
American Journal of Applied Sciences 11 (8): 1241-1249, 2014 
ISSN: 1546-9239 
© 2014 M. Thirumaran et al., This open access article is distributed under a Creative Commons Attribution  
(CC-BY) 3.0 license 
doi:10.3844/ajassp.2014.1241.1249 Published Online 11 (8) 2014 (http://www.thescipub.com/ajas.toc) 

Corresponding Author: Thirumaran, M., Department of CSE, Pondicherry Engineering College, Puducherry, India 
 

1241 Science Publications

 
AJAS 

BUSINESS LOGIC EVALUATION MODEL USING 
DEPENDENCY ANALYSIS APPROACH FOR SER-VICE 

INTEGRATION 

1Thirumaran, M., 2M. Jannani, 3P. Dhavachelvan, 4N. Balaji and 5M.S. Saleem Basha 
 

1,2Department of CSE, Pondicherry Engineering College, Puducherry, India 
3Department of CSE, Pondicherry University, Puducherry, India 

4,5Department of Computer Science, Pondicherry University, Puducherry, India 
 

Received 2013-04-12; Revised 2013-07-16; Accepted 2014-05-15 

ABSTRACT 

In order to extract and integrate the required business logics from the rapidly expanding business services 
accurately and efficiently, developers must fathom the entire service and must decide on the proper 
approach to merge them which is a complex and time-consuming task. So integrating the service logics 
automatically by scrutinizing the dependency relations existing on business rules, functions and parameters 
is a challenge in the current scenario which is the motivation of this study. In this study, we address this 
challenge by proposing a comprehensive framework for dynamic service integration which examines the 
service logics and integrates them dynamically as interoperability between the service logic is attained. The 
incorporation of Business Logic Evaluation Model in the presented framework employs a novel approach 
called dependency analysis which ascertains the dependencies among the service logics through Finite State 
Ma-chine and integrates from the possible dynamic service integration constructs such as union, 
composition, substitution and reducibility. The implication of this study is to allow enterprises to share and 
integrate the service logics even without developer’s intervention at a much better level. The 
implementation methodology and evaluation metrics for the proposed framework have also been elucidated. 
 
Keywords: Service Integration, B2B Collaboration, Business Logic Property Evaluation System, 

Computa-Tional Criteria  
 

1. INTRODUCTION 

Service integration has been designed to enable the 
organizations to attain integration maturity for 
integration between enterprise applications among 
partners. But the current market demand does not get 
satisfied with integrating applications or web services as 
a whole. It requires integrating service logics in business 
rule or functional level for different requisite 
automatically. Integration in this level has two main 
challenges. First, required logic need to be located and 
extracted from the whole service. Second, the retrieved 
logic must be integrated efficiently as interoperability is 
attained. It is a complex task which needs developers to 
understand the entire services and identify better way for 

integration. So the demand is to have a mechanized 
system to integrate the services dynamically. The 
framework proposed in this study responds to these 
challenges in three fold: Firstly, it formats the request 
and discovers required service logic through rule 
manager. Secondly, extracted logics are built as a 
complete web service and FSM is constructed by the 
Business Logic model to state the logic flow. Thirdly, it 
ascertains the right way for integration by analyzing 
dependency between the service logics through FSM. 
Finally, service logics are integrated using corresponding 
template and deployed in to server. This allows 
enterprises to share and integrate the services 
dynamically without developer’s intervention at any 
stage. Thus this can be used for any IT enterprises in 



Thirumaran, M. et al. / American Journal of Applied Sciences 11 (8): 1241-1249, 2014 

 
1242 Science Publications

 
AJAS 

modern service industry to reduce the threshold of 
development and operation of services. The objective of 
the proposed framework is to facilitate d-ynamic service 
integration which facilitates enterprises to share their 
service logic more sophistically and securely with their 
business network partners. 

