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ABSTRACT 

In a Mobile device, apart from the battery and memory, the execution time is the key design constraint for 
executing the scripts of complex and unstructured JavaScript in the web-browser.  Abstract Syntax Tree 
(AST) is a better option for mobile code as it is compiled only once. Due to very recursive nature of the 
AST, its traversal is going to be inherently recursive. Since use of recursion is out of scope, therefore the 
ultimate decision would be to emulate the recursive behavior using a set of stacks. We design an algorithm 
for a non recursive AST based stack, a lightweight interpreter which interprets and evaluates the complex 
scripts of JavaScript in the allocated time period. 
  
Keywords: Non-recursive Stack for Mobile Device, Script Interpreter, JavaScript Interprete, JavaScript Compiler 

1. INTRODUCTION 

In the Script Engine architecture, the compiler 

component generates the AST and Symbol Tables (ST). 

The interpreter executes the AST tree with reference to 

ST. The other possible alternative is that the compiler 

generates the byte-code. Traditional byte-code 

generation involves 2 stages of compilation. At first, it 

generates AST and then byte-code from the AST. Many 

times, it has been observed that by using the jQuery 

libraries of JavaScript, the scripts are compiled but not 

executed. Considering the memory limitation of the 

mobile devices and the limitation of execution, it is 

preferable to generate AST node and execute as and 

when required rather than converting all AST nodes to 

respective byte-codes. However AST node is recursive in 

nature which can block the high priority mobile 

management operations such are “CALL” and “SMS”. 
In this study we have designed the non-recursive 

AST based stack algorithm to interpret the JavaScript 
in a predefined time period with asynchronous 
manner. The data structure of the algorithm has been 
defined in Data Structure section. In System 
Architecture section we define interpreter architecture. 
The evaluations of AST from the instruction stack are 

evaluated in Algorithm section. The detail asynchronous 
behaviours are discussed in Asynchronous Behaviour 
section. In evaluation section we have verified our 
algorithm with test scripts of ECMA objects from 
OMA-ESMP test cases (Open Mobile Alliance-ECMA 
Script Mobile Profile. We have also ported the script 
engine with devices (a) Moto RAZR v3 (brew 3.15), 
(b) Qtopia (Linux OS), (c) Samsung (Windows) and 
(d) Nokia Series (Symbian OS). 

A lot of research works have been conducted relating 
to interpreters. Ortiz (2008) presents S-expression 
Interpreter Framework (SIF) based on the interpreter 

design pattern and written in the Ruby programming 
language in order for language design and 
implementation, which can be used for demonstration of 
advanced language concepts and various programming 
styles. A comparison of two versions of an interpreter for 
Java programming language is performed in the study of 

Hills et al. (2011), where the authors chose the versions 
such as visitor pattern and interpreter pattern and the 
comparison is carried out with respect to maintenance 
and execution efficiency of implementation of Java 
programming language. Design of an interpreter with a 
virtual hardware management facility is detailed by 

Diessel and Malik (2002), which overcomes the Field-
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Programmable Gate Array (FPGA) resource limitations 
and enables implementation of large systems with small 

FPGA chips. Design and implementation of a query 
language interpreter with object oriented specification 
for bibliographic information retrieval is presented by 
Fisl et al. (1998) that uses an internet client application 
in Java programming language. Effect of mis-predictions 
during execution of the indirect branch instructions on an 

interpreter is addressed by Wien (2003). Effects of 
“recursive make” related to UNIX related programs are 
discussed by Miller (2008). Strotz and Wold (1960) 
provide a synthesis of recursive vs. non-recursive 
systems with respect to interpretability of a parameter. 
Typed Command Language (TyCL) an implementation 

of the Tcl language that is aimed at producing better 
results during compilation, is presented by Buss 
(2011). A debuggable interpreter design pattern is 
included in the work of Vrany and Bergel (2009) that 
specifies the coexistence of multiple debuggers in 
order to accept new debugging operations and at the 

same time being easy to implement. The calculational 
design of a generic abstract interpreter for a simple 
imperative language is detailed by Cousot (1999). 

