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ABSTRACT 

Multilayer Feed Forward Neural Network (MFNN) has been successfully administered architectures for 
solving a wide range of supervised pattern recognition tasks. The most problematic task of MFNN is 
training phase which consumes very long training time on very huge training datasets. An enhanced linear 
adaptive skipping training algorithm for MFNN called Half of Threshold (HOT) is proposed in this research 
paper. The core idea of this study is to reduce the training time through random presentation of training 
input samples without affecting the network’s accuracy. The random presentation is done by partitioning 
the training dataset into two distinct classes, classified and misclassified class, based on the comparison 
result of the calculated error measure with half of threshold value. Only the input samples in the 
misclassified class are presented to the next epoch for training, whereas the correctly classified class is 
skipped linearly which dynamically reducing the number of input samples exhibited at every single epoch 
without affecting the network’s accuracy. Thus decreasing the size of the training dataset linearly can 
reduce the total training time, thereby speeding up the training process. This HOT algorithm can be 
implemented with any training algorithm used for supervised pattern classification and its 
implementation is very simple and easy. Simulation study results proved that HOT training algorithm 
achieves faster training than the other standard training algorithm. 
 
Keywords: Adaptive Skipping, Neural Network, Training Algorithm, Training Speed  

1. INTRODUCTION 

Multilayer Feed Forward Neural Network (MFNN) 
has been widely and successfully administered neural 
network architectures for solving supervised pattern 
recognition tasks (Mehra and Wah, 1992; Lippmann, 
1987) due to its learning and generalization capacity. 
The most extensively adapted algorithm for training 
MFNN is Back Propagation (BPN) Algorithm. The 
BPN training algorithm works in two phases: Training 
(or Learning) Phase and Testing (Evaluation) Phase. 
BPN algorithm is an iterative gradient algorithm 
designed to find the set of weights coefficients that 
minimizes the total Root Mean Squared (RMS) error 

measure, E, between the desired output and the actual 
output summed over all the training pattern input to the 
network Equation (1): 
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where, P is the total number of training sample patterns, 
m is the number of nodes in the output layer p

kt , is the 
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target output of the kth node for the pth sample pattern 
and p

ky  is the actual output of the kth node estimated by 

the network for the pth sample pattern.  
Although BPN algorithm has been implemented very 

successfully in numerous practical applications across 
many disciplines, it still suffers from lot of detriments. 
One such major detriment of the BPN training algorithm 
is that the training phase consumes more time than 
testing phase. The most important factor to be considered 
during the MFNN training phase is its training speed is 
greatly affected by the training rate, η. The training 
parameters that affect the MFNN training rate are 
dimensionality of training dataset, problem category, 
size of the neural network, initial weight value and 
training algorithm. Among these parameters, the 
dimensionality of training dataset is examined and the 
way it affects the training rate is discussed. In general, 
training MFNN with a bigger training data set can 
reduce the identifying error rate. However, ample 
amount of training data normally requires very long 
training time (Owens, 2000) which affects the training 
rate. Much iteration is required to train small networks 
for even the simplest problems. For large training data 
sets, it may take longer time in order to train and 
generalize the network well. A training algorithm that 
reduces this time would be of considerable value. 

2. RELATED WORKS 

Many researchers have investigated the above 
detriments and devoted their research works towards 
speeding up the MFNN training process through 
various formation ranges from different amendments of 
existing algorithms to evolution of new algorithms. 
Formation of such works include estimation of optimal 
initial weight (Nguyen and Widrow, 1990; Varnava and 
Meade, 2011), adaptation of learning rate, adaptation of 
momentum term (Shao and Zheng, 2009), adaptation of 
momentum term in parallel with learning rate 
adaptation (Behera et al., 2006) and using second order 
algorithm (Ampazis and Perantonis, 2002; Yu and 
Wilamowski, 2010; 2011). 

