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ABSTRACT 

An important progress within the last decade in the development of the selectivity model approach to 
overcome the inconsistent results if the distributional assumptions of the errors terms are made this problem is 
through the use of semi-parametric method. However, the uncertainties and ambiguities exist in the models, 
particularly the relationship between the endogenous and exogenous variables. A new framework of the 
relationship between the endogenous and exogenous variables of semi-parametric sample selection model 
using the concept of fuzzy modelling is introduced. Through this approach, a flexible fuzzy concept hybrid 
with the semi-parametric sample selection models known as Fuzzy Semi-Parametric Sample Selection Model 
(FSPSSM). The elements of vagueness and uncertainty in the models are represented in the model 
construction, as a way of increasing the available information to produce a more accurate model. This led to 
the development of the convergence theorem presented in the form of triangular fuzzy numbers to be used in 
the model. Besides that, proofs of the theorems are presented. An algorithm using the concept of fuzzy 
modelling is developed. The effectiveness of the estimators for this model is investigated. Monte Carlo 
simulation revealed that consistency depends on bandwidth parameter. When bandwidth parameters, c are 
increased from 0.1, 0.5, 0.75 and 1 as the numbers of N increased (from 100 to 200 and increased to 500), the 
values of mean approaches (closed to) the real parameter. Through the bandwidth parameter also reveals that 
the estimated parameter is efficient, i.e., the S.D, MSE and RMSE values become smaller as N increased. In 
particular, the estimated parameter becomes consistent and efficient as the bandwidth parameters approaches 
to infinity, c→∞ as the number of observations, n tend to infinity, n→∞. 
 
Keywords: Selectivity Model, Semi-Parametric, Fuzzy Concept, Bandwidth, Monte Carlo  

1. INTRODUCTION 

The sample selection model or the selectivity model 
introduced by Heckman (1979) is one of the most 
successful regression models if applied together with other 
models. This model is a combination of the probit and 
regression models. The earlier studies on this model focused 

on the parametric approach. However, the standard 
approach of estimating sample selection model shows 
inconsistent results if the distributional assumptions of the 
errors terms are made. Hence, an important progress within 
the last decade in the development of an alternative 
approach to overcome this problem is through the use of 
semi-parametric method (Andrews (1991; Cosslett, 1990; 
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Gerfin, 1996; Ichimura and Lee, 1991; Khan and Powell, 
2001; Klein and Spady, 1993; Lee and Vella, 2006; 
Martins, 2001; Powell, 1987; Powell et al., 1989). 

Although semi-parametric method of selectivity 
model is established, there still exist a basic problem of 
intrinsic features, such as uncertainty and ambiguity 
particularly in the relationship between the endogenous 
and exogenous variables. Therefore, it will disrupt the 
ability and effectiveness of the model proceeded to give 
the estimated value that can explain the actual situation of a 
phenomenon. These are questions and problems that have 
yet to be explored and the main pillar of this study. A new 
framework of the relationship between the endogenous and 
exogenous variables of semi-parametric sample selection 
model using the concept of fuzzy modelling by Zadeh 
(1965) is introduced. Through this approach, a flexible 
fuzzy concept hybrid with the semi-parametric sample 
selection models known as Fuzzy Semi-Parametric Sample 
Selection Model (FSPSSM). Hence, an alternative way to 
deal with this uncertainty and ambiguity is to use fuzzy 
concepts introduced by Zadeh (1965). 

The purpose of this chapter is twofold; firstly, to 
provide a better understanding of the magnitude of 
consistency as well as efficiency, when the new modeling 
of FSPSSM is implemented under normality assumption. 
It is then extended to verify the inconsistency of the model 
when it does not follow the assumption of the normal 
distribution. Secondly, is to provide the magnitude of the 
consistency under FSPSSM. For this purpose, the 
bandwidth parameter of Powell (1987) model is used. To 
achieve these aims, Monte Carlo simulations using R 
language programming by Safiih (2013) and as well as the 
estimator introduced by (Powell et al., 1989; Powell, 
1987) which are hybrid with fuzzy concept is developed.  

