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ABSTRACT 

The method iterative Wave Concept Iterative method Procedure (WCIP) avoids the undesired phenomenon 
of unbounded operators; relations between currents and fields, obtained using unbounded impedance 
operators, are transposed to relations between waves, supplied by bounded scattering operators. 
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I. INTRODUCTION 

The scattering of electromagnetic waves in free 
space has been the subject of numerous studies, which 
derive several numerical methods such as finite 
element method, the method of moments, these 
methods are limited in their applications and they 
require enough memory space important. The iterative 
method (W.C.I.P) of modeling will guarantee the 
speed time of calculation, the precision of the results 
obtained, the insurance to obtain the convergence and 
the adaptability with all types of structures. This 
method is based on the determination of the operators 
of diffraction in the spectral and space domain which 
call the operators of admittances or impedances. These 
operators of diffraction can bind the tangential waves to 
the interfaces of the considered structure. The method for 
electromagnetic modeling is generally based on a 
formulation of the wave; it involves operators of 
impedances or admittances. The concept wave has 
advantages over methods electromagnetic modeling, such 
as insurance of convergence and the gain of computation 
time (Beldi et al., 2011; Azizi et al., 2013). With the 
diffraction operator is assured of convergence (these 
operators are bounded). On the hand, operators of 
diffraction space are always defined on the whole 
interface, but this is not the case for operators of 

admittance or impedance that matches it (Baudrand and 
Wane, 2009). In a comprehensive analysis of the field and 
from sources of electric and magnetic currents, we use the 
Green operators (Latrach et al., 2009). In this kind of 
analysis, the operators of impedance or admittance have the 
disadvantage of being unlimited and therefore the digital 
convergence is not always guaranteed. The integral 
formulation in a transmission line with the method of line 
TLM transmission (Glaoui et al., 2009) is usually defined in 
the time  domain but is expressed in spectral domain 
(Pasalic et al., 2001; Harizi and Gharsallah, 2012). This 
spectral representation is the basis of a method called the 
iterative process of design Waves (WCIP). 

2. ITERATIVE CONCEPT 

The modeling of problem in the case with or 
without source, they are two types of sources is current 
source of electric field is imposed in the problem to be 
studied. So they appear different systems which are 
deducted directly from the expressions (1) and (2). 
They include either a spatial wave source (3), a modal 
wave source (4) Equation 1 to 4: 
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With: 

 
Spatial wave source:  
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Modal wave source: 
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In the formulation waves with diffraction operators 

are spatial or model, when the convergence is ensured 
using diffraction bounded operators which allow us to have 
a low computation time. This method allows modeling any 
structure. To solve this system, we use the iterative process 
in both cases the excitation modal or spatial. 

3. FIRST DIFFRACTION BY PALLETS 

CYLINDRIC STRUCTURE 

3.1. Design  

Consider a structure of cylindrical geometry made of 
two materials: Metal and dielectric perfect (Fig. 1). To 
study the phenomenon of diffraction by such a structure, 
the target is bombarded by a plane wave TM (z) at 
normal incidence with an angle of incidence θinc = -90°. 
Solving the problem is based on the wording on the air in 
the cylindrical coordinate system (Raveu, 2003). 

3.2. Formulationin the Case of Cylindrical Pallets 

There are two areas operators diffraction to study, one 
in field space and the other in field modal. The operator 

of diffraction in the space defined on the cylinder by a 
matrix ŝof diffraction according to Equation 5:  
 

Dm Dd

Dd Dm

ˆ ˆH H
Ŝ

ˆ ˆH H

 −
 =
 − 

 (5) 

 
With:  
 

DmĤ  = Indicates the field metal 

DdĤ  = Indicates the field dielectric 
 

In this case we have two operators in modal diffraction. 
The operator describes the external diffraction reflection 
coefficient outside the cylindrical pallets. In this case, 
there was an invariant in z, km = 0 then kρ = k0 then 
separation into TE and TM modes is accurate. 

In the cylindrical structure of the pallets, the source is a 
transverse magnetic plane wave along the z direction and 
the structure has a z-invariance. So we consider only the 
following components in the θ. Therefore, there is no 
periodicity along z; the distance of the walls is not involved 
in regular problem solving (Houaneb et al., 2011). 

We deduce wave source in modal z
0B from the field 

incident TM (z) mode Ez
inc expressed in cylindrical 

coordinates Equation 6: 
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After the determination of diffraction coefficients in 

modal and spatial structure can be modeled by a diagram 
as shown in Fig. 2. 

