
American Journal of Applied Sciences 11 (1): 38-46, 2014
ISSN: 1546-9239
©2014 Science Publication
doi:10.3844/ajassp.2014.38.46 Published Online 11 (1) 2014 (http://www.thescipub.com/ajas.toc)

Corresponding Author: Manjula Devi Ramasamy, Faculty of Computer Science and Engineering, Kongu Engineering College,
Perundurai-638052, Erode, India

38 Science Publications

AJAS

HALF OF THRESHOLD ALGORITHM: AN ENHANCED
LINEAR ADAPTIVE SKIPPING TRAINING ALGORITHM

OR MULTILAYER FEEDFORWARD NEURAL NETWORKS

Manjula Devi Ramasamy and Kuppuswami Subbaraya Gounder

Faculty of Computer Science and Engineering, Kongu Engineering College, Perundurai-638052, Erode, India

Received 2013-09-24, Revised 2013-11-18; Accepted 2013-11-22

ABSTRACT

Multilayer Feed Forward Neural Network (MFNN) has been successfully administered architectures for
solving a wide range of supervised pattern recognition tasks. The most problematic task of MFNN is
training phase which consumes very long training time on very huge training datasets. An enhanced linear
adaptive skipping training algorithm for MFNN called Half of Threshold (HOT) is proposed in this research
paper. The core idea of this study is to reduce the training time through random presentation of training
input samples without affecting the network’s accuracy. The random presentation is done by partitioning
the training dataset into two distinct classes, classified and misclassified class, based on the comparison
result of the calculated error measure with half of threshold value. Only the input samples in the
misclassified class are presented to the next epoch for training, whereas the correctly classified class is
skipped linearly which dynamically reducing the number of input samples exhibited at every single epoch
without affecting the network’s accuracy. Thus decreasing the size of the training dataset linearly can
reduce the total training time, thereby speeding up the training process. This HOT algorithm can be
implemented with any training algorithm used for supervised pattern classification and its
implementation is very simple and easy. Simulation study results proved that HOT training algorithm
achieves faster training than the other standard training algorithm.

Keywords: Adaptive Skipping, Neural Network, Training Algorithm, Training Speed

1. INTRODUCTION

Multilayer Feed Forward Neural Network (MFNN)
has been widely and successfully administered neural
network architectures for solving supervised pattern
recognition tasks (Mehra and Wah, 1992; Lippmann,
1987) due to its learning and generalization capacity.
The most extensively adapted algorithm for training
MFNN is Back Propagation (BPN) Algorithm. The
BPN training algorithm works in two phases: Training
(or Learning) Phase and Testing (Evaluation) Phase.
BPN algorithm is an iterative gradient algorithm
designed to find the set of weights coefficients that
minimizes the total Root Mean Squared (RMS) error

measure, E, between the desired output and the actual
output summed over all the training pattern input to the
network Equation (1):

P
p

p 1

1
E E

P =

= ∑ (1)

Ep is calculated using the following formula:

()
m 2p p p

k k
k 1

1
E t y

2 =

= −∑ (2)

where, P is the total number of training sample patterns,
m is the number of nodes in the output layer p

kt , is the

M. Devi Ramasamy and K. Subbaraya Gounder / American Journal of Applied Sciences 11 (1): 38-46, 2014

39 Science Publications

AJAS

target output of the kth node for the pth sample pattern
and p

ky is the actual output of the kth node estimated by

the network for the pth sample pattern.
Although BPN algorithm has been implemented very

successfully in numerous practical applications across
many disciplines, it still suffers from lot of detriments.
One such major detriment of the BPN training algorithm
is that the training phase consumes more time than
testing phase. The most important factor to be considered
during the MFNN training phase is its training speed is
greatly affected by the training rate, η. The training
parameters that affect the MFNN training rate are
dimensionality of training dataset, problem category,
size of the neural network, initial weight value and
training algorithm. Among these parameters, the
dimensionality of training dataset is examined and the
way it affects the training rate is discussed. In general,
training MFNN with a bigger training data set can
reduce the identifying error rate. However, ample
amount of training data normally requires very long
training time (Owens, 2000) which affects the training
rate. Much iteration is required to train small networks
for even the simplest problems. For large training data
sets, it may take longer time in order to train and
generalize the network well. A training algorithm that
reduces this time would be of considerable value.