2. MATRIALS AND METHODS 

2.1. The Semi-parametric Sample Selection 
Model (SPSSM) 

 The semi-parametric sample selection model is a 
hybrid between the two sides of the semi-parametric 
approach, i.e., it combines some advantages of both fully 
parametric and the completely nonparametric approaches. 
The first model, i.e., participation equation is estimated by 
the parametric method, while the outcome equation is 
estimated by the nonparametric method. For instance, 
(Newey et al., 1990; Martins, 2001) used a two-step semi-
parametric approach of model (1). The Semi-Parametric 
Sample Selection Model (SPSSM) can be written as: 

* '

* '

*

1 0

0

; 1,...,

sp spi i

i i isp sp sp

isp
isp

i i isp sp sp

z w

if d x u
d

otherwise

z z d i N

γ ε

β

= +

 = + >= 


= =

 (1) 

 
where,

isp
d and 

isp
z are dependent variables

isp
x and

isp
w are 

vectors of remaining exogenous variablesγandβare 
unknown parameter vectors

isp
ε and

isp
u are error terms. It 

generalises the Heckman’s two-step procedure, i.e., in the 
first step, the participation equation is estimated semi-
parametrically using the estimator proposed by Klein and 
Spady (1993). The results from this first step are used to 
construct a nonparametric correction term for selectivity 
of wage equation in the second step. The difference 
between parametric and semi-parametric approaches 
comes in the form of weaker assumption of the error term. 
The two-step estimation procedure refers to the estimation 
of the participant and the outcome equations as mention in 
Lola et al. (2009). Consider the binary selection model 
and proceeds by specifying the parametric part of the 
model. Order the N observations such that the first 1,...,n 
observations represent participants with di = 1 and 
yiobserved. The remaining observations were the non-
participants with di = 0 and yi unobserved. 

In this study, the semi-parametric method in Equation 
1 is considered. As with the Safiih (2013) paper of 
FPSSM, this method involves two steps. In the first step, 
the parameter, β in the participation equation is 
estimated using Density Weighted Average Derivative 
Estimator (DWADE) and in the second step, Powell 
(1987) estimator in the outcome equation is used to 
estimate the parameter, γ. The DWADE which was 
proposed by Powell et al. (1989) is used to estimate 
parameter βin the first step of Equation 1. This estimator 
is based onsample analogues of the product moment 
representation of the average derivations and is 
constructed using nonparametrickernel estimators of the 
density of the regressors. However, a practical interest of 
weighted average derivatives is that they are proportional 
to coefficients vector βin the index function. Powell 
estimatorproposed by Powell (1987) is used to estimate 
parameter γin the second step of Equation 1. Powell 
(1987) considered asemi-parametric selection model that 
combines the two-equation structure with the following 
weak distribution alas sumption about the joint 
distribution of the error terms with the form: 
 

( )'( , | ) , |i i i i i if u w f u wε ε γ=  (2) 
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It is assumed that the joint density of εi, ui (conditional 
on wi) is smooth but with unknown function f(.). Hence it 
depends on wionly through the linear model, i.e., 'iwγ . 

Based on these assumptions, the regression function for 
the observed outcome zi takes the following form:  
 

* *

' '

' '

( | ) ( | , 0)

( | , )

( )

i i i i i

i i i i i

i i

E z x E z w d

w E u w x

w x

γ β ε
γ λ β

= >

= + > −

= +

 

 
where, λ(.) is an known smooth function. Ideally, given two 
observations i and j with wi ≠ wj and the condition 
of ' '

i jw wγ = γ the unknown function λ(.) canbe differentiated 

by subtracting the regression functions for i and j: 
 

* *

' '
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This is the basic idea underlying the estimator of γ as 

proposed by Powell (1987): 
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These weights of ˆ ijϖ

 
are calculated, γ̂

 
can be 

estimated by a weighted least-squares estimator, where 
' 'ˆ ˆ1

ˆ i j
ij

x x
N k

c c

β β
ϖ

 −
 =
 
 

with symmetric kernel function 

k(.), bandwidth c. and the estimate parameter β̂
 
has 

already obtained previously, as an estimate of β. Under 
Equation 2, we obtain a single index model for the 
decision equation in place of the probit model (probit 
step) in the parametric case Equation 4:   
 

' '( ( 0 | ) 1) ( )i i iP d d x g x β> = =  (4) 

 
where, g(.) is unknown but a smooth function. Estimators 
for β̂

 
in this model have been discussed in section 2.5, as 

the first step of the semi-parametric procedure. Given γ̂ , 
the second step of the semi-parametric procedure 
consists of estimating γ using Equation 3. 