First, proper initializatsion of Neural Network initial 
weights reduces the iteration number in the training 
process thereby increasing the training speed. Many 
weight initialization methods have been proposed for 
initialization of neural network weights. Nguyen and 
Widrow (1990) initializes the nodes’ weight within the 
specified range which results in the reduction of the 

epoch number (Nguyen and Widrow, 1990). Varnava 
and Meade (2011) formulated a new initialization 
method by approximating the networks parameter using 
polynomial basis function (Varnava and Meade, 2011). 
Second, the learning rate is used to control the step size 
for reconciling the network weights. The constant 
learning rate secures the convergence but considerably 
slows down the training process. Hence several methods 
based on heuristic factor have been proposed for 
changing the training rate dynamically. Behera et al. 
(2006) applied convergence theorem based on Lyapunov 
stability theory for attaining the adaptive learning rate. 
Last, Second order training algorithms employs the 
second order partial derivatives of the error function to 
perform network pruning. This algorithm is very apt for 
training the neural network that converges quickly. The 
most popular second order methods employed for 
training are Conjugate Gradient (CG) methods, quasi- 
Newton (secant) methods or Levenberg-Marquardt (LM) 
method. Nevertheless, these methods are very 
computationally expensive and requires large memory. 
Ampazis and Perantonis (2002) presented Levenberg- 
Marquardt with Adaptive Momentum (LMAM) and 
Optimized Levenberg-Marquardt with Adaptive 
Momentum (OLMAM) second order algorithm that 
integrates the advantages of the LM and C G methods 
(Ampazis and Perantonis, 2002). Yu and Wilamowski 
(2010; 2011) modifies LM methods by rejecting 
Jacobian matrix storage and also replacing Jacobian 
matrix multiplication with the vector multiplication 
which results in the reduction of memory cost for 
training very huge training dataset.  

Yet, none of the above mentioned formations 
managed to overcome the main detriment of the BPN 
method. Since each and every technique employs all the 
input samples in the training dataset to the network for 
classification at each and every single epoch. If a large 
amount of training data with high dimension is rendered 
for classification, then the fore mentioned technique 
introduces a problem by slowing down classification. 
According to the Equation (2), the correctly classified 
training sample pattern do not involved in the weight 
updation since the error value generated by that sample 
pattern is zero. Devi et al. (2013) proposed LAST 
algorithm in which the error value is compared with the 
maximum threshold value. Here the intention of this 
research is to partition the training input samples into 
two distinct classes, classified and misclassified class, 
based on the comparison result of the calculated error 
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measure with half of threshold value. By doing so, the 
training input samples with the actual output which are 
close to the target output will belong to the classified 
class, the remaining training input samples will belong 
to the mis-classified class. Only the input samples in 
the misclassified class are presented to the next epoch 
(Epoch is one complete cycle of populating the MFNN 
with the entire training samples once) for training, 
whereas the correctly classified class will be skipped 
for the subsequent n epochs. Thereby, the HOT 
algorithm dynamically reducing the number of training 
input pattern samples exhibited at every single epoch 
without affecting the network’s accuracy. Thus 
decreasing the size of the training input samples 
linearly can reduce the total training time, thereby 
speeding up the training process. The dominance of this 
HOT algorithm is that its implementation is extremely 
simple and easy and can lead to significant 
improvements in the training speed.  

3. PROPOSED HOT ALGORITHM 

3.1. HOT Neural Network Architecture  

The network is furnished with n input nodes, p 
hidden nodes and m output nodes which are normally 
aligned in layers. Let P symbolized the number of 
training patterns. The input presented to the network is 
given in the form of Matrix X, with p rows and n 
columns. The number of network’s input nodes is 
equivalent to the P, column value of the input matrix, X. 
Each row in the Matrix X, is considered to be a realvalued 
vector x∈ℜn+1 which is symbolized by {x0, x1, x2,…, xn} 
with x0 is a bias signal. The summed realvalued vector 
z∈ℜp+1 generated from the hidden layer is symbolized by 
{z0, z1, z2, …, zp} with z0 is the bias signal. The estimated 
output real-valued vector y∈ℜm by the output layer is 
symbolized by {y1, y2, …, ym} and the corresponding 
target vector t∈ℜm is symbolized by {t1, t2, …, tm}. Let it 
signifies the itth iteration number. 