2. RELATED WORKS 

The works pertinent to the focus of the paper have 
been elaborated. In order to realize efficient information 
sharing and interoperability among varying platforms or 
large-scale systems, (Hui-Fang and Guang-Feng, 2010) 
have presented an approach to SOA-based service 
integration which makes the service granularity flexible 
to change. It is shown that the flexibility and running 
efficiency of system are improved. Zhang and Ben 
(2009) have proposed an agent-based Web services 
integration model and designed the organization 
structure and interactive pattern of the multi-agents 
system in this model. Yong (2010) has employed 
Enterprise Service Bus (ESB) to share the resources 
between the organizations. Source control management 
system in the model facilitates enterprises to carve up the 
resources as stated by the SLA. Asuncion et al. (2010) 
have proposed a model for the separation of business 
rules from the business process of the integration 
solution. In an effort to bridge the gap between small and 
big companies, a Web Service-enabled B2B integration 
approach for SMEs has been developed by (Yan et al., 
2008). It provides a feasible and cost-effective solution 
for SMEs to take part in B2B collaborations by taking 
advantage of Web services characteristics and 
lightweight IT infrastructure for SMEs (Yan et al., 
2008). Rathore and Suman (2011) have proposed a QoS 
broker based model for dynamic web service 
composition which solves the problems associated with 
quality of web service. It also prevents the central 
repository from malicious service provider to publish 
wrong information. 

3. PROPOSED FRAMEWORK FOR 
DYNAMIC SERVICE INTEGRATION 

Long Proposed framework affords a secure and 
reliable platform for enterprises to carve up service 
logics among their partners. It aids in immense way to 
integrate the service logics embedded in various services 
to process the requisites. The framework accomplishes 
these tasks by uniting with Business rule and business 
logic management system. Business rule management 

system mainly here ascertains the required part of service 
logic from the complete service. Business logic 
management system fosters to do changes in the existing 
logic and molds it in to different forms. The framework 
through its various components it integrates the service 
logics and develops a complete novel service. Figure 1 
exemplifies briefly the working of proposed framework 
for dynamic service integration. Request analyzer in the 
top of the framework acquires the service request, slices 
it into numerous parts and exposes each part into 
standard format. Service locator discovers correlated 
services to process each part from service repository. 
Business Rule Manager manages the set of rules for the 
services in the service repository and provides powerful 
search and management tools that allow business users to 
locate the logic easily. Managing these business rules 
increases the company's flexibility by allowing tactical 
changes to be rapidly reflected in the operation of our 
enterprise applications. Using rule manager, new 
business rules can be added efficiently and existing 
business rules can be quickly uncovered from within 
code and annotated for better control. Tracing business 
rules ensures the consistency of operations when 
migrating to a new system and demonstrates compliance 
with laws, standards and regulations. Source manager 
locates the part of service logic discovered by rule 
manager and examines authentication and authorization 
control of the requestor to access the service through the 
service contract made between them. If the requestor 
passes all this preliminary tests, it opens the located 
service logic in editor and gives full control to business 
logic analyzer. Business logic analyzer then categorizes 
the located logic into business rule, function and 
parameters. Dependency analyzer analyzes the 
dependent rules, functions and parameters of each 
located rules and function through Rule Bound and 
Function Bound Analyzer. Dependency Analyzer 
analyzes the dependency through Finite State Machine 
(FSM). FSM simulator in the framework simulates FSM 
as its states represent rule, function and parameter and its 
transition represents the flow of the logic. Rule and 
Function Bound Analysis approach uses this FSM and by 
tracing transition it establishes the dependent parts in the 
logic. The determined rules, functions and parameters 
are extracted separately and new service is developed. 
Computability Engine then examines the computability 
criteria of the developed logic through the same FSM. It 
runs the FSM if it halts within a time limit, Property 
Evaluator in the framework evaluates the logic with 
various properties such as computability, completeness, 
accessibility and configurability which are discussed 
briefly in next section.  



Thirumaran, M. et al. / American Journal of Applied Sciences 11 (8): 1241-1249, 2014 

 
1243 Science Publications

 
AJAS 

 
 

Fig. 1. Change impact analysis framework 
 
If the performance result is good, generated WSDLs 
are placed in to some common work space and 
analyze the dependency between them from the given 
requisite. Integration adapter ascertains the exact 
construct from the available integration constructs 
such as union, composition, serialization and 
reducibility. Then new business logic is developed 
with the WSDLs in the common work space using 
corresponding template in right way as fulfilling the 
client’s requirement. Run time manager analyzes the 
performance of the newly developed logic through 
evaluation metrics such as timing, hardware counter, 

synchronization delay, memory allocation and tracing. 
According to the metrics formulated by performance 
analyzer, execution planner identifies efficient way to 
execute the logic and it troubleshoots if any part of the 
logic is performing poorly. Run time manager through 
run time Builder/Deployer builds and deploys the 
integrated logic in to server. Thus this framework 
integrates the service automatically without any 
developer’s intervention securely and reliably at low 
cost. Finally integration schema BLI schema is 
developed holding detailed information about the 
process and outcome of each component.  