2. PROBLEM DEFINATION 

The objective of the script interpreter is to design the 

JavaScript interpreter for embedded devices as per the 

European Computer Manufacturers Association (ECMA) 

by reducing memory consumption, reducing CPU cycle 

consumption, generic in nature, executing in an allocated 

time period and ease of portability to any devices. 

JavaScript is cross platform, object oriented, lightweight 

and standalone. The choice of stack-based interpretation 

comes not out of choice but out of compulsion. For a 

typical platform like feature phone where stack size and 

memory available are low, features like recursion are 

proscribed. Since AST based interpretation is chosen, due 

to very recursive nature of the AST, its traversal is going 

to be inherently recursive. But since use of recursion is out 

of scope, therefore the ultimate decision would be to 

emulate the recursive behavior using a set of stack.  

The idea is to emulate the way recursion really works 

in the existing machine architectures. It involves usage 

of a Runtime Stack in the Data Segment. The Runtime 

Stack consists of Stack Frames where each stack frame 

refers to a function call. Similar behavior has to be 

emulated in the form of a stack using linked-list; we can 

use the same name Runtime Stack for this. 

Again, traversing the AST will be a typical post-order 

traversal, which also must be implemented without 

recursion, for which we may use a stack, which we will 

call as Instruction Stack. At the same time, we need to 

save the Environment or say Execution Context in 

typical compiler language, which gives the current state 

of the interpretation and other details. As we move from 

one execution context to other, we may require to push 

them one after the other in a stack called Execution 

Stack, so that we can come back to the previous 

execution context with a mere pop. 

3. SYSTEM ARCHITECTURE 

The Script Interpreter’s typical states and the 

transitions between states are represented in Fig. 1. The 

Script Engine Controller invokes the script interpreter on 

request from the consumer. The script interpretation 

occurs in the context of the consumer. Script 

Interpretation occurs on need basis, i.e., as and when the 

consumer need to invoke the script interpreter is invoked 

and the script is executed in the form of interpretation. 

The word interpretation assumes that the script is already 

compiled, but that may not often be the case. There will 

be instances where the interpreter has to invoke the script 

compiler to compile the scripts and then interpret.  

The various states of the interpreter are: 

3.1. Uninitialized  

The Script Engine is yet to initialize this Component. 
This is when the consumer is yet to make a request to the 
Script Engine. 

3.2. Initialized 

The Script Engine initializes the script interpreter 
component by an ‘initialize’ call. The interpreter gets 
initialized along with its sub components. The 
precondition is that the script compiler should be 
initialized. Initialization mainly refers to the allocation of 
various resources such as memory, coupling 
(registration) among various components. 

3.3. Interpreting  

The script interpreter is invoked by an ‘interpret 
AST’ call by the Script Engine. So interpreter needs to 

interpret a script function. The function may be an 
internal one (within the script interpreter context) or it 
can be an external one (within consumer context). 

3.4. Connected to Consumer  

This is the most important state in the script 
interpreter State transition scenario. This state is a 
resultant of a ‘connect’ call from the Script Engine, where 
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the SIP runs in the context of the Consumer, or typically 
executing a functionality defined/stated by the consumer. 

3.5. Suspended 

For a typical phone environment, this is a state ought 
to be considered. The Consumer via Script Engine forces 
the SIP with a ‘Suspend’ call, when the consumer itself 
goes for a Suspension state. At this point of time, the SIP 
saves the current state in persistent memory and remains 
suspended until resumed further with a ‘resume’ call to 
go back to its previous state. 

3.6. Disconnected  

The SIP is out of the context of the Consumer with a 
‘Disconnect’ call. Now the SIP can either go to 
initialized state with an ‘operation over’ call or to a 
stopped state with a ‘Reset’ call. 

3.7. De Initialized  

This is the end state of the SIP. Essentially the SIP is 
de-initialized at this point. De-initialization would mean 
freeing up resources, decoupling. 