2. RELATED WORKS

Many researchers have investigated the above
detriments and devoted their research works towards
speeding up the MFNN training process through
various formation ranges from different amendments of
existing algorithms to evolution of new algorithms.
Formation of such works include estimation of optimal
initial weight (Nguyen and Widrow, 1990; Varnava and
Meade, 2011), adaptation of learning rate, adaptation of
momentum term (Shao and Zheng, 2009), adaptation of
momentum term in parallel with learning rate
adaptation (Behera et al., 2006) and using second order
algorithm (Ampazis and Perantonis, 2002; Yu and
Wilamowski, 2010; 2011).

First, proper initializatsion of Neural Network initial
weights reduces the iteration number in the training
process thereby increasing the training speed. Many
weight initialization methods have been proposed for
initialization of neural network weights. Nguyen and
Widrow (1990) initializes the nodes’ weight within the
specified range which results in the reduction of the

epoch number (Nguyen and Widrow, 1990). Varnava
and Meade (2011) formulated a new initialization
method by approximating the networks parameter using
polynomial basis function (Varnava and Meade, 2011).
Second, the learning rate is used to control the step size
for reconciling the network weights. The constant
learning rate secures the convergence but considerably
slows down the training process. Hence several methods
based on heuristic factor have been proposed for
changing the training rate dynamically. Behera et al.
(2006) applied convergence theorem based on Lyapunov
stability theory for attaining the adaptive learning rate.
Last, Second order training algorithms employs the
second order partial derivatives of the error function to
perform network pruning. This algorithm is very apt for
training the neural network that converges quickly. The
most popular second order methods employed for
training are Conjugate Gradient (CG) methods, quasi-
Newton (secant) methods or Levenberg-Marquardt (LM)
method. Nevertheless, these methods are very
computationally expensive and requires large memory.
Ampazis and Perantonis (2002) presented Levenberg-
Marquardt with Adaptive Momentum (LMAM) and
Optimized Levenberg-Marquardt with Adaptive
Momentum (OLMAM) second order algorithm that
integrates the advantages of the LM and C G methods
(Ampazis and Perantonis, 2002). Yu and Wilamowski
(2010; 2011) modifies LM methods by rejecting
Jacobian matrix storage and also replacing Jacobian
matrix multiplication with the vector multiplication
which results in the reduction of memory cost for
training very huge training dataset.

Yet, none of the above mentioned formations
managed to overcome the main detriment of the BPN
method. Since each and every technique employs all the
input samples in the training dataset to the network for
classification at each and every single epoch. If a large
amount of training data with high dimension is rendered
for classification, then the fore mentioned technique
introduces a problem by slowing down classification.
According to the Equation (2), the correctly classified
training sample pattern do not involved in the weight
updation since the error value generated by that sample
pattern is zero. Devi et al. (2013) proposed LAST
algorithm in which the error value is compared with the
maximum threshold value. Here the intention of this
research is to partition the training input samples into
two distinct classes, classified and misclassified class,
based on the comparison result of the calculated error

M. Devi Ramasamy and K. Subbaraya Gounder / American Journal of Applied Sciences 11 (1): 38-46, 2014

40 Science Publications

AJAS

measure with half of threshold value. By doing so, the
training input samples with the actual output which are
close to the target output will belong to the classified
class, the remaining training input samples will belong
to the mis-classified class. Only the input samples in
the misclassified class are presented to the next epoch
(Epoch is one complete cycle of populating the MFNN
with the entire training samples once) for training,
whereas the correctly classified class will be skipped
for the subsequent n epochs. Thereby, the HOT
algorithm dynamically reducing the number of training
input pattern samples exhibited at every single epoch
without affecting the network’s accuracy. Thus
decreasing the size of the training input samples
linearly can reduce the total training time, thereby
speeding up the training process. The dominance of this
HOT algorithm is that its implementation is extremely
simple and easy and can lead to significant
improvements in the training speed.