Powell (1987) proved that the ̂powellγ
 
estimator in 

Equation 3 is n -consistent and asymptotically normal 
under an appropriate chosen Kernel (or bandwidth c). 
This result provided a n -consistent and asymptotically 
normal distribution as Equation 5:  
 

ˆ( ) (0, )d
powell powelln N Vγ γ− →  (5) 

 
where, d→  denotes convergence in distribution. The 
Powell procedure takes the data as input from the outcome 
equation (x and y, where may not contain a vector of 
ones). The first-step, index ' ˆ

spi
x β

 
is estimated which 

involved the vector id and bandwidth vector, c. Both  id  
and  c  are DWADE which are multiply by an i.i.d. 
random sample and the k threshold parameter, 
respectively. The first element of c is used to estimate the 
intercept coefficient. The bandwidth c from the second 
element is used for estimating the slope coefficients. 

2.2. Fuzzy Modelling  

In this study, we used the fuzzy set definition that is 
related to the existing fuzzy set theory introduced by Zadeh 
(1965). The Definition 1 of fuzzy numbers is followed from 
Yen et al. (1999). The definition is as follows: 

Definition 1 

The fuzzy function is defined by 
: ; ( , )f X A Y Y f x A× → =% %% % where:  

• A⊂X;X is a crisp set  
• A% is a fuzzy set  
• Y% is the codomain of x associated withthe fuzzy 

setA%  
• Some properties of fuzzy set where A⊂F (ℜ) is 

called a fuzzy number if:  
• There exist x∈ℜsuch that µA (x) = 1 
• αA = [x, µαA(x)≥ a] is a closed interval for every α∈ 

(0,1] 
• where,R is the set of real numbers 

The membership function for Triangular Fuzzy Number 
(TFN), µA (x): ℜ→ [0,1] is described as below Equation 6: 
 

( 1)
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where, 1≤m≤u, x is a value of real number I and u, the 
lower and upper bound of the support of A, 
respectively. Then the TFN is denoted by (l, m,n). The 
support of is the set elements {x∈ℜ|l<x<u}. A non-
fuzzy number by convention occurs when l = m = u. 

Definition 2 

Let X be a space of point and x∈X, ∀x∈D⊂X s.t. ∃µD: 
X→ [0,1]. Then DD {(x, (x))}= µ%  is called a fuzzy data.  

The process for getting fuzzy data is illustrated in 
Fig.1. In this figure, x is original data (Fig. 1a) which 
involves uncertainty. Hence, it is called crisp uncertainty 
data (Fig. 1b) which is assigned the value of 1 or 0. In 
order to get a fuzzy data, the process of fuzzification 
(Fig. 1c) with the membership function between (0,1] 
and defuzzification (Fig. 1d) will be implemented. 

The structure of fuzzy data, specifically the 
process of fuzzification is depicted in Fig. 2 within 
the αi-cut. The lower and upper bound of each 
observation follows the triangular membership 

functions 1
( )

( , ii
LI

α
β ϖ α =  

 
and 2

( )
( , ii

UI
α

β ϖ α =  
 

and 

become lower and upper bound respectively.  
Where: 

 

( )
( ) ( ) ( ( ))i i ii

LI LI LI
α

ϖ ϖ α ϖ ϖ= + −% %  

 
And: 

 

( )
( )

( ) ( ) ( )i i ii
UI UI UI

α
ϖ ϖ α ϖ ϖ= + −% %

 

 
Theorem 1 

Let the fuzzy data be defined by TFN, then the 
coefficient values of the exogenous variables of the 
participation and wage equations for fuzzy data converge 
to the coefficient values of exogenous variables of the 
participation and wage equations for crisp data, 
respectively, whenever the value of α-cut tend to 1. 

