orthogonalization produces a couple of 
orthogonal bases for the subspaces Equation (22 and 23): 
 

m 1
m 1 1 1 1K (A,z ) span{z ,Az ,...,A z }−=  (22) 

 
T T T m 1

m 1 1 1 1K (A ,w ) span{w ,A w ,...,(A ) w }−=  (23) 
 
solving both Aα = V and AT α* = V*. The algorithm is 
efficient if it is really necessary to solve both the systems 
and it becomes excessively expensive if it is used only 
for the resolution of Aα = V. Infact, the matrix A is 
sometimes available in the matrix-vector form and, in 
this case, it is not possible to get also AT out in the same 
form. This way, they’re searched some modifications 
called Transpose-Free Variants which won’t use the 
transposed matrix. A first solution is Conjugate Gradient 
Squared (CGS) which writes the residual through a 



Mario Versaci et al. / American Journal of Applied Sciences 11 (3): 396-405, 2014 

 
400 Science Publications

 
AJAS 

squared polynomial φj(A). Such a choice, in case of 
irregular convergence, provokes an increase of rounding 
off errors and possible overflows. This leads to prefer the 
BicGStab method (Biconjugate Gradient Stabilized) 
based on the writing of the residual as product of two 
polynomials Ψj (A)φj (A) (Liu, 2011). At any case, it is 
not possible, in general, to say which of the two methods 
is more efficient. However, on the basis of the 
estimations of the computational costs, decreasing the 
number of the elements different from zero present in the 
matrix, BicGStab should be quicker. Infact, even in 
BicGStab there are two matrix-vectors products, these 
should have a limited cost as to the products carried out 
m2 times and to GMRES’ high cost of memorization. In 
this work, the idea is to test methods on matrixes with a 
number of elements different from zero increasing step 
by step, considering the time employed and the number 
of necessary iterations. At any case, dealing with 
iterative methods, it is necessary to fix the stop 
conditions, for which, from the recourse relation on the 
error e(k+1) = Be(k) with B matrix of iteration, we obtain 
||e(k+1)||≤ ||B|| ||e(k)|| and applying Schwarz’s inequality we 
find ||e(k+1)||≤||B||(||e(k+1)-α(k)). If then ||B||≤1, it stands out 
the well known rise ||α-α(k+1) 

||≤ (k 1) (k 1) (k )B

1 B
+ +α − α ≤ α − α

−
that, for k = 0, becomes 

k 1

(k 1) (1) (0)B

1 B

+
+α − α ≤ α − α

−
particularly useful for the 

estimation of the number of iterations for the condition 
satisfying ||e(k+1)||≤∈ with ε fixed tolerance. To increase 
the efficiency, the stop test will be carried out on the 
normalized residual ||r(k)|| ||r(0)||≤∈ or ||r(K)|| ||b||≤∈ 
while the control on the error occurs through the 

sequence of rises 

(k) 1 (k ) (k)A r r
K(A)

V

K(A)

−α − α
≤ ≤

α α
≤∈

. 

4. NUMERICAL RESULTS 

The matrix elements Amn have been computed by 
means of (14) and (16) by B/T functions of P/D and P/P 
type respectively. Above the construction of the single 
matrixes, the correspondent linear systems have been 
solved through iterative procedures of GMRES, CGS 
and BicGStab type and, as a comparison, with the Gauss-
Jordan matrix inversion. In all cases the forcers used 
were equal to the excitation voltages obtaining, through 
the (11), the distributions of electrostatic charge on each 

single subsection and the values of the capacitance of the 
charged conducting cylinder. Interested in assigning 
subdivisions leading to conditions of stability of the 
solutions respect the disturbance of the entry results, the 
choice of the number of N subsections has been derived 
from the comparison between the two criteria. The first, 
for each value of the length/diameter ratio, assesses the 
minimums of the trends of the conditioning numbers 
K(A) = ||A|| ||A-1||≥1 (graded index of sensitiveness of the 
solution to the disturbance of the entry data with values 
as close to the unit as less sensitive it is the system to the 
disturbance), N increasing for each A matrix drawn per 
P/D and P/P functions. In certain cases under 
examination, the drawn trends, even presenting 
instability for little values of N,settle themselves step by 
step N increases of value, to produce, then, strong 
conditions of instability over a certain N given value. By 
way of example, Fig. 1 shows the trend of the matrix 
condition number according to the number of 
subsections for each couple of B/T functions as to the 
value 15, while Fig. 2 shows the trend of the 
capacitance per unit of length according to the number 
of subsections for each B/T couple as to the value 6 of 
the length/diameter ratio (no restarting for GMRES). In 
particular, to the i-th minimum, mini (K(A)), it 
corresponds an i-th value of N, Ni, so that the first 
criterion gives Nthe minimum value of the Ni, min(Ni). 
The second criterion assesses the trends of the capacitance 
(pF) when increasing the number of subsections for each 
B/T couple and for each resolutive procedure of the linear 
system until the capacitance values are not affected by 
evident oscillations due to numerical instability. Labelling 
Nj the values for N over which, at any case, it occurs a 
numerical instability, the second criterion gives N the 
minimum value of the Nj, min (Nj). So, the final 
assignation for N will be Equation (24): 
 