3. PROPOSED HOT ALGORITHM

3.1. HOT Neural Network Architecture

The network is furnished with n input nodes, p
hidden nodes and m output nodes which are normally
aligned in layers. Let P symbolized the number of
training patterns. The input presented to the network is
given in the form of Matrix X, with p rows and n
columns. The number of network’s input nodes is
equivalent to the P, column value of the input matrix, X.
Each row in the Matrix X, is considered to be a realvalued
vector x∈ℜn+1 which is symbolized by {x0, x1, x2,…, xn}
with x0 is a bias signal. The summed realvalued vector
z∈ℜp+1 generated from the hidden layer is symbolized by
{z0, z1, z2, …, zp} with z0 is the bias signal. The estimated
output real-valued vector y∈ℜm by the output layer is
symbolized by {y1, y2, …, ym} and the corresponding
target vector t∈ℜm is symbolized by {t1, t2, …, tm}. Let it
signifies the itth iteration number.

The HOT algorithm that is incorporated in the
prototypical MFNN architecture is sketched Fig. 1.

The network parameter symbols employed in this
algorithm are addressed here. Let fN(x) and fL(x) be
the nonlinear logistic activation function and linear
activation function of the hidden and output layer
respectively.

Since the network is fully interconnected, each
layer nodes is integrated with all the nodes in the next
layer. Let vij be the n×p matrix carries input-to-hidden

weight coefficient for the link from the input node i to
the hidden node j and voj be the bias weight to the
hidden node j. Let wjk be the p×m matrix hidden-to-
output weight coefficient for the link from the hidden
node j to the output node k and wok be the bias weight
to the output node k.

3.2. Working Principle of HOT

The working principle of the HOT algorithm that is
incorporated in the BPN algorithm is summaried below.

3.3. Weight Initialization

Step 1: Determine the magnitude of the connection
initial weights (and biases) to the disseminated
values within the précised range and also the
learning rate, η.

Step 2: While the iteration terminating criterion is at-
tained, accomplish Steps 3 through 17.

Step 3: Iterate through the Steps 4 to 15 for each input
training vector to be classified whose prob
value is 1. Furnish the training pattern

Step 4: Trigger the network by rendering the training
input to the input nodes in the network input
layer.

3.4. Feed Forward Propagation

Step 5: Disseminate the input training vector from the
input layer towards the subsequent layers.

Step 6: Hidden Layer Activation net value
a) Each hidden node (zj, j = 1,2,…,p) input is
aggregated by multiplying input values with the
corresponding synaptic weights Equation (3):

n

i
i 1

inj oj ijz (it) v (it) x (it).v (it)
=

= +∑ (3)

 b) Apply nonlinear logistic sigmoid activation

function to estimate the actual output for each
hidden node j, 1≤ j ≤ p Equation (4):

j zinj

1
z (it)

1 e
−

=
+

 (4)

Attaining the differential for the aforementioned

activation function Equation (5):

j
j j

(z (it))
z (it) (1 z (it))

x

∂
= × −

∂
 (5)

M. Devi Ramasamy and K. Subbaraya Gounder / American Journal of Applied Sciences 11 (1): 38-46, 2014

41 Science Publications

AJAS

Fig. 1. HOT algorithm incorporated in MFNN architecture

Step 7: Output Layer Activation net value

a) Each output node (yk, k = 1,2,…,m) input is
aggregated by multiplying input values with the
corresponding synaptic weights Equation (6):

p

j
j 1

ink ok jky (it) w (it) z (it).w (it)
=

= +∑ (6)

 b) Apply non-linear logistic sigmoid activation

function to estimate the actual output for each
output node k, 1 ≤ k ≤ m Equation (7):

k yink

1
y (it)

1 e
−

=
+

 (7)

Attaining the differential for the afore-mentioned

activation function Equation (8):

k
k k

(y (it))
y (it) (1 y (it))

x

∂ = × −
∂

 (8)

3.5. Accumulate the Gradient Components

Step 8: For each output unit k,1 ≤ k ≤ m, the error
gradient calculation for the output layer is
formulated as Equation (9):

k k k k k(it) y (it) [1 y (it)] [t y (it)]δ = × − × − (9)