Thirumaran, M. et al. / American Journal of Applied Sciences 11 (8): 1241-1249, 2014 

 
1244 Science Publications

 
AJAS 

4. PROPERTY EVALUATION 

At each step of service integration, system evaluates 
properties such as completeness, configurability, 
accessibility and computability through various 
components in the framework to examine proceeding 
process fulfills the given requirement absolutely. The 
evaluation process of each property is discussed in detail.  

4.1. Computability 

Desirable characteristics of business rule or business 
function to be a computable one must have exact 
instructions which are clearly defined (i.e., core business 
logic), finite in length, for the business rule or business 
function. Thus every computable function must have a 
finite program (logic) that completely describes how the 
function is to be computed (i.e., service computing logic). 
It is possible to compute the business function by just 
following the instructions; no guessing or special insight is 
required. If the business function is given a k-tuple x in the 
domain of f, then after a finite number of discrete steps the 
function must terminate and produce f(x). Intuitively, the 
business function proceeds step by step, with a specific 
rule to cover what to do at each step of the calculation. 
[Note: If the business function is decomposed into number 
of sub functions which maps with defined initial function 
and represented using composition and µ-recursion is said 
to be Primitive Business Function] Only finitely many 
steps can be carried out before the value of the function is 
returned. If the function is given a k-tuple x which is not 
in the domain of f, then the function might go on forever, 
never halting, then it is hold by some sensitive exception. 
Or it might get stuck at some point with some basic types 
of exception, but it must not pretend to produce a value for 
f at x. Thus if a value for f(x) is ever found, it must be the 
correct value and hence, the business function must be 
totally computable. It is not necessary for the 
computational engine to distinguish correct outcomes 
from incorrect ones because the logic of the function is 
always correct when it produces an outcome. The function 
must theoretically work for arbitrarily large arguments in 
order to avoid out of bound or out of range exception. 
The procedure is required to halt after finitely many 
steps in order to produce an output, but it may take 
arbitrarily many steps before halting. No time limitation 
is assumed. Although the function may use only a finite 
amount of storage space during a successful 
computation, there is no bound on the amount of space 
that is used. It is assumed that additional storage space can 
be given to the function whenever the function asks for it.  

4.2. Completeness  

The problem is to prove the business rules are 
complete and also to show the rules are semantically 
valid. When the correspondence between the syntax and 
semantics tighter, we would say the logic is complete. 
Generally the business logic consists of four major tuples 
such as rules, functions, parameters and dependency 
relation which are related as: 
 

[ ] [ ]

[ ( ) [ ]

r rules r f functions f

p parameter p r relation r

∃ → ∃∀ ↔
∃∀ ↔ ∃∀

 

 
Therefore any semantically valid argument can be 

captured by formal proof. The choices of rules are to be 
made for its completeness. It can be easily done when 
the system is in static phase. When it is done in runtime 
the conditional variable and iterative variable are also 
changes. When these variables are modified it brings out 
bugs in the logic. So these variables must be declared 
with certain range. The model verifies each rule, function 
and parameter in the logic is complete and computable 
within a certain limit.  

4.3. Configurability 

Configurability focuses on establishing and 
maintaining consistency of performance over the life 
cycle. It refers to all activities used to identify, control, 
ensure the change is being properly implemented and to 
report changes in the software to others who may need to 
know of them. This includes all activities related to 
version control and change control. Configurability in 
business process is a tool in anticipation of a change in 
management, here it is assumed that these changes have 
been identified and should be done in several changes 
in the sector to continue the business processes that can 
provide good benefits to the organization. To cope with 
changes in the structure of information in order to 
obtain a means of developing and addressing these 
changes will need a baseline or reference standards 
which work for the management of these products. 
Basically every system maintains information such as 
Security settings, authentication, authorization, logging 
and other parameters. Whenever changes have been 
made in the file, system verifies the changes are 
effective and can be adaptable. In dynamic service 
computing environment, frequently configuring service 
resources or devices according to the new requirements 
sometimes fall into error prone task. Automatically 
configuring the service with respect to the platform, 
environment, resources or devices is a mission critical 