3.8. Algorithm  

The Script Interpreter (SIP) is a component of the 

Script Engine. The main function of SIP is as follows: 

• Interprets the Abstract Syntax Tree (AST) generated 

by the Script Compiler, using following operations: 

• Non recursively Traverses the IST (Interpretive 

Syntax Tree (AST+ST)) in appropriate order 

• Evaluate the AST Nodes/Sub trees using a stack 

in synchronization with the Symbol table and 

Scope information 

• Fires execution commands for the Consumer 

• Handles event from the Consumer 

• The Script Interpreter works with the Interpretive 

Syntax tree i.e., we can say annotated Abstract 

Syntax Tree (AST) with Symbol Table (ST) 

information. The IST is optimized for efficient 

traversal while interpretation and is perfectly 

semantically checked 

 

 
 

Fig. 1. Script interpret state diagram 
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Fig. 2. A typical AST and its traversal 
 
As the stack-based non-recursive interpretation 

method is chosen for the AST traversal, the AST 
traversal method plays a crucial role during the 
interpretation. For simple arithmetic expressions, 
normally the post order method is preferred, where the 
rule is to visit the root node at the end, after visiting 
left node followed by the right. Post-order traversal 
holds good as long as it’s a simple arithmetic 
operation, but when it comes to the AST of a structured 
programming language like Java Script with so many 
programming constructs such as for, while, try-catch, a 
normal post-order traversal won’t fit to the purpose. 
Hence, a modified post-order traversal method has been 
conceived. Here we describe about the way the AST is 
traversed for different types of programming constructs.  

Consider the following expression: 

 

x = b + ( c * d ) – e ; b++ 
 
From Fig. 2, the two statements form a statement list, 

one starting with the first node with element “=” and the 
next node with element “++”. Clearly “=” being a binary 
operator contains two children “x” and “+” and “++” 
being a unary node contains a single child “b”. Similarly 
“+” is a binary operator containing two children “b” and 
“-”, “-” is binary operator containing two children “*” 
and “e”  and “*” is also a binary operator containing two 
children “c” and “d”. 

For a traversal, a stack called “Instruction Stack” is 
used. This single stack is responsible for holding the 
temporary AST nodes that are pushed and also the 
evaluated result node. 

Table 1 shows a simple expression evaluation using 
an Instruction Stack (IS) to hold the nodes and temporary 
results. The evaluation logic depends on the type of 
programming construct being evaluated. Instruction 
Stack is the key to the execution of the traversal; keeping 
the information about the way a node is pushed onto the 
Instruction Stack helps in the correct evaluation of the 
AST. More constructs and their traversal methods are 
discussed later. 

3.9. The Instruction Stack 

Each of the elements in the instruction stack is 
represented in Fig. 3. The entries of each element are the 
AST Node and the way it's pushed to the stack. The way 
of pushing is important from the AST traversal point of 
view. In order to facilitate the C Array implementation, 
the stack top is chosen to be equal to 0 in the beginning. 
On pushing, the stack top is incremented by one; making 
the first element corresponding to zero-th element in the 
Array. The Max Stack Size can be configured depending 
on the width of a typical expression. 

The structure of Instruction stack is as follows: 
 
typedef struct _st_instruction_stack 
{ 
 AST *ASTNode;  
 short int  uhPushMethod ;  
 }INST_STACK[MAX_STACK_SIZE] ; 

The AST root node of the script block is first pushed 
to the instruction stack before the traversal. The traversal 
algorithm construct is as follows: 

PROCEDURE  START_INTERPRETE 
   (INST_STACK  *IS, TIME 
TIME_DURATION) 
{ 
 START_TIME = GET_THE_SYSTEM_TIME 
( ) ; 
  while (hTop>0&&TIME_DURATION 
> 0 ) 
 { 
  END_TIME = 
GET_THE_SYSTEM_TIME () ; 
  STACK_POP ( IS,  &ast, &pushType) 
; 
  N_NODE= GET_NEXT_NODE(ast); 
  If (IS_LIST_TYPE( ast->eNodeType 
)) 
  { 
  STACK_PUSH(IS, N_NODE, 
E_PUSH_AS_ROOT); 
  } 
  If( IS_LEAF_NODE(ast-
>eNodeType)) 
  { 
 PROCESS_LEAF_NODE (ast, pushType); 
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Table 1. Evaluation of expression using instruction stack 

 Table column head 

 ---------------------------------------------------------------------------------------------------------------------------------- 

AST node Popped result stack Push with description 

      (=) = “=” is initially pushed to the IS.   