 

 
 
Fig. 1. Step by step process of getting fuzzy data (a) Original data (b) Crisp uncertainty data (c) Fuzzification (d) Defuzzification 
 

 
 

Fig. 2. Membership function and it’s �-cut 
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Proof 

In order to get the crisp value, the centroid method is 
used. Then, the fuzzy number for all observations of ϖiis 
given as: 
 

( )( )1
( ) ( )

3c
i i ii

W LI UIϖ ϖ ϖ= + +
 

 
If α→1, then the values of ( ) 1

A
xαµ = , where the 

lower bound and upper bound for each observation is 
based on Equation 2. Applying the α-cut into the 
triangular membership function, the fuzzy number that 
is obtained depends on the given value of the α-cut 
over the range 0 and 1 and is as follows:  
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( ) ( ( )) ( ( ))

3
1
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i i i i i i

i i i

ic

LI LI UI UI
W

LI UIα α
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When α approaches 1, then: 

 

( ) i(a)( ) ( )i i iLl andUlαϖ ϖ ϖ ϖ→ →  

 
Further, we obtained: 

 

( )
( )

1

3 u
il i iiic a

W ϖ ϖ ϖ ϖ→ + + =%  

 
Hence: 

 

( )ic
W i

α
ϖ→  (7) 

 
Equation 7 stated that when α approaches 1, then 

( )ic
W

α
approaches crisp, ϖi. In general, any observation of 

the real fuzzy data is crisp for all observations such that xi 
and zi,

( )
iic

X x
α

→  and
( )

iic
Z z

α
→ respectively, as αtends to 

1. This implies that the fuzzy data values of the participation 
and structural equations converge to the values of the 
participation and structural equations for crisp data, 
respectively whenever the value of α-cuts tend to 1.  

2.3. Development of Fuzzy Semi-Parametric 
Sample Selection Model  

In order to formulate a fuzzy SPSSM, the SPSSM in 
Equation 1 is reconsidered. Towards the development of 
FSPSSM, the same procedure in Lola et al. (2009) is 

used which involved 3 stage i.e., (1) fuzzification, (2) 
fuzzy environment and (3) defuzzification. In the first 
stage, the elements of real-valued input variables or crisp 
uncertainty values are converted into fuzzy data using a 
particular value of membership function. A triangular 
fuzzy number with α-cut method is used for all 
observations. In this study, the same α-cuts method as in 
Equation 7 is considered. Hence, lower and upper 

bounds for each observation ( )*, , , ,
i i i i isp sp sp sp sp

w x z uε  is 

obtained which is defined respectively as:  
 

,

*

( , , ), ( , )

( , , ), ( , , )
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i

i i i i i i i isp m u sp ml l usp sp sp sp sp sp
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w w w w x x x x

z z z z and

u u u u

ε ε ε ε

= =

= =

=

 

 
According to Equation 2, their respective 

membership functions are defined as:  
 

1,2,3,4,5
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 (8) 

 
Based on Equation 8, 5 types of membership 

function
Ak sp

µ , can be generated by 
Ksp

A taking on the 

values of K = 1, 2, 3, 4 and 5, where K = 1, 2, 3, 4 and 5 
represents *, , ,sp sp sp sp spw x z and uε respectively.  

For the second step, the α-cuts method is proceeded 
for all the exogenous variables and error terms. While for 
the third stage, the fuzzy values are converted to output 
of the crisp value as in the following formula Equation 9: 
 

11,..,

( , , )
k

i

Kl Ksp usp

Ksp
i k

A
K

α α α

==

=∑  (9) 

 
where,

Klsp

α and
Kusp

α represents lower and upper bounds, 

respectively. Again, 5 types of defuzzified can be 
generated in this stage where KA takes values of K = 1, 2, 

3, 4 and 5. The values of 1, 2, 3, 4 and 5 representing 
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, , *,w x z and uε
 
respectively. Hence, the FSPSSM is of 

the form as Equation 10: 
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The terms *, , ,

i i i isp sp sp sp
w x z ε% % %

 
and 

isp
u%

 
are fuzzy 

numbers with the membership functions 

*, , ,
w x zi i iisp sp spsp

εµ µ µ µ
 

and 
uisp

µ respectively.  