Thirumaran, M. et al. / American Journal of Applied Sciences 11 (8): 1241-1249, 2014 

 
1245 Science Publications

 
AJAS 

job which has to be handled effectively. System logic is 
formed of a set of code segment ‘cs’  consist of set of 
system information for configuration and maintenance. 
Configuration logic is part of system logic points out set 
of logic related to configurability. It holds set of methods 
such as connectors, drivers, resource types, credentials, 
access methods, etc. If any modification done in the 
system logic, it should be verified that it is not affected 
the associated business logic and updation is trustworthy. 
To perusal the modification, initially system logic is 
expressed in first order logic form. Whenever 
modification is done, modified logic will be exposed in 
to FOL and compared with the original FOL. 
Configurability is meaningful only when original FOL 
and new FOL are same. Let CL and CL’ be 
configuration logic before and after modification, it 
verifies FOL (CL) = FOL (CL’). Also it verifies business 
logic output is same before and after modification. Let 
BL and BL’ be business logics before and after 
modification, it verifies BL∩BL’ = φ. For each 
modification it verifies code segment and examines the 
updation is fruitful. Modification is reliable only when 
resource modified before and after are of same type. i.e., 
database connection type is allowed to modify only when 
it is replaced with some other database connection type 
not with network connection type or some other. Let f(x) 
be original resource defined in the CL, g(x) be the 
modified one, it verifies f(x) ∩g(x) = c, some constant. 
i.e., the modification is allowed in CL only when 
resource types are same.  

4.4. Accessibility 

Accessibility is used to describe the degree to which 
a product, device, service, or environment is available to 
as many people as possible. Accessibility can be viewed 
as the “ability to access” and possible benefit of some 
system or entity. Accessibility is often used to focus on 
people with disabilities or special needs and their right of 
access to entities, often through use of assistive 
technology. Accessibility to business logic provides 
regulated access to the business resources which 
business experts and analyst need to perform their duties 
i.e., to change the policies and rules in the business logic 
of the service. In order to make changes in the business 
logic business experts and analyst must follow some 
common mechanism that permits management to specify 
what the business expert and the analyst can do i.e., 
which resources they can access and what operations 
they can perform on a system. In any organization 
planning to implement accessibility should consider the 
abstractions like policies, mechanisms. Accessibility 

policy should be brief which is highly recommended and 
set at high level. It must also specify how access is 
managed and who under what circumstances may access 
what information. The accessibility policies are enforced 
through accessibility mechanism and they are direct 
implementations of formal accessibility policy concepts. 
Finally translate a user’s access request in terms of a 
structure that a system provides for example, a simple 
table lookup can be performed to grant or deny access. 

The business logic gives detail information flow of 
the organization so to check the security of the business 
logic is very important task. The business logic is 
divided into rules, functions and parameters. A business 
rule is a statement that gives constrains to some aspect of 
the business that influence the behavior of the business. 
It focuses on the policies of the organization. It is 
essential for an organization in achieving its goals. The 
business rules cannot be broken down further. Business 
rules express business policy such as channels, 
location, logistics, prices and products. A function is a 
concept used in the organization architecture domain 
and represents what work is done by that organization, 
or business role. An organization can be designed as a 
set of business functions and usually the structure of the 
organization units within an organization is closely 
based on the business functions. Some of the functions 
are get, select, store, compare, return, display, catch, 
etc. The parameter consists of Access control types 
such as source, resource and environment; these should 
be associated with level of accessibility it requires. 
Initially business logic is sliced into business rule, 
function and parameter. The decomposed part will be 
exposed into first order logic and checks accessibility 
level of each part. Accordingly it allows to access. If it 
is authorized to modify, for each change verifies the 
modification is fruitful. 

5. METHODOLOGY 

The use of Dependency analysis methodology 
analyzes the dependency relation exist between the 
service logics though Finite State Machine (FSM). 
Figure 2 exemplifies the working of dependency analysis 
approach in which Business Logic (BL) Analyzer 
analyzes and decomposes the sited logic in to business 
rules, functions and parameters. Then it constructs 
business logic Model (M) as it reflecting the dependency 
between each business rule with its associated functions 
and parameters. From the logic model, Finite State 
Machine is constructed which normally annotates the 
transition from start state to end state.  