  (=)--(++) x (As Left) On popping “=”, its observed that the 

   /    = (As Root) next statement to it is need to executed, after the 

  /     ++(As Root)  execution of “=”. Hence “++” is pushed as Root. 

 (x)   Now the node under consideration i.e. “=”    

  is having a left child. Upon seeing the 

  left child, the left child is pushed as 

  Left after pushing the “=” node again back to the IS. 

 (=)--(++) + (As Right) On popping “x” its observed that it’s a leaf node, 

  /   \ X  (As Left) which means that the node is a left hand 

 /     \ = (As Root) expression for its parent. Now when such 

(x)     (+) ++(As Root) a Left Leaf is popped, the IS is peeped to get its 

  parent. If the parent is having a right child 

  (It MUST have) and if it’s a non 

  leaf then it’s pushed to the IS, 

  after the node under consideration “x” is pushed again.     

 (=)--(++) b   (As Left) Similar to Step 2 

 /   \ + (As Right) 

/      \ X  (As Left) 

(x)   (+) =  (As Root) 

        / ++(As Root) 

      / 

   (b) 

 (=)--(++)    B -  (As Right) Similar to Step 3 

/      \ b   (As Left) 

/      \ + (As Right) 

(x)    (+) X  (As Left) 

         /  \ =  (As Root) 

        /    \ ++(As Root) 

      (b)  (-) 

 (=)--(++) *    (As Left) Similar to Step 2 

 /    \ -  (As Right) 

/       \ b   (As Left) 

(x)    (+) + (As Right) 

         /  \ X  (As Left) 

        /    \ =  (As Root) 

  (b)     (-) ++(As Root) 

             / 

            / 

          (*) 

 (=)--(++) c    (As Left) Similar to Step 2 

  /   \ *   (As Left) 

 /     \ - (As Right) 

(x)    (+) b   (As Left) 

         /  \ +(As Right) 

        /    \ X  (As Left) 

    (b)    (-) = (As Root) 

             / ++(As Root) 

            / 

          (*) 

          /  \ 

         /    \ 
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Table 1. Continue 

(c) (d) 

    (=)----C c*d(As Left) Here’s a deviation to Step 3, since its found that c’s 

(++) - sibling i.e. the right child “d” is a leaf node. 

    /   \ (As Right) Now “c” is already evaluated as a leaf node, 

   /     \ b   (As Left) and we have got its sibling as a leaf node as well. 

 (x)    (+) +(As Right) Hence the operation “*” (c and d’s parent ) 

       /  \ X  (As Left) is to be carried out using these 

      /    \ = (As Root) two leaf nodes “c” and “d”. 

    (b)    (-) ++(As Root) 

           /  \ 

          /    \ 

        (c*d)  (e) 

  So c is popped, followed by its parent “*” 

  and multiplication operation is carried 

  out on left leaf node “c” and “*”’s right node “d”. 

  The result c*d is formed as leaf node is 

  again pushed the way “*” 

  was pushed i.e. as a Left 

 (=)---(++) c*d c*d-e (As Right) Similar to Step 8 

     /   \ b   (As Left) 

    /     \ + (As Right) 

(x)    (+) X  (As Left) 

         /  \ =  (As Root) 

        /    \ ++(As Root) 

       /      \ 

     (b)   (c*d-e) 

      (=)----(++) c*d-e b+c*d-e (As Right) Here the node “c*d-e” popped is a Right 

     /   \ x  (As Left) leaf node, if this is the case then its parent must 

    /     \ =  (As Root) be a left leaf node, here in this case it’s “b”, 

(x) ++(As Root)   which is popped as the left hand expression,   

(b+c*d-e)  now again the parent ( which must be a binary 

  operator) is popped. In this case its “+”. 

  Hence addition operation is done with 

  one operand as the left leaf node “b” 

  and the other the right leaf node “c*d-e”. 