 
2.4. The Monte Carlo Simulation 

2.4.1. Consistency and Efficiency of FSPSSM  

To obtain a consistent estimator of FSPSSM in 
Equation 1, the error terms is assumed to follow a 
normal distribution. The hybrid of the model proposed 
by Nawata (1994) with fuzzy concept is considered. 
Then, the Monte Carlo simulation technique (Kabadayi, 
2004; Rana et al., 2008; 2009; Witchakul el al., 2008) is 
used to illustrate the developed model. Adversely, the 
estimators are inconsistent if the error terms does not 
satisfy normal distribution (Chamberlain, 1986; 
Robinson, 1988; Powell et al., 1989; Cosslett, 1990; 
Ichimura and Lee, 1991; Newey et al., 1990; Vella, 
1992; Ichimura, 1993; Schafgans, 1996; Markus, 
1998). For the development of SPSSM, one of the 
elements used to measure the consistency or 
efficiency of the parameter is through the usage of 
bandwidth parameter, c(for instance, Chamberlain, 
1986; Powell et al., 1989; Andrews, 1991; Cosslett, 
1990; Ahn and Powell, 1993; Klein and Spady, 1993; 
Schafgans, 1996; Das et al., 2003; Bellemare et al., 
2002). According to Hardle (1990), the bandwidth 
parameter is a scalar argument to the kernel function 
that determines what range of the nearby data points 
will be heavily weighted in making an estimate. The 
choice of bandwidth represents a trade-off between 
bias (which is intrinsic to a kernel estimator and 
which increases with bandwidth) and variance of the 
estimates from the data (which decreases with 
bandwidth). An estimator is efficient if the RMSE 
values become smaller as the bandwidth parameter, c 
values increases as the number of N increased. 

2.5. The Monte Carlo Simulation of Fuzzy Semi- 
Parametric Sample Selection Model  

As mentioned earlier to achieve the second aim of this 
study i.e., consistency under FSPSSM, the Monte Carlo 
simulation developed by Nawata (1994) with α-cuts of 
0.2, 0.4, 0.6 and 0.8 are also considered. In this section, 
the effectiveness of the proposed model is focused on the 
usage of bandwidth parameter, c. Therefore, the form of 
FSPSSM with DWADE and Powell estimators are hybrid 
with Nawata (1994) can be rewritten according to 
Equation 1 as follows: 
 

0 1

0 11( 0), 1,2,3,..,i

i i isp sp sp

i isp sp

y b b w

d x u i N

ε

α α

= + +

= + + > =

%% %

% %

 (11) 

 
The values of 

isp
w% and 

isp
x% in the participationand 

selection equation are independently, identically 
distributed (i.i.d) random variablehaving uniform 
distribution with the meansvalue of 0 and variance of 20. 
ρis thecorrelation coefficient between fuzzyexogenous 
variables, ( )

i isp sp
w and x% % . In Equation 11, the exogenous 

variables, 
i isp sp

x and w% %

 
which involve bandwidth 

parameter, care followed from DWADE and Powell 
procedures, respectively. 

The fuzzy error terms of 
i isp sp

and uε% % arei.i.d normal 

random variables. For 
isp

ε% theestimated parameters of the 

means is zero andvariance is 1. Meanwhile, for 
isp

u%
 

theestimated parameter of the mean is zero andstandard 
deviation is 10.ϑ0 is the correlationcoefficient between 
fuzzy error terms, ( )

i isp sp
and uε% % . The performance of the 

FSPSSM under consistency with bandwidth 
parameters,c, due to tables reduction, we show only 
thevalues of ρand 0 ϑ0 is  0, i.e., representing parameter of 
no correlation between ,

i i i isp sp sp sp
w and x and uε%% % % , 

respectively. As per section 5.3, the value of ϑ belongs to 
set [-1,1] and 0 is chosen as the middle value of itsset. The 
sample size of N = 100, 200 500 and the bandwidth 
parameter, c = 0.1, 0.5, 0.75, 1 are considered. The 
bandwidths parameters, cgoverns the degree of 
“smoothness” imposedon the estimated function f (.) as in 
section 2.5, with large values of c corresponding to 
asmoother function estimate (Newey et al., 1990). For all 
cases, the number ofreplications is 1,000. The true 
parameters value of γ1 is 1. 
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3. RESULTS 