i jN min(min(N ),min(N ))=  (24) 
 

Keeping us, this way in a safety advantage because 
really far from conditions of instability, but always 
sufficiently close to the conditions of minimum for 
K(A). In the case under examination, according to the 
(24), the final N is tested around 45 units. The 
comparison for capacitance of specimen (pF), 
obtained with different B/T functions and for 
increasing values of length/diameter ratio, have been 
compared with the analytical solution (Alad and 
Chakrabarty, 2013) and are reported in Table 1 for 
each procedure of resolution of the linear system. 
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Fig. 1. K(A) versus the number of subsections for each couple of B/T functions as to the value 15 of the length/diameter ratio 
 

 
 

Fig. 2. C (pF/m) according to the number of subsections 
 
Table 1. Comparison between capacitance values (pF/m) obtained through analytical integration with GMRES, CGS, BicGStab and 

Gauss-Jordan inversion when varying the length/diameter ratio and for different B/T couples 

  Gauss-Jordan  GMRES  CGS  BicGStab 
 Analitical ------------------------ -------------------------- -------------------------- ------------------------- 
L/d Method P/D P/P P/D P/P P/D P/P P/D P/P 
6 22.33 25.84 23.44 24.11 23.19 25.12 23.40 25.87 23.12 
10 18.55 21.07 21.99 20.91 21.77 20.81 21.23 20.11 22.20 
15 16.35 18.35 20.33 18.22 19.96 18.06 20.70 18.37 20.14 
20 15.08 16.80 17.14 17.09 17.00 16.20 17.10 16.22 17.14 
25 14.22 15.76 16.30 15.76 16.43 15.34 16.43 15.33 16.55 
30 13.59 15.01 15.67 14.88 15.80 14.15 15.85 15.07 15.89 
60 11.62 12.70 13.64 12.94 13.99 12.30 13.77 12.34 13.15 
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They have been traced, as marked in Fig. 3, the trends 
of the capacitance (pF/m) according to the 
length/diameter ratio for each B/T couple and 
resolutive procedure of the linear system (no restarting 
for GMRES), highlighting the instability area, too. The 
distribution of electrostatic charge (C/m) with value 
equal to 400 of length/diameter ratio for each B/T 
couple and relatively to each resolutive procedure of 
the linear system (no restarting for GMRES) is 
visualized in Fig. 4. In order to evaluate the 
convergence of the numerical data on the capacitance, 
Fig. 5 shows the trend of the capacitance (pF/m) with 
value equal to 400 of length/diameter ratio, for each 
B/T couple and as to each resolutive procedure of the 
linear system (no restarting for GMRES). To assess the 
convergence speed of the iterative procedures and 
considering that when they increase the number of the 
elements different from zero present in the matrix, 
BicGStab should be quicker than GMRES, the 
methods have been tested on A matrixes with number 
of not null elements, increasing step by step and 
evaluating the number of iterations required and the 
CPU-Time. Specifically, with reference to the 
GMRES procedure, when it increases the 
length/diameter ratio and for different B/T functions, 
they have been drawn the dimensions of theA matrix 

which guarantees the convergence and the 
correspondent number of iterations in 
absence/presence of restarting (for GMRES). In this 
last case, the number of iterations has been 
differentiated in internal/external iterations, 
correspondent to the cycles nesting. Finally, as to the 
CGS and BicGStab procedures, always for different 
B/T functions and for increasing length/diameter ratio, 
they have been drawn the dimensions of the A matrix 
guaranteeing the convergence and the correspondent 
number of iterations and the comparison too of the 
CPU-time respect the GMRES procedure. The results 
are presented in Table 2. 

5. CONCLUSION 

 In the present work, upon the double research about the 
number of useful subsections and the instability areas got 
from the comparison between the two criteria of which in 
the previous paragraph (Fig. 1 and 2), it has been presented 
a comparative study about P/D and P/P functions used in 
MoM in terms of complexity, convergence and 
conditioning of the matrix for the evaluation of C and q 
in a cylindrical conductor of finite length. The 
numerical data are presented for each B/T couple in 
terms of number of conditioning and convergence.  