Step 9: For each hidden unit j, 1 ≤ j ≤ p, the calculation
of error gradient for the hidden layer is
formulated as Equation (10):

m

j j j j
k 1

jk(it) (it).w (it) .z (it).[1 z (it)]
=

 ∂ = δ − 
 
∑ (10)

3.6. Weight Amendment using Delta-Learning
Rule

Step 10: For each output unit.
The weight amendment is yielded by the following

updating rule Equation (11):

jk jk jkW (it 1) W (it) W (it 1)+ = + +△ (11)

The bias amendment is yielded by the following up-

dating rule Equation (12):

ok ok okW (it 1) W (it) W (it 1)+ = + +△ (12)

Step 11: For each hidden unit.

The weight amendment is yielded by the following
updating rule Equation (13):

ij ij ijV (it 1) V (it) V (it)+ = + ∆ (13)

M. Devi Ramasamy and K. Subbaraya Gounder / American Journal of Applied Sciences 11 (1): 38-46, 2014

42 Science Publications

AJAS

The bias amendment is yielded by the following up-
dating rule Equation (14):

oj oj ojV (it 1) V (it) V (it)+ = + ∆ (14)

3.7. HOT Algorithm Steps

Step 12: Measure the dissimilarity between the target
and true value of each input sample (xi, i =
1,2,…,n) which imitates the utter error value
Equation (15):

k kt y (it) ,k 1,2,...,m− = (15)

Step 13: Accomplish collation between the utter error

value |tk-yk| and half of error threshold,

dmax/2. k k
maxd

t y (it)
2

− < . If so, Goto Step 14.

Else Goto Step 16.
Step 14: Compute the possibility value for presenting

the input sample in the next iteration:

i

i

if x isclassifiedcorrectlyand
0,

prob(x) numberof epoch is less t than n

1, otherwise


= 



Step 15: Calculate n, number of epochs to be skipped
 a) Initialize the value of n to zero for a

particular sample xi
 b) If xi is classified correctly, then increment n

value by c, where c → Linear Skipping Factor.
Step 16: Construct the new probability-based training

dataset to be presented in the next epoch.
Step 17: Inspect for the halting condition such as

applicable Root Mean Square error (RMS),
elapsed epochs and desired accuracy.

4. RESULT ANALYSIS

In Section 4, the proposed HOT algorithm has been
analyzed for the categorization problem concomitant
with two-class and multi-class. The real-world
workbench data sets applied for training and testing are
Iris, Waveform, Heart and Breast Cancer Data Set which
are consumed from the University of California at Irvine
(UCI) Machine Learning Repository (Asuncion and
Newman, 2007). The concrete quantity of the data sets
used is provided in the Table 1.

The initial values of the weights coefficients are chosen
randomly between -0.5 and +0.5 using the Nguyen-Widrow
(NW) initialization method for faster learning. All the bias
nodes are enforced with the unit value.

4.1. Multiclass Problems

4.1.1. Iris Data Set

The Iris flowering plant database consists of
measurements of 150 flower samples. For each flower,
the four facets weighed are positioned here: Sepal
Length and Width and Petal Length and Width. In fact,
these four facets are involved in the categorization of
each flower plant into apposite Iris flower genus: Iris
Setosa, Iris Versicolour and Iris Virgincia. The 150
flower samples are equally scattered amidst the three iris
flower classes. Iris setosa is linearly separable from the
other 2 genus. But Iris Virgincia and Iris Versicolour are
nonlinearly detachable. Out of these 150 flower samples,
90 flower samples are employed for training and 60
flower samples for testing.

4.1.2. Waveform Data Set

The Waveform database generator data set contains
5000 wave’s samples measurement. The 5000 wave’s
samples are equally distributed, about 33%, into three
wave families (Asuncion and Newman, 2007). Each
wave’s samples are recorded using 21 numerical features.
Among these 5000 wave’s samples, 4800 waves are
randomly selected for training and 200 waves for testing.

4.2. Two-Class Problems

4.2.1. Heart Data Set

The Statlog Heart disease database consists of 270
patient’s samples. Each patient’s characteristics
recognized with the 13 numerical attributes. These 13
features are involved in the detection of the presence and
absence of heart disease for the patients.