3.1. The Monte Carlo Simulation Result: The 
Fuzzy Semi-Parametric Sample Selection 
Model 

The results of Monte Carlo simulation of FSPSSM 
with N = 100, 200 and 500 are presented in Table 1 to 3, 
respectively. The first and second column are the α-cuts 
i.e., 0.2, 0.4, 0.6, 0.8 and bandwidth parameters, c i.e., 
0.1, 0.5, 0.75, 1, respectively. The rest of the columns 
represent the mean, the Standard Deviation (S.D), the 
Mean Square Error (MSE) and the Root Mean Square 
Error (RMSE), respectively. To study the consistency 
under FSPSSM, we only reported the Powell estimator. 
This is due to the DWADE estimator is estimated and 
used inside the Powell estimator. The consistency 
results of FSPSSM are obtained in Table 1. The table 
shows that when N = 100, α-cuts = {0.2, 0.4, 0.6 and 
0.8} and bandwidth parameters, c = 0.1, the means 
values of FSPSSM are 1.7070478, 1.070009 1.069892 
and 1.069663. When bandwidth parameters increases to 
0.5, 0.75 and 1 with α-cuts = {0.4, 0.6 and 0.8}, the 
values of mean approaches (closed to) the true 
parameter of γ1, i.e., 1.068417, 1.068139, 1.068076, 
1.067884; 1.067263, 1.067015, 1.067019, 1.066891 and 
1.066453, 1.066234, 1.066293, 1.066224, respectively. 
These indicated that the parameter estimates are 
consistent under bandwidth condition. 

A part of the consistency using bandwidth 
parameters, it is used also to performed an efficient of 
the estimated parameters. This is reported in Table 1 
and 3 by the S.D, MSE and RMSE values. For instance, 

Table 1 shows that when N is 100, α-cuts is 0.2 and 
bandwidth parameter, c is 0.1, the S.D, MSE and RMSE 
values respectively as follows: 0.283296, 0.085224 and 
0.291931. When the bandwidth parameters, c, increase to 
0.5, 0.75 and 1, the S.D, MSE and RMSE values 
decreased, respectively as 0.263515, 0.074121, 
0.272252; 0.260134, 0.072194, 0.268689 and 0.257873, 
0.070914, 0.266297. The same results are also shown for 
the α-cuts of 0.4, 0.6 and 0.8, i.e., the S.D, MSE and 
RMSE values are decreased as bandwidth parameters, c 
increased (from 0.1, to 0.5, 0.75 and 1). For instance, 
when α-cuts = 0.8 and bandwidth parameter, c = 0.1, the 
S.D, MSE and RMSE values are 0.284302, 0.085681 and 
0.292712. These values are decreased as increases of 
bandwidth parameters, c (0.5, 0.75 and 1) with the 
following values, respectively as 0.264209, 0.074415, 
0.272791; 0.26079, 0.072486, 0.269232 and 0.258524, 
0.07122, 0.266871. Similarly when bandwidth 
parameters, c values increases (c = 0.1, 0.5, 0.75 and 1) 
the mean values of the estimated parameter approaches 
the real parameter values. 

Similar results have been obtained (for N = 200 and 
500) as in Table 2 and 3, respectively. The S.D, MSE and 
RMSE values reduced as increased the bandwidth 
parameters, c values (c = 0.1, 0.5, 0.75 and 1). For 
instance, in Table 2, the results shown that the S.D, MSE 
and RMSE values as 0.202173, 0.042664 and 0.206552, 
respectively with α-cuts is 0.2 and bandwidth parameter, c 
is 0.1. When bandwidth parameters, c, increased (from 0.1 
to 0.5 to 0.75 and 1), the S.D, MSE and RMSE values 
decreases as 0.189488, 0.037852, 0.194557; 0.18676, 
0.036864, 0.191999 and 0.185005, 0.036255, 0.190408.