The HOT algorithm that is incorporated in the 
prototypical MFNN architecture is sketched Fig. 1.  

The network parameter symbols employed in this 
algorithm are addressed here. Let fN(x) and fL(x) be 
the nonlinear logistic activation function and linear 
activation function of the hidden and output layer 
respectively.  

Since the network is fully interconnected, each 
layer nodes is integrated with all the nodes in the next 
layer. Let vij  be the n×p matrix carries input-to-hidden 

weight coefficient for the link from the input node i to 
the hidden node j and voj be the bias weight to the 
hidden node j. Let wjk be the p×m matrix hidden-to-
output weight coefficient for the link from the hidden 
node j to the output node k and wok be the bias weight 
to the output node k. 

3.2. Working Principle of HOT  

The working principle of the HOT algorithm that is 
incorporated in the BPN algorithm is summaried below.  

3.3. Weight Initialization  

Step 1: Determine the magnitude of the connection 
initial weights (and biases) to the disseminated 
values within the précised range and also the 
learning rate, η. 

Step 2: While the iteration terminating criterion is at-
tained, accomplish Steps 3 through 17. 

Step 3: Iterate through the Steps 4 to 15 for each input 
training vector to be classified whose prob 
value is 1. Furnish the training pattern 

Step 4: Trigger the network by rendering the training 
input to the input nodes in the network input 
layer. 

3.4. Feed Forward Propagation  

Step 5: Disseminate the input training vector from the 
input layer towards the subsequent layers.  

Step 6: Hidden Layer Activation net value  
a) Each hidden node (zj, j = 1,2,…,p) input is 
aggregated by multiplying input values with the 
corresponding synaptic weights Equation (3): 

 
n
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 b) Apply nonlinear logistic sigmoid activation 

function to estimate the actual output for each 
hidden node j, 1≤ j ≤ p Equation (4): 
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Fig. 1. HOT algorithm incorporated in MFNN architecture 
 
Step 7: Output Layer Activation net value  

a) Each output node (yk, k = 1,2,…,m) input is 
aggregated by multiplying input values with the 
corresponding synaptic weights Equation (6): 

 
p

j
j 1

ink ok jky (it) w (it) z (it).w (it)
=

= +∑   (6) 

 
 b) Apply non-linear logistic sigmoid activation 

function to estimate the actual output for each 
output node k, 1 ≤ k ≤ m Equation (7): 
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Attaining the differential for the afore-mentioned 

activation function Equation (8): 
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3.5. Accumulate the Gradient Components  

Step 8: For each output unit k,1 ≤ k ≤ m, the error 
gradient calculation for the output layer is 
formulated as Equation (9): 

 

k k k k k(it) y (it) [1 y (it)] [t y (it)]δ = × − × −  (9) 

Step 9: For each hidden unit j, 1 ≤ j ≤ p, the calculation 
of error gradient for the hidden layer is 
formulated as Equation (10): 

 
m

j j j j
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3.6. Weight Amendment using Delta-Learning 
Rule  

Step 10: For each output unit.  
The weight amendment is yielded by the following 

updating rule Equation (11): 
 

jk jk jkW (it 1) W (it) W (it 1)+ = + +△  (11) 

 
The bias amendment is yielded by the following up-

dating rule Equation (12): 
 

ok ok okW (it 1) W (it) W (it 1)+ = + +△  (12) 

 
Step 11: For each hidden unit.  