Thirumaran, M. et al. / American Journal of Applied Sciences 11 (8): 1241-1249, 2014 

 
1246 Science Publications

 
AJAS 

 
 

Fig. 2. Dependency analyzer 
 
Here it describes transition from each business rule to 
business functions, parameters and other business rules. 
FSM builder analyses the transition states of each FSM 
and identifies dependency between the two. The 
mechanism to identify dependency between the FSMs is 
discussed briefly with theorems and examples for each 
pattern in this section. 

5.1. Union 

Theorem: Suppose M1 = (Q1, Σ, q1, δ1, T1, H1, B) and 
M2 = (Q2, Σ, q2, δ2, T2, H2, B) accept business logics L1 
and L2 respectively. Let M be an turing machine defined 
by M = (Q, Σ, q, δ, T, H, B) where Q be the set of States 
of M, Σbe the input alphabet, q be the start state, δ 
transition function = Q x (T U {B}) → (Q U {H}) x (T U 
{B}) x {R,L,S} is a partial function (that is, possibly 
undefined at certain points), T be the tape symbol, H be 
the halt sate, B be the blank symbol, Q = Q1 X Q2, q0 = 
(q1, q2) and the transition function δ is defined by the 
formula δ((p, q), a) = (δ1(p, a), δ(q, a)) (for any p ∈ Q1, 
q ∈ Q2 and a ∈ Then If H = {(p, q)|p ∈ H1 or q ∈ H2}, M 
accepts the logics L1UL2. 

Proof: Since acceptance by M1 and M2 is defined 
in terms of the functions δ1

*  and δ2
*  respectively and 

acceptance by M in terms of δ*, we need the formula 

which holds for any x ∈Σ* and any (p, q) ∈ Q and can 
be verified easily by using mathematical induction. 
δ*((p, q), r) = (δ1

*(p, r), δ2
*( q, r)). A rule r is accepted 

by M if and only if δ*((q1, q2), r) ∈ A. If the set A is 
defined as H = {(p, q)|p ∈ H1 or q ∈ H2}, M accepts 
the logics L1UL2, this is the same as saying that δ1

*(q1, 
r) ∈ A1 or δ2

*(q2, r) ∈ A2, or in other words, that r ∈ 
L1U L2. Consider the requisite is to develop a service 
for search by file type and content type. Vistasearch is 
a book search service which contains business rules to 
search by file type, date of publication and language. 
Same way, Flora search is product search service 
which contains business rules to search by content 
type, price and brand name. So the required service 
can be built with the two rules existing in the vista and 
flora services. 

5.2. Composition  

Let us consider the composition of functions 
associated with the business rules of a particular domain 
and co domain with an example. Let f(), g() and h() be 
three functions and the logical relation of first two 
functions are described as f: A→B and g: B→C. This 
shows the relation between a domain and co domain. 



Thirumaran, M. et al. / American Journal of Applied Sciences 11 (8): 1241-1249, 2014 

 
1247 Science Publications

 
AJAS 

Then for any x ∈ A, f(x) is in the domain of g and it is 
therefore possible to derive as g(f(x)). More generally, if 
f: A→B, g: B1→C and the range of f is a subset of B1, 
then g(f(x)) is called composition of g and f and is 
written h = g o f. For example, the function h is defined 
by h(x) = sin(x2) is g o f, where g(x) = sin(x) and f(x) = 
x2. The function f o g, on the other hand, is given by the 
formula (sin x)2. When you compute g o f(x), take the 
formula for g(x) and replace every occurrence of x by the 
formula for f(x). It can also be verified by just tracing the 
definitions that if f: A→B, g: B→C and h: C→D, then 
the functions h o (f o g) and (h o f) o g from A to D are 
equal and they are computed as follows. For x ∈ A, first 
take f(x); then apply g to that element of B to obtain 
g(f(x)); then apply h to that element of C to obtain 
h(g(f(x)). We summarize this property of composition by 
saying composition is associative. Consider the business 
rules r1 = {f 1, f2…fn} and r2 = {g1, g2…gn} then g(f(x)) is 
called composition of rule r1 and rule r2 with their 
associated functions g and f and is written in general, h = 
g o f. The function h is the composition function which is 
defined as h(x) = g(f(x)). 