After expressing all sizes needed to produce the 
waves, we can apply the iterative process corresponds. 
Knowing that the source is defined in modal. The 
equations governing the iterative process are written 
according to the following Equation 7: 
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Fig. 1. (a) pallets cylindrical section (b) Definition of waves 
 

 
 

Fig. 2. Modélisation de la structure avec la formulation en ondes 
 

Once convergence is reached, we can calculate the 
electromagnetic quantities diffracted by the structure. We 
defined the module electrical fieldsEz normalized 
electric field incidents according to Equation 8, with K0 R1 = 
2π is a number of mode Nθ = 64. We then analyze the 
variation of the field module normalized the dimensions of 
metal pallets of cylindrical geometry Equation 8: 
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3.3. Results 

The coefficients of diffraction modal are show in the 
Fig. 3 and 4. 

Figure 3 shows the variation of the real part of 
scattering coefficient with a number of external modes in 
θ with N = 64. This theory is based on what is developed 
for development of the external diffraction coefficient 
except that in this example has invariance in z. The 
internal scattering operator describes the reflection 
coefficient inside the cylindrical structure confined 
between the pallets. 

Figure 4 also shows the variation of the real part of 
the reflection coefficient with a number of internal 
modes of Nθ = 64. 

We apply the iterative process in this example is 
attained after 203 iterations for convergenceEz shows 
in the Fig. 5. 
First simulation: 
 

{ } { }1 2 3 4, , , 155 , 25 ,25 ,155θ θ θ θ = − ° − ° ° °  
 

Second simulation: 
 

{ } { }2 3 41, , , 120 , 60 ,60 ,120θ θ θ θ = − ° − ° ° °  
 

Third simulation: 
 

{ } { }1 2 3 4, , , 105 , 75 ,75 ,105θ θ θ θ = − ° − ° ° °  
 Note that the variations of the electric field at the 
pallet are zero against it by a variation of the field at 
the cylindrical openings of about 1.2 V/m show in Fig. 
6. In this example, the wording on the waves has been 
successfully applied to the diffraction of a plane wave of 
TM (z) for cylindrical conductive pallets of various sizes. In 
this modeling diffraction modal operators are used 
externally and internally in the case of invariance in z. At an 
angle of incidence of the wave at -90° are the maximum 
variations of electric fields on the slots. 
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Fig. 3. Real part of Gamma many external modes of Nθ = 64 
 

 
 

Fig. 4. Real part of Gamma many internal modes of Nθ = 64 
 

 
 

Fig. 5. Convergence |Ez| by the number of iterations 
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 Fig. 6. Normalized fields | Ez | on the surface of diffraction for: { } { }1 2 3 4, , , 155 , 25 ,25 ,155θ θ θ θ = − ° − ° ° °  
 

4. SECAND STRUCTURES OF 

CYLINDRICAL SLOT ANTENNAS 

4.1. Design 

In this section, the coupling between axial slots Fig. 
(9a) and radial slots Fig. (9b), on a perfectly conducting 
cylinder is evaluated based on separation distances angular 
θ0 and azimuthally h0 at the frequency 9 GHz. This 
example shows only a surface perfectly metallic cylinder 
C of infinite length. The equivalent circuit consists of two 
operators: An operator which defines the surface C and 
another that defines the space surrounding the surface C. 
At the surface of a perfectly conducting cylinder of 
infinite length in the z direction of radius r = 5.057 cm, 
there are two types of radiating slots rectangular (Fig. 9): 
 
• In the case of axial slots (Fig. 7) Lθ = 1.016 and Lz = 

2.032 cm, the field Eθ issued, only the TE01 mode at 
a frequency 9 GHz 

• In the case of radial slots (Fig. 8) Lθ = 1.016 and Lz = 
2.032 cm, the field Eθ issued, only the TE01 mode at 
a frequency 9 GHz 

 
4.2. Formulation  

The transmission coefficient S12 between the two 
waveguides is determined for a distance h0 and several 
azimuthally angular distances θ0. This transmission 
coefficient is derived from the projection on the wave 
propagation modes guide Equation 9: 
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With i denoting the component of the wave that 
occurs in the coupling (θ, z). 

For axial slots, means the generating function of TE01 
mode in the direction θ at emissions guide, means the 
same generating function as a guide at the same 
receiving and generating functions associated to the 
radial openings. Incoming and outgoing waves in the 
slots are projected on the basis of spectral modes of the 
waveguide such as Equation 10 and 11: 
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Where Equation 12: 
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TEx
nmg , TEy

nmg , TMx
nmg et TMx

nmg  are the proper functions of the 
modal basis of the guides in the Cartesian coordinate 
system, we consider y that it corresponds to the z axis 
and x axis rθ, the curvature being neglected as indicated. 