  The result b+c*d-e is pushed the 

  way “+” was pushed 

      (++) b+c*d-e x’ ( As Root) Similar to Step A 

 ++(As Root) Here the operation “=” is carried out 

  using x as the left hand Expression, 

  and b+c*d-e as the right hand expression. 

  The result x’ 

  (whatever assigned) is pushed again 

  to IS the way “=” was pushed 

 (++) x’++(As Root) The node popped was pushed as Root 

  and it’s a leaf node, so its ignored. 

  ….. 

  Repeat Step 1 

 
} 
  else 
  { 
   
 PROCESS_NON_LEAF_NODE (ast); 

  } 
  TIME_DURATION := 
 TIME_DURATION  
    –  (END_TIME –  
START_TIME);  
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Fig. 3. Instruction stack elements 

 
 } 
} 

PROCEDURE IS_LIST_TYPE (E_AST_TYPE 

eNodeType) 

{ 

 If (eNodeType == E_CONSTLIST || 

eNodeType == E_UNARYLIST ||  eNodeType == E_ 

BINARYLIST || eNodeType == E_TERNARYLIST) { 

  return TRUE ; 

 } 

 return FALSE ; 

} 

PROCEDURE  IS_LEAF  (E_AST_TYPE

 ENODETYPE  

{ 

 Switch (ENODETYPE) 

 {  

    case E_ CONST : 

    case E_NUMBER:  

   case E_STRING: 

   case E_RESULT:  

    case E_REG_EXP :  return TRUE; 

    default:  return FALSE ; 

 } 
} 
PROCEDURE  STACK_PUSH  
   (AST *ast, E_PUSH_TYPE  
pushType) 

{ 

 If(hTop  < MAX_STACK_SIZE) 

{ 

  IS->ast = ast ; 

  IS-> uhPushMethod = pushType; 

  hTop++ ; 

 } 

 else { 

  sipError(); 

  exit (1); 

 } 

} 

PROCEDURE  STACK_POP  

  (AST **ast, E_PUSH_TYPE  

*pushType) 

{ 

 If(hTop  > -1) 

{ 

  *ast =  IS->ast ; 

  *pushType = IS-> uhPushMethod ; 

   hTop-- ; 

 } 

 else { 

  sipError(); 

  exit (1); 

 } 

} 

PROCEDURE  STACK_PEEP  
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   (AST **ast, E_PUSH_TYPE  
*pushType) 
{ 
 If(hTop  > -1) 
{ 
  *ast = IS->ast; 
  *pushType = IS-> uhPushMethod  
 } 
 else { 
  sipError(); 
  exit (1); 
 } 
} 
PROCEDURE PROCESS_NON_LEAFNODE  
   (AST  ASTNODE, 
E_AST_TYPE  ASTTYPE)      
{ 
 switch (ASTTYPE) 
 { 
  case 
E_AST_SWITCH:SWITCH_NODE (ASTNODE) ; 
  case E_AST_TRY 
 :TRY_NODE(ASTNODE) ;  
  case E_AST_WITH 
 :WITH_NODE(ASTNODE) ; 
  case E_AST_FORIN
 :FORIN_NODE(ASTNODE) ; 
  case E_AST_FUNCTION: 
FUNCTION_LIT(ASTNODE) ;  case 
E_ATYPE_CATCH: 
  case E_ATYPE_REG_EXP : 
  case E_ATYPE_DOT_OPR : 
  default: 
  { 
   if ( 
IS_BINARY(ENODETYPE)) 
   { 
   
 PROCESS_BINARY_NODE (ASTNODE); 
   } 
   else if ( 
IS_AST_UNARY_TYPE(ENODETYPE)) 
   { 
   
 PROCESS_UNARY_NODE (ASTNODE); 
   } 
   else) 
   { 
 PROCESS_TERNARY (ASTNODE ) ; 
   } 
  }  
 } 
} 

PROCEDURE PROCESS_LEAF_NODE  
 ( AST *ast , E_PUSH_TYPE  
HOW_IT_WAS_PUSHED ) 
{ 
 switch (HOW_IT_WAS_PUSHED) 
 { 
  case 
E_PUSH_AS_FUNCTION_EXPR_RESOLVED: 
   FUNCTION_EXPR (  ast ) ; 
  break ; 
 case 