Let us show that if f: A→B and g: B→C are both 
one-to-one, then so is the composition g o f. To say 
that g o f is one-to-one means that whenever g o f(x1) 
= g o f(x2), then x1 = x2. But if g(f(x1)) = g(f(x2)), then 
since g is one-to-one, f(x1) = f(x2). Therefore, since f 
is also one-to-one, x1 = x2. Similarly, if f: A→B and g: 
B→C is both onto, g o f is also onto. For any z ∈ C, 
there is an element y∈B with g(y) = z, since g is onto 
and there is an element x∈A with f(x) = y, since f is 
onto. Therefore, for any z∈C, there is an x∈A with 
g(f(x)) = g o f(x) = z. Let the requisite is to develop 
tour reservation service to reserve for accommodation 
and travels automatically through this. This can be 
developed simply by composing reservation module 
of hotel and travels reservation services.  

5.3. Substitution 

Theorem: Business Logics are closed under 
substitution.  

Proof: Let L be a BL, BL ⊆Σ* (where Σ* be the 
business domain set which includes Rules, Functions, 
Business variables and Dependency Relation) and for 
each Rule r1 in Σ let BLRule1 be a complete BL. Let BL = 
L(G), G = (R, F, P, D) and for each Rule r1 in Σ let 
BLRule1 = BL(GRule1), where GRule1 = (RRule1, FRule1, PRule1, 
DRule1). Assume that R∩RRule1 = ∅, for all rules in Σ and 
RRule1∩RRule2 = ∅, for all Rule1 ≠ Rule2 in Σ.  

Construct G’= (R’, F’, P’, D’), where R’ = ∪rule1 in 
ΣRrule1∪ R, F’ = ∪function1 in ΣFfunction1, P’ = ∪param1 in 
ΣPparam1 ∪{Rule1→function1..x 
(Param1..y)|Rule1→Function1..x is in D, 
Rule1(Function1..x) = Drule1 for each Rule1 in Σ and 
Function1 (Param1..y) = Dfunction1 for each Function1 in 
Σ} Example: Consider the requisite is to extend an 
authentication service by adding encryption part into 
it. Let the security service containing required 
encryption part. Now this can be added to our service 
by extracting the required logic as explained in union 
method. The extracted logic can be substituted in to 
required place in our service. Now this extended 
service can be built and deployed.  

5.4. Reducibility 

If we can establish that one decision logic, L1, can 
be reduced to another, L2, or that having a general 
solution to L2 would guarantee a general solution to 
L1, then it is reasonable to say informally that L1 is no 
harder than L2. It should then follow that if L2 is 
solvable (or equivalently, if L1 is unsolvable). 
Reducing one decision Logic to another: If L1 and L2 
are decision logics, we say L1 is reducible to L2 
(written L1≤ L2) if there is an algorithm procedure that 
allows us, given an arbitrary instance I of L1, to find 
an instance F(I) of L2 so that for every I, the answer 
for the two instances I and F(I) are the same. 
Reducing one business rule to another: If r1 and r2 are 
business rules, over the global Rule Sets 1 and 2, 
respectively, we say that r1 is reducible to r2, denoted 
r1≤ r2, if there is a Turing-compatible function f: 
Σ1

*→Σ2
*  so that for any x∈Σ1

* . x ∈ L1 if and only if 
f(x) ∈ L2. For instance a login service requires 
username, password, date of birth, email id, account 
no, key as input to check authentication and now the 
requirement is to have a service that checks username 
and password only for authentication. The required 
service can be built by reducing business parameters 
in the existing service.  

6. RESULTS 

We have analyzed the performance of service 
integration by evaluating throughput, co-existence and 
maximum time required for service integration in 
various cases. The evaluation results of service 
integration for Enterprise A and Enterprise B is shown 
in Table 1. 