The weight amendment is yielded by the following 
updating rule Equation (13): 
 

ij ij ijV (it 1) V (it) V (it)+ = + ∆  (13) 
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The bias amendment is yielded by the following up-
dating rule Equation (14): 
 

oj oj ojV (it 1) V (it) V (it)+ = + ∆  (14) 

 
3.7. HOT Algorithm Steps  

Step 12: Measure the dissimilarity between the target 
and true value of each input sample (xi, i = 
1,2,…,n) which imitates the utter error value 
Equation (15): 

 

k kt y (it) ,k 1,2,...,m− =  (15) 

 
Step 13: Accomplish collation between the utter error 

value |tk-yk| and half of error threshold, 

dmax/2. k k
maxd

t y (it)
2

− < . If so, Goto Step 14. 

Else Goto Step 16. 
Step 14: Compute the possibility value for presenting 

the input sample in the next iteration:  
 

i

i

if x isclassifiedcorrectlyand
0,

prob(x ) numberof epoch is less t than n
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
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Step 15: Calculate n, number of epochs to be skipped  
 a) Initialize the value of n to zero for a 

particular sample xi  
 b) If xi is classified correctly, then increment n 

value by c, where c → Linear Skipping Factor.  
Step 16: Construct the new probability-based training 

dataset to be presented in the next epoch.  
Step 17: Inspect for the halting condition such as 

applicable Root Mean Square error (RMS), 
elapsed epochs and desired accuracy.  

4. RESULT ANALYSIS 

In Section 4, the proposed HOT algorithm has been 
analyzed for the categorization problem concomitant 
with two-class and multi-class. The real-world 
workbench data sets applied for training and testing are 
Iris, Waveform, Heart and Breast Cancer Data Set which 
are consumed from the University of California at Irvine 
(UCI) Machine Learning Repository (Asuncion and 
Newman, 2007). The concrete quantity of the data sets 
used is provided in the Table 1.  

The initial values of the weights coefficients are chosen 
randomly between -0.5 and +0.5 using the Nguyen-Widrow 
(NW) initialization method for faster learning. All the bias 
nodes are enforced with the unit value. 

4.1. Multiclass Problems  

4.1.1. Iris Data Set  

The Iris flowering plant database consists of 
measurements of 150 flower samples. For each flower, 
the four facets weighed are positioned here: Sepal 
Length and Width and Petal Length and Width. In fact, 
these four facets are involved in the categorization of 
each flower plant into apposite Iris flower genus: Iris 
Setosa, Iris Versicolour and Iris Virgincia. The 150 
flower samples are equally scattered amidst the three iris 
flower classes. Iris setosa is linearly separable from the 
other 2 genus. But Iris Virgincia and Iris Versicolour are 
nonlinearly detachable. Out of these 150 flower samples, 
90 flower samples are employed for training and 60 
flower samples for testing.  

4.1.2. Waveform Data Set  

The Waveform database generator data set contains 
5000 wave’s samples measurement. The 5000 wave’s 
samples are equally distributed, about 33%, into three 
wave families (Asuncion and Newman, 2007). Each 
wave’s samples are recorded using 21 numerical features. 
Among these 5000 wave’s samples, 4800 waves are 
randomly selected for training and 200 waves for testing. 

4.2. Two-Class Problems  

4.2.1. Heart Data Set  

The Statlog Heart disease database consists of 270 
patient’s samples. Each patient’s characteristics 
recognized with the 13 numerical attributes. These 13 
features are involved in the detection of the presence and 
absence of heart disease for the patients.  

4.2.2. Breast Cancer Data Set  

The Wisconsin Breast Cancer Diagnosis Dataset 
contains 569 patient’s breasts samples among which 357 
diagnosed as benign and 212 diagnosed as malignant 
class. Each patient’s breast cancer are detected using the 
32 numerical features.  