 
Table 1. FSPSSM, N = 100 (ρand 0 ϑ0 = 0) for γ1 

α-cut  c  Mean  S.D  MSE  RMSE  
0.2  0.10 1.070478  0.283296  0.085224  0.291931  
 0.50 1.068417  0.263515  0.074121  0.272252  
 0.75  1.067263  0.260134  0.072194  0.268689  
 1.00 1.066453  0.257873  0.070914  0.266297  
0.4  0.10 1.070009  0.283368  0.085199  0.291888  
 0.50 1.068139  0.263444  0.074046  0.272114  
 0.75  1.067015  0.260065  0.072125  0.268561  
 1.00 1.066234  0.257823  0.070860 0.266195  
0.6  0.10 1.069892  0.283940 0.085507  0.292416  
 0.50 1.068076  0.263858  0.074255  0.272498  
 0.75 1.067019  0.260465  0.072334  0.268949  
 1.00 1.066293  0.258225  0.071075  0.266599  
0.8  0.10 1.069663  0.284302  0.085681  0.292712  
 0.50 1.067884  0.264209  0.074415  0.272791  
 0.75  1.066891  0.260790 0.072486  0.269232  
 1.00 1.066224  0.258524  0.071220 0.266871  
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Table 2. FSPSSM, N = 200 (ρ and 0 ϑ0 = 0) for γ1 

α-cut  c  Mean  S.D  MSE  RMSE  
0.2  0.10 1.042306  0.040874  0.202173  0.042664 
 0.50 1.044123  0.035906  0.189488  0.037852 
 0.75  1.044549  0.034879  0.186760 0.036864 
 1.00 1.045035  0.034227  0.185005  0.036255 
0.4  0.10 1.042409  0.040961  0.202388  0.042759 
 0.50 1.044174  0.035964  0.189643  0.037916 
 0.75  1.044607  0.034937  0.186915  0.036927 
 1.00 1.045110 0.034285  0.185162  0.036320 
0.6  0.10 1.042401  0.040962  0.202390 0.04276 
 0.50 1.044230 0.035963  0.189639  0.037919 
 0.75  1.044700 0.035122  0.187395  0.037120
 1.00 1.045170 0.034281  0.185150 0.036321 
0.8  0.10 1.042477  0.041035  0.202571  0.042839 
 0.50 1.044272  0.036022  0.189795  0.037982 
 0.75  1.044720 0.034993  0.187063  0.036993 
 1.00 1.045232  0.034344  0.185320 0.036389 

 
Table 3. FSPSSM, N = 500 (ρ and 0 ϑ0 = 0) for γ1 

α-cut  c  Mean  S.D  MSE  RMSE  
0.2  0.10 1.030885  0.115094  0.01420 0.119166 
 0.50 1.031966  0.112269  0.013626  0.116731 
 0.75  1.032017  0.110934  0.013331  0.115462 
 1.00 1.031858  0.109722  0.013054  0.114253 
0.4  0.10 1.030983  0.115132  0.014215  0.119227 
 0.50 1.032056  0.112297  0.013638  0.116783 
 0.75  1.032103  0.110960 0.013343  0.115511 
 1.00 1.031944  0.109744  0.013064  0.114299 
0.6  0.10 1.030860 0.115152  0.014212  0.119215 
 0.50 1.031944  0.112287  0.013629  0.116742 
 0.75  1.031992  0.110953  0.013334  0.115473 
 1.00 1.031832  0.109739  0.013056  0.114263 
0.8  0.10 1.030836  0.115191  0.014220 0.119247 
 0.50 1.031923  0.112327  0.013636  0.116775 
 0.75  1.031973  0.110992  0.013341  0.115505 
 1.00 1.031811  0.109771  0.013062  0.114288 

 
The same results are obtained for α-cuts = 0.8 where 
the S.D, MSE and RMSE values reduced as increased 
of bandwidth parameters, c. Similarly when value 
increases (N = 100, 200 and 500) the mean values of 
the estimated parameter become smaller. These values 
indicated that under bandwidth parameters, c (0.1, 0.5, 
0.75 and 1) of FSPSSM is efficient. 

4. DISCUSSION 

Since Heckman (1979) introduced the sample 
selection model, this model has received considerable 
attention (parametric, semi-parametric or non-
parametric) and has been used in many applications. 
However, the researchers do not put an effort to 

investigate this model in terms of uncertainty regardless 
of its existence in the model. Thus, in this study, we 
introduced the fuzzy concepts hybrid with the semi-
parametric sample selection model. The fuzzy concept 
is an alternative framework to solve the problem of 
uncertainties existing in this model, particularly the 
relationship between the endogenous and exogenous 
variables. Therefore, it will disrupt the ability and 
effectiveness of the model proceeded to give the 
estimated value that can explain the actual situation of a 
phenomenon. These are questions and problems that 
have yet to be explored and the main pillar of this 
study. Therefore, this model was the first developed 
using fuzzy concept known as the Fuzzy Semi-
Parametric Sample Selection Model (FSPSSM).  