E_PUSH_AS_FUNCTION_NAME_EXPR: 
   FUNCTION_NAME_EXPR( 
ast  ) ; 
  break ; 
 case E_PUSH_AS_LEFT: 
 PROCESS_LEFT_LEAF_NODE ( ast ) ; 
  break ; 
 case E_PUSH_AS_RIGHT: 
  
 PROCESS_RIGHT_LEAF_NODE ( ast ) ; 
  break ; 
 case E_PUSH_AS_COND: 
   CONDITION_EXPR( ast ) ; 
  break ; 
 case E_PUSH_AS_ROOT: 
   RETURN_VALUE (ast-
>pbBranch); 
 - 
- 
default: 
 } 
} 
 
3.10. Processing a Left Leaf Node 
 
PROCEDURE PROCESS_LEFT_LEAF_NODE  
     (AST 
*LEFT_NODE); 
{ 
 STACK_PEEP (&PARENT_NODE, 
&PARENT_PUSHED); 
 STACK_GET_RIGHT_CHILD 
   (&PARENT_NODE, 
&RIGHT_NODE); 
 If (IS_PARENT_NODE_BINARY_TYPE 
(PARENT_NODE)) 
  { 
  If (IS_LEAF_NODE 
(&RIGHT_NODE)) 
  { 
   OPERATE (PARENT_NODE-
>eNodeType, 
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    LEFT_NODE,  
   RIGHT_NODE, 
    &RESULT_NODE); 
  STACK_PUSH (RESULT_NODE, 
PARENT_PUSHED); 
  }else 
  { 
     STACK_PUSH (LEFT_NODE, 
PUSH_AS_LEFT) ; 
     STACK_PUSH (RIGHT_NODE, 
PUSH_AS_RIGHT); 
  } 
 }else{ 
  - 
  - 
 } 
} 

 

On Popping the left leaf node, its parent is checked. 

Note that we can assert that its parent must be a non-

block binary node. Now we have to check if the parent is 

having a right child or not. If the right child is a leaf one, 

then both left and right nodes are ready to be evaluated 

and are the two operands for the parent operator. In that 

case, the parent is popped and the operation is performed 

using two operands i.e. left-leaf and right-leaf nodes. The 

result of the operation is again pushed to the stack in the 

way the parent is popped. If the right child is a non-leaf 

node, then the current left leaf node is pushed again and 

the right child is pushed as PUSH_AS_RIGHT. 

3.11. Processing  Right Leaf Node 

PROCEDURE  PROCESS_RIGHT_LEAF_NODE  
  (AST *LEFT_NODE); 
{ 
 STACK_POP (&LEFT_NODE, 
&LEFT_PUSHED); 
STACK_POP (&PARENT_NODE, 
&PARENT_PUSHED); 
If 
(IS_PARENT_NODE_BINARY_TYPE(PARENT_NO
DE)) 
{ 
  OPERATE(PARENT_NODE->eNodeType,  
 LEFT_NODE,  

RIGHT_NODE,  

 &RESULT_NODE); 

  STACK_PUSH (RESULT_NODE, 

PARENT_PUSHED); 

 }else{ 

  - 

  - 

 } 

} 

 

On popping the right leaf node, we can assert that it 

must have been pushed after pushing its left sibling. In 

that way, the stack order must be such that the operator 

node is on the top of it followed by the right node on top 

of the left node. Once the right leaf node is popped, we 

can simply perform two pops to get the left leaf sibling 

and its parent operator node respectively. Now, the 

operation can be performed and the result is pushed the 

way the parent operator node was popped. 

3.12. Asynchronous Behavior of Script 

Interpretation 

Case 1: From a feature-phone’s perspective, the 

execution of the Java Script by the script engine cannot 

be blocking. It must work in a suspend-resume manner. 

Suspension of the execution might come when a high 

priority task like a phone-call has to be addressed and 

hence, suspending the execution process at some point 

say ‘X’. When the control is reverted back to the script 

engine application, it has to resume from the point X 

where we suspended.  

Case 2: Not only in the case of priority tasks, but