Thirumaran, M. et al. / American Journal of Applied Sciences 11 (8): 1241-1249, 2014 

 
1248 Science Publications

 
AJAS 

Table 1. Evaluation results of service integration 
Enterprise A Enterprise B  TRE  TSA TSC TSG TSD TSI 

Service ( S1)  Service (S2) Integrated service (ms) (ms) (ms) (ms) (ms) (ms)  

Quick search Advance search Semantic search 0.954 1.132 0.567 0.674 0.395 3.722  

r1: Search by file type r1: Search by content type S1(r1) U S2(r1) 
r2: Search by date of pub r2: Search by price 
r3: Search by language r3: Search by brand name 
Security service1 Security Service 2 Security service 0.876 1.354 0.678 0.800 0.563 4.271 
r1: Input validation r1: AES Encrypt-Decrypt S1(r2)os2(r2) 
r2: RSA encrypt- Decrypt r2: Confidentiality-SHA 

Online Shopping Mail Service Alert service 0.979 0.996 0.623 0.710 0.482 3.790 

r1: Manage items r1: Mailing S1(r2)-> S2(r2) 
r2: calculate amount r2: Alert msg to mobile (Calculate amt , if not  
  paid,send alert message) 
Registration Security service1 Registration service 0.785 1.046 0.637 0.659 0.475 3.904 
r1: Get Contact, Edu, r1: Input validation r3->S2(r1), r3 = R(S1(r1)) 
Personal info. r2: RSA encryption S1(r1) is reduced and it gets 
r2: Submit  contact and edu info only 
Billing service Banking service Online billing 0.8512 1.267 0.598 0.692 0.495 3.903 
r1: Manage customer info. r1: Credit and debit from S1(r4)o s2(r1) 
r2: Calculate bill corresponding account. 
r3: Send bill details to  r2: Send info to both 
customer 
r4: Pay amount 
Travel service Accommodation service Tour reservation 0.912 1.160 0.620 0.786 0.477 3.955 
r1: Get customer detail r1: Get Customer detail s1(r2) oS2(r2) 
r2: Reserve r2: Reserve Tour cancellation 
r3: Cancel r3: Cancel S1(r3) o S2(r3) 
Login service  Login service 0.865 0.899 0.712 0.683 0.491 3.650 
r1: Get username,pass,  r3->R(r1) 
cusid, regdate  r3 gets username and  
r2: Login  password only to  
  check authentication 
Medicine service Best doctor service E-Medical 0.785 0.963 0.617 0.672 0.483 3.520 
Gets a disease a r1; Gets a disease  S1(r1 &r2) U S2(r2) 
name as input name as input 
r2: Returns list of r2: Returns list of  
medicine name specialized doctor 
Translator search service search service 0.956 1.175 0.683 0.625 0.492 3.931 
r1: Gets a text and r1: Get search txt  S2(r2)->S1(r2) 
language to be translated r2: Return web page Searched web page 
r2: Returns text in the  S2(r2) is given as i/p  
required language  to S1(r2) with lang,  
  it returns web page  
  in corresponding language 

 
7. DISCUSSION 

This section analyses the evaluation results of service 
integration. The analysis of the performance of service 
integration has been done by evaluating the following. 
Throughput = Maximum number of integration systems 
can access a particular service logic in a given period of 
time = Number of invocations of a service logic/time-
taken. Co-existence = Maximum number of systems can 
access the web service for integration at a time is the 
total time required for each piece of framework to 
execute. Service integration time is computed by 
summing up rule extraction time, service alignment time, 

service compilation time, schema generation time and 
service deployment time. 

7.1. Service Integration Time  

Service Integration time is defined as the time 
elapsed to accomplish the whole integration process. In 
other words, it is the total time required for each piece of 
framework to execute. Service integration time is 
computed by summing up rule extraction time, service 
alignment time, service compilation time, schema 
generation time and service deployment time. Rule 
Extraction Time: Rule Extraction time (TRE) is defined 
as the time spent by the system to process the request, 



Thirumaran, M. et al. / American Journal of Applied Sciences 11 (8): 1241-1249, 2014 

 
1249 Science Publications

 
AJAS 

locate and extract the business rule. TRE = Time taken to 
process the Request (TR) + Time taken to Locate the 
rule (TL). Let n be number of rules and T be the time 
taken to identify the rule, then TL=n*T. Service 
Alignment Time: Service Alignment time (TSA) is 
defined as the time taken to retrieve the business logic 
for the located business rule and build it as a service. 
TSA= time taken to retrieve the logic (Tr) + Time taken to 
build it into a service(Tb). Let N be number of lines to be 
extracted and Te be time taken to extract one line, then 
Time taken to extract logic of one rule(Tel)=N*Te. Time 
taken to extract logic of n rule = ������ = 1, TSA = ������ 