The total number of trained input samples and total 
training time consumed by BPN, LAST and HOT 
algorithms at every single iteration is graphically 
represented in the Fig. 2 and 3 for all datasets. 
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Fig. 2. Epoch-wise training input samples for all datasets 

 

 
 

Fig. 3. Epoch-wise training time for all datasets 
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Fig. 4. Total Training samples taken by BPN, LAST and HOT algorithm during the training phase 
 

 
 

Fig. 5. Total training time taken by BPN, LAST and HOT algorithm 
 
Table 1. Concrete quantity of the data sets 
Datasets No. of Attributes  No. of Classes  No. of Instances  
Iris  4  3  150  
Waveform  21  3  5000  
Heart  13  2  270  
Breast Cancer  31  2  569  
 
Table 2. Result Comparison for the IRIS dataset 
Neural network Network Number of Total number Training time Accuracy 
algorithm topology epochs of input samples (in sec) (%)  
BPN  4×5×1  675  60750  0.887442  91.67  
LAST  4×5×1  675  24148  0.288156  91.67  
HOT  4×5×1  675  49762  0.526426  93.33  
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Table 3. Result comparison for the waveform dataset 
Neural network Network Total number Number of Training time Accuracy 
Algorithm topology epochs input samples (in sec) (%) 
BPN  21×10×1  815  3912000  3.137964  97.00  
LAST  21×10×1  815  2035031  0.704710  97.50  
HOT  21×10×1  815  3227302  2.418796  98.00  
 
Table 4. Result comparison for the heart dataset 
Neural network Network Number of Total number of Training time Accuracy 
algorithm  topology epochs input samples (in sec) (%) 
BPN  13×5×1  964  212080  1.440009  90.00  
LAST  13×5×1  964  98976  0.314744  92.00  
HOT  13×5×1  964  157833  1.245761  92.00  
 
Table 5. Result comparison for the breast cancer dataset 
Neural network  Network  Number of Total Number of Training time Accuracy 
algorithm topology epochs input samples (in sec) (%) 
BPN  31×15×1  619  247600  2.187802  95.27  
LAST  31×15×1  619  148204  0.825554  95.27  
HOT  31×15×1  619  197673  1.638892  95.86  

 
The consolidated simulation results of BPN, LAST 

and HOT algorithm are furnished in Table 2-5, which 
notify the Training Samples, Training Time and 
Accuracy. From this table, the HOT algorithm achieves 
higher or equal accuracy rate than BPN and LAST and 
also, it yields improved computational training speed in 
terms of the total number of trained input samples as 
well as total training time over BPN and less than LAST. 

4.2.3. Result Comparison  

From the Table 2-5, it is concluded that the proposed 
HOT algorithm attains the higher training performance 
in terms of trained input samples and time compared to 
BPN. The comparison results of the total training 
samples and total training time attained by the BPN, 
LAST and HOT algorithm for the above mentioned 
dataset are consolidated in Fig. 4 and 5. From this Fig. 
4, it is portrayed that the total number of training 
samples consumed by HOT algorithm is reduced by an 
average of nearly 43% of BPN algorithm. Whereas, the 
LAST algorithm is reduced to an average of nearly 60% 
of BPN algorithm since the error value is compared with 
the half of maximum threshold.  

Thus decreasing the size of the trained input samples 
can reduce the training time which is shown in the 
following Fig. 4, thereby increasing the speed of the 
training process without affecting the accuracy.  

From the Fig. 5, the total training time of HOT 
algorithm is reduced to an average of nearly 20-40% of 
BPN algorithm for various datasets.  

5. CONCLUSION 

The research paper concludes that a new and 
simple Half of Threshold (HOT) algorithm for the 
training of Multilayer feed forward neural networks 
improves the training speed by skipping the correctly 
classified input samples. The performances of the 
proposed HOT algorithms are compared with BPN 
and LAST algorithm on four benchmark function 
approximation problems: IRIS, Waveform, Heart and 
Breast Cancer. The comparisons are made in terms of 
total number of training input samples and 
computational time required for training. It is found 
that the proposed HOT algorithm is much faster than 
the standard BPN algorithm and slower than LAST 
algorithm to attain the same accuracy.  

The simulation of all the above mentioned algorithm 
are done using the machine with the processor model 
Intel® Core I5-3210M, CPU speed of 2.50GHz and 4 
GB of RAM. The software used for simulation is 
MATLAB with the version R2010b.  
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