The normalization coefficients of the proper functions 
of the modal basis are Equation 13 to 15: 
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The structure consists of a perfectly conducting cylinder 

with two rectangular slots whose radiating operator 
diffraction space is special. The boundary conditions on the 
metal pixels remain unchanged. By cons at the junction of 
the rectangular waveguide and cylindrical perfectly 
conducting surface, the boundary conditions must take into 
account the reaction of the guide, this is achieved through 
the pixel mode. As these rectangular guides have metal 
walls, the last are electric walls. The TE and TM modes 
which are developed in the Cartesian system can be 
separated. Subsequently, we decompose the wave at the 
slots of the guides on a space station, which will consist of 
unit steps on the pixels rectangular guides along the 
directions θ and z. The boundary conditions on the perfectly 
conducting cylinder are taken into account by the operator 
of diffraction space by writing matrix as Equation 16: 
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where, feĤ  denotes the projector onto the pixels of the 

guide.  
m fe

ˆ ˆH H∪ Represents the entire surface of the 

cylinder. [ ] ozo
ˆ θ θχ and [ ]z ozo

ˆ
θχ represent the modal 

response guides positioned at the pixel level, in θ0 and 
h0 Equation 17 and 18: 
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The rectangular waveguide is characterized by its 

scattering operator in the modal domain by the 
following equation Equation 19: 
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After determining the coefficients of diffraction in 

the modal and space domain, we can apply the iterative 
process in this example to study the phenomenon of 
coupling between two radiating slots. Can be modalizes 
this antenna structure with two operators diffraction one 
in the modal and space domain, as shown in the wiring 
diagram in Fig. 10. 

Issue guides in the field are inferred from the 
expression of mode propagation in the spatial domain 
Equation 20 and 21: 
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The wave source used in the modeling, is defined in 

space as shown respectively (18) and (19) for both axial 
and radial slots Equation 22 and 23: 
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Explained the system of equations in (20) is applied 

in the iterative solution Equation 24: 
 

ˆ

ˆ
ext

o

B A

A SB A

 = Γ


= +

rr

r rr  (24) 



Beldi, S. et al. / American Journal of Applied Sciences 11 (8): 1426-1435, 2014 

 
 1432  Science Publications  AJAS 

 
 

Fig. 7. Normalized Fields |Ez| on the surface of diffraction for: {θ1, θ2, θ3, θ4} = {-120,-60, 60 and 120°} 
 

 
 

Fig. 8. Normalized Fields |Ez| on the surface of diffraction for: { } { }1 2 3 4, , , 105 , 75 ,75 ,105θ θ θ θ = − ° − ° ° °  
 

 
 (a) (b) 
 

Fig. 9. Structure with: (a) Axial apertures (b) Circum ferential apertures 
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Fig. 10. Modeling the structure with the formulation on the wave 
 

 
 

Fig. 11. Convergence curves for |S12| and its mean for an angular separation of 0° 
 

 
 

Fig. 12. Mutual coupling between axial slot antennas on a perfectly conducting cylinder, z0 = 3.81 cm 
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 Fig. 13. Mutual coupling between circumferential slot antennas on a perfectly conducting cylinder, z0 = 3.81 cm 
 

 
 

Fig.14. Mutual coupling between circumferential slot antennas on a perfectly conducting cylinder, z0 = 10.12 cm 
 
4.3. Results 

After applying the concept wave in the algorithm 
for the iterative process, the convergence of 
transmission coefficient is waiting after 317 iterations 
shows in Fig. 11, over a distance azimuth is h0 = 10.16 
cm and an angular distance is θ0 = 0°. 

The Fig. 12 below shows the modulus of transmission 
coefficient  |S12| dB depending on the angular distance θ0 

with azimuthally distance h0 = 3.81 cm. 

The two Fig. 13 and 14 below represent the modulus 
of transmission coefficient |S12| dB coupling between 
two rectangular slots for different radial distances 
azimuthally h0 as a function of angular distances θ0. 

5. CONCLUSION 

The iterative method WCIP is applied successfully 
in planar structures. In this study, this method has 
been extended to analyze electromagnetic problems 
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from the structures of cylindrical geometry. The 
diffraction coefficients in the modal domain and space 
have been explained in the cylindrical coordinate 
system. The method was applied to determine the 
diffraction on pallets cylindrical conductive. WCIP 
results and those previously reported in the literature 
are in agreement. This method seems highly 
appropriate to the use of planar structures, cylindrical 
and it can also achieve the electromagnetic problems 
associated with geometries of arbitrary shapes. 
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