4.2.2. Breast Cancer Data Set

The Wisconsin Breast Cancer Diagnosis Dataset
contains 569 patient’s breasts samples among which 357
diagnosed as benign and 212 diagnosed as malignant
class. Each patient’s breast cancer are detected using the
32 numerical features.

The total number of trained input samples and total
training time consumed by BPN, LAST and HOT
algorithms at every single iteration is graphically
represented in the Fig. 2 and 3 for all datasets.

M. Devi Ramasamy and K. Subbaraya Gounder / American Journal of Applied Sciences 11 (1): 38-46, 2014

43 Science Publications

AJAS

Fig. 2. Epoch-wise training input samples for all datasets

Fig. 3. Epoch-wise training time for all datasets

M. Devi Ramasamy and K. Subbaraya Gounder / American Journal of Applied Sciences 11 (1): 38-46, 2014

44 Science Publications

AJAS

Fig. 4. Total Training samples taken by BPN, LAST and HOT algorithm during the training phase

Fig. 5. Total training time taken by BPN, LAST and HOT algorithm

Table 1. Concrete quantity of the data sets
Datasets No. of Attributes No. of Classes No. of Instances
Iris 4 3 150
Waveform 21 3 5000
Heart 13 2 270
Breast Cancer 31 2 569

Table 2. Result Comparison for the IRIS dataset
Neural network Network Number of Total number Training time Accuracy
algorithm topology epochs of input samples (in sec) (%)
BPN 4×5×1 675 60750 0.887442 91.67
LAST 4×5×1 675 24148 0.288156 91.67
HOT 4×5×1 675 49762 0.526426 93.33

M. Devi Ramasamy and K. Subbaraya Gounder / American Journal of Applied Sciences 11 (1): 38-46, 2014

45 Science Publications

AJAS

Table 3. Result comparison for the waveform dataset
Neural network Network Total number Number of Training time Accuracy
Algorithm topology epochs input samples (in sec) (%)
BPN 21×10×1 815 3912000 3.137964 97.00
LAST 21×10×1 815 2035031 0.704710 97.50
HOT 21×10×1 815 3227302 2.418796 98.00

Table 4. Result comparison for the heart dataset
Neural network Network Number of Total number of Training time Accuracy
algorithm topology epochs input samples (in sec) (%)
BPN 13×5×1 964 212080 1.440009 90.00
LAST 13×5×1 964 98976 0.314744 92.00
HOT 13×5×1 964 157833 1.245761 92.00

Table 5. Result comparison for the breast cancer dataset
Neural network Network Number of Total Number of Training time Accuracy
algorithm topology epochs input samples (in sec) (%)
BPN 31×15×1 619 247600 2.187802 95.27
LAST 31×15×1 619 148204 0.825554 95.27
HOT 31×15×1 619 197673 1.638892 95.86

The consolidated simulation results of BPN, LAST

and HOT algorithm are furnished in Table 2-5, which
notify the Training Samples, Training Time and
Accuracy. From this table, the HOT algorithm achieves
higher or equal accuracy rate than BPN and LAST and
also, it yields improved computational training speed in
terms of the total number of trained input samples as
well as total training time over BPN and less than LAST.

4.2.3. Result Comparison

From the Table 2-5, it is concluded that the proposed
HOT algorithm attains the higher training performance
in terms of trained input samples and time compared to
BPN. The comparison results of the total training
samples and total training time attained by the BPN,
LAST and HOT algorithm for the above mentioned
dataset are consolidated in Fig. 4 and 5. From this Fig.
4, it is portrayed that the total number of training
samples consumed by HOT algorithm is reduced by an
average of nearly 43% of BPN algorithm. Whereas, the
LAST algorithm is reduced to an average of nearly 60%
of BPN algorithm since the error value is compared with
the half of maximum threshold.

Thus decreasing the size of the trained input samples
can reduce the training time which is shown in the
following Fig. 4, thereby increasing the speed of the
training process without affecting the accuracy.