= 1+ Tb. Service Compilation Time: Service Compilation 
time (TSC) is defined as the time required building and 
deploying each service. Let Time taken to start server=Ts 
and time taken to create war file for each server = Tw, 
then Tsc = Ts + ����� = 1. Schema Generation Time: 
Schema Generation time (TSG) is the time taken to 
identify the pattern to integrate the deployed services and 
to generate integration schema holding necessary 
information for integration process. TSG = Time taken to 
identify required template+ Time taken to generate 
schema. Service Deployment Time: Service Deployment 
Time (TSD) is the length of time taken to build and deploy 
the integrated service. Service Integration Time (TSI) = 
TRE+TSA+TSC+TSG+TSD. Ouyang and Chen (2008) 
have investigated a problem which minimizes the number 
of hops of web services while integrating these web 
services to finish a set of tasks called Minimum Hops of 
Service Integration Problem. It is proved that, when there 
are no precedence relationships between the tasks, the 
decision problem is NP-complete (Ouyang and Chen, 
2008). Here we have evaluated the effectiveness of 
proposed framework and various mechanisms used in it. 
We have developed set of services and integrated the 
service logics in various constructs to produce various 
outcomes. For each case, we have estimated the metrics 
and the results are shown in Table 1. 

8. CONCLUSION 

In this study we have presented a powerful framework 
for dynamic service integration which facilitates enterprises 
to share their service logic more sophistically and securely 
with their business network partners. The proposed 
framework integrates the required service logics robotically 
without developer’s intervention at any stage. Business 
logic model proposed in this study effectively identifies 
dependency between the service logics and helps to 
integrate potentially. Also the framework evaluates various 

properties such as computability, completeness, 
accessibility and configurability to precede the integration 
process efficiently. Mathematical methodology and 
algorithm for property evaluation are discussed in detail. 
Implementation techniques and metrics to evaluate the 
paper are presented briefly. Evaluation results are tabulated 
and pictured graphically. This proves that this would be a 
standard platform for service providers to share their 
resources sophistically and securely. However, the use of 
Finite state Machine makes the framework less suitable for 
handling concurrent processes which can be overcome by 
the use of tuning machines. The future work is to consider 
more properties other than the identified ones and ensure 
that the logics are interoperable and also to extend the 
proposed framework to a unified one for service discovery, 
composition and integration. 

9. REFERENCES 

Asuncion, C.H., M.E. Iacob and M.J.V. Sinderen, 2010. 
Towards a flexible service integration through 
separation of business rules. Proceedings of the 14th 
IEEE International Enterprise Distributed Object 
Computing Conference, (OCC’ 10). DOI: 
10.1109/EDOC.2010.10  

Hui-Fang, D. and X. Guang-Feng, 2010. A study and 
design of SOA-based service integration for logistics 
customs-clearance. Int. Symp. Parallel Distrib. Process. 
Applic. DOI: 10.1109/ISPA.2010.14  

Ouyang, W. and M.L. Chen, 2008. An optimal web services 
integration using greedy strategy. Proceedings of the 
IEEE Asia-Pacific Services Computing Conference, 
(SCC’ 08). DOI: 10.1109/APSCC.2008.174  

Rathore, M. and U. Suman, 2011. A quality of service 
broker based process model for dynamic web 
service composition. J. Comput. Sci., 7: 1267-1274. 
DOI: 10.3844/jcssp.2011.1267.1274 

Yan, W.J., P.S. Tan and E.W. Lee, 2008. A web 
services-enabled B2B integration approach for 
SMEs. Proceedings of the IEEE International 
Conference on Industrial Informatics, Jul. 13-16. 
DOI: 10.1109/INDIN.2008.4618206  

Yong, L., 2010. Study on geography information service 
semantic integration method based on business tem-
plate. Proceedings of the International Conference 
on Computer and Communication Technologies in 
Agriculture Engineering, (TAE’ 10). DOI: 
10.1109/CCTAE.2010.5544321  

Zhang, H. and K. Ben, 2009. Agent-based web services 
integration model. Proceedings of the 1st International 
Conference on Information Science and Engineering, 
(ISE’ 09). DOI: 10.1109/ICISE.2009.217  