 

 
 
Fig. 3. Capacitance trend (pF/m) according to the length/diameter ratio for each B/T couple and resolutive procedure of the linear 

system (no restarting for GMRES). The vertical lines single out the area of instability 
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Fig. 4. Distribution of electrostatic charge (C/m) with value equal to 400 of length/diameter ratio for each B/T couple and as to each 

resolutive procedure of the linear system (no restarting for GMRES) 

 

 
 
Fig. 5. Capacitance trend (pF/m) with value equal to 400 of length/diameter ratio for each B/T couple and as to each resolutive 

procedure of the linear system (no restarting for GMRES) 
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Table 2. Comparison between GMRES (without and with restarting), CGS and BicGStab in terms of dimension of the matrix 
guaranteeing the convergence, number of iterations (differentiated into internal and external) and CPU-time according to 
length/diameter ratio and for different B/T couples 

  GMRES Restarting CGS  BicGStab 
L/d B/T # iterations # iterations # iterations CPU-time # iterations CPU-time 
6 P/D 19 19 (17+2) 19 ≅ GMRES 20 ≅ GMRES 
 P/P 20 19 (17+2) 20 > GMRES 20 ≅ GMRES 
10 P/D 19 19 (17+2) 19 > GMRES 21 > GMRES 
 P/P 20 19 (17+2) 22 > GMRES 22 ≅ GMRES 
15 P/D 19 17 (13+4) 22 > GMRES 20 > GMRES 
 P/P 20 20 (18+2) 22 ≅ GMRES 21 < GMRES 
20 P/D 20 20 (18+2) 22 ≅ GMRES 22 ≅ GMRES 
 P/P 21 19 (17+2) 22 ≅ GMRES 22 < GMRES 
30 P/D 21 20 (17+3) 23 > GMRES 23 < GMRES 
 P/P 22 19 (17+2) 23 ≅ GMRES 23 < GMRES 
60 P/D 22 20 (17+3) 23 > GMRES 24 ≅ GMRES 
 P/P 22 19 (17+2) 23 ≅ GMRES 24 < GMRES 

 
Moreover, they have been compared three leading 
iterative methods for solving the respective linear 
systems in Krylov’s subspaces (GMRES, CGS and 
BicGStab) on matrixes with a number of elements 
different from zero increasing step by step, evaluating 
times of execution and number of necessary iterations. 
From the analysis of Table 1 it can be noticed the good 
adherence of the results obtained as to the analytical 
solution (Alad and Chakrabarty, 2013), the capacitance 
values (pF/m) obtained with GMRES (no restarting), 
CGS, BicGStab and with Gausse-Jordan’s inversion 
when varying the length/diameter ratio and for P/P 
couples. Variation of capacitances of hollow cylinder 
with height by diameter ratio using P/D and P/P methods 
and analytical one have been carried out by means 
Gauss-Jordan, GMRES. CGS and BicGStab algorithms. 
In particular, as for all the procedures of resolution 
considered, P/P with BicGStab performs better the 
analytical results (Fig. 3). The charge distribution q (Fig. 
4) presents maximums at the extremity of the specimen 
and, through marked inclinations, it is ranged the 
minimum in correspondence at the middle of the 
specimen. The convergence data show that BicGStab 
procedure with P/P couple that converges faster than 
other procedures (Fig. 5) presenting a better adherence to 
the analytical solution. The comparison between 
GMRES (with and without restarting), CGS and 
BicGStab in terms of matrix dimensions guaranteeing 
the convergence, the number of iterations (differentiated 
into internal and external) and CPU-time according to 
the length/diameter ratio and for different B/T couples, 
presented in Table 2, has highlighted that P/P BicGStab, 
even presenting an increase of the number of iterations, 
provides a decreasing trend of CPU-time. Obviously, 

what has been dealing with in the present work is 
desirable to be tested on specimen with more complex 
geometries and on more matrixes comparing BicGStab 
with GMRES with different restarting options of 
adaptive type. However, the choice of operating on a 
cylindrical specimen was dictated by the fact that more 
complex specimens can be treated modularly as a set of 
cylindrical elements. Obviously, the present study has 
the limitation of treating only two pairs of functions B/T. 
In the future, it would required a more detailed study of 
comparison between functions belonging to a set of pairs 
B/T characterizing by a bigger cardinality. Because of 
the bad conditioning of the matrix of the system, it is 
imperative the exploitation of suitable pre-conditioners. 
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