From the Fig. 5, the total training time of HOT
algorithm is reduced to an average of nearly 20-40% of
BPN algorithm for various datasets.

5. CONCLUSION

The research paper concludes that a new and
simple Half of Threshold (HOT) algorithm for the
training of Multilayer feed forward neural networks
improves the training speed by skipping the correctly
classified input samples. The performances of the
proposed HOT algorithms are compared with BPN
and LAST algorithm on four benchmark function
approximation problems: IRIS, Waveform, Heart and
Breast Cancer. The comparisons are made in terms of
total number of training input samples and
computational time required for training. It is found
that the proposed HOT algorithm is much faster than
the standard BPN algorithm and slower than LAST
algorithm to attain the same accuracy.

The simulation of all the above mentioned algorithm
are done using the machine with the processor model
Intel® Core I5-3210M, CPU speed of 2.50GHz and 4
GB of RAM. The software used for simulation is
MATLAB with the version R2010b.

6. REFERENCES

Ampazis, N. and S.J. Perantonis, 2002. Two highly
efficient second-order algorithms for training
feedforward networks. IEEE Trans. Neural Netw.,
13: 1064-1074. DOI: 10.1109/TNN.2002.1031939

Asuncion, A. and D.J. Newman, 2007. UCI Machine
Learning Repository, School of Information and
Computer Science, University of California, Irvine,
CA.

M. Devi Ramasamy and K. Subbaraya Gounder / American Journal of Applied Sciences 11 (1): 38-46, 2014

46 Science Publications

AJAS

Behera, L., S. Kumar and A. Patnaik, 2006. On
adaptive learning rate that guarantees
convergence in feedforward networks. IEEE
Trans. Neural Netw., 17: 1116-1125. DOI:
10.1109/TNN.2006.878121

Devi, R.M., S. Kuppuswami and R.C. Suganthe, 2013.
Fast linear adaptive skipping training algorithm for
training artificial neural network. Math. Problems
Eng., 2013: 346949-346957. DOI:

10.1155/2013/346949
Lippmann, R.P., 1987. An introduction to computing

with neural nets. IEEE ASSP Mag., 4: 4-22. DOI:
10.1109/MASSP.1987.1165576

Mehra, P. and B.W. Wah, 1992. Artificial Neural
Networks: Concepts and Theory. 1st Edn., IEEE
Computer Society Press, Los Alamitos, ISBN-10:
0818689978, pp: 667.

Nguyen, D. and B. Widrow, 1990. Improving the
learning speed of 2-layer neural networks by
choosing initial values of the adaptive weights.
Proceedings of the IJCNN International Joint
Conference on Neural Networks, Jun. 17-21, IEEE
Xplore Press, San Diego, CA, USA., pp: 21-26.
DOI: 10.1109/IJCNN.1990.137819

Owens, J.A., 2000. Empirical modeling of very large data
sets using neural networks. Proceedings of the IEEE-
INNS-ENNS International Joint Conference on Neural
Networks, Jul. 27-27, IEEE Xplore Press, Como, pp:
302-307. DOI: 10.1109/IJCNN.2000.859413

Shao, H. and G. Zheng, 2009. A new BP algorithm with
adaptive momentum for FNNs training. Proceedings
of the WRI Global Congress on Intelligent Systems,
May 19-21, IEEE Xplore Press, Xiamen, pp: 16-20.
DOI: 10.1109/GCIS.2009.136

Varnava, T.T. and A.J. Meade, 2011. An initialization
method for feedforward artificial neural networks
using polynomial bases. Adv. Adaptive Data Anal.,
3: 385-400. DOI: 10.1142/S1793536911000684

Yu, H. and B.M. Wilamowski, 2010. Improved
computation for levenberg marquardt training. IEEE
Trans. Neural Netw., 21: 930-937. DOI:
10.1109/TNN.2010.2045657

Yu, H. and B.M. Wilamowski, 2011. Neural Network
Training with Second Order Algorithms. In: Human-
Computer Systems Interaction: Backgrounds and
Applications 2, Hippe, Z.S., J.L. Kulikowski and T.
Mroczekpp (Eds.), Springer, Berlin, ISBN-10:
3642231721, pp: 463-476.