L. MuhamadSafiih et al. / American Journal of Applied Sciences 11 (9): 1542-1552, 2014 

 
1550 Science Publications

 
AJAS 

5. CONCLUSION 

In this study, we studied the consistency for FSPSSM 
under normality assumption. Subsequent of this 
assumption, the effect of the correlation between fuzzy 
variables (wand x% % ) and the effect of the correlation 

between error terms (i iand uε% % ) are investigated. As a 

continuation from that, consistency in FSPSSM using the 
bandwidth parameter as introduced by Powell (1987) is 
also studied. A Monte Carlo simulation is used to 
examine the consistency for FSPSSM under normality 
assumption. The Monte Carlo simulation results reveal 
that consistency depends on bandwidth parameter. 
When bandwidth parameters, c are increased from 0.1, 
0.5, 0.75 and 1 as the numbers of N increased (from 
100 to 200 and increased to 500), the values of mean 
approaches (closed to) the real parameter. According to 
Schafgans (1996), this indicated that the FSPSSM is 
consistent. Through the bandwidth parameter also 
reveals that the estimated parameter is efficient, i.e., the 
S.D, MSE and RMSE values become smaller as N 
increased. In particular, the estimated parameter 
becomes consistent and efficient as the bandwidth 
parameters approaches to infinity, c→∞ as the number 
of observations, n tend to infinity, n→∞. In this study, 
we are focusing only for two area which are fuzzy 
concept particullarly on fuzzy number of semi-
parametric Sample Selection Model coins as fuzzy 
semi-parametric Sample Selection Model (FSPSSM) 
and to see the effectiveness of the proposed model, the 
simulation using monte carlo is used.  

This paper developed of this proposed modeling 
approach, future research work could be emphasized in 
several directions. Apparently, the fuzzy concepts 
defined in this study consider the TFN and α-cut 
method. Therefore, future study could consider other 
fuzzy numbers which are more advanced such as S-
shaped, bell-shaped. Since the relationship between 
explanatory variables exists in the models, the concept 
of linear programming-based method introduced by 
Tanaka et al. (1982) and Amri and Tularam (2012) 
could be explored. By doing so, perhaps a deeper 
understanding of the underlying structure of the models 
could be obtained. Thus, some other mathematical tools 
such as optimization theory could be explored.  

The most significant idea of this research was to 
bring the concept of fuzzy into the selectivity model. In 
general, this concept is considered as a platform to 
discover a new dimension using these models. Further 

research could consider development of fuzzy 
perspective on a new paradigm of selection model, such 
as nonparametric and semi-nonparametric methods, the 
properties and theoretical parts of selection model, 
handling a weaker assumption and investigating “a curse 
of dimensionality” using fuzzy concept. 

In the development of FSPSSM, fuzzy logic using 
rules based method can also be considered. This concept 
will lead to produce an output based on linguistics 
variables and linguistics modifier. Hence, the proposed 
model would be useful in order to compute the 
uncertainties in the models. Thus, it would be interesting 
to find whether it is possible to determine the percentages 
to which any specific uncertain parameters of the models 
contribute to the overall uncertainty of the models. 

In this study, we have developed Monte Carlo 
simulations using R language programming. These 
simulations could be improved. Babuska and 
Verbruggen (1996; Chandramohan and Kamalakkannan, 
2014; Hussein and Nordin, 2014; Kareem, et al., 2014; 
Kahtan et al., 2014; Sridharan and Chitra, 2014) 
mentioned that modeling of complex systems will 
always remain an interactive approach. Thus, future 
study could consider the usage of other software 
packages or programming languages and incorporate 
graphic interface. In this way, information such as 
parameter estimate could be easily utilized and would be 
beneficial to the decision makers as well as others 
interested parties. These methods could be useful in data 
mining, e.g., in credit default analysis, healthcare 
analysis, security analysis and agriculture analysis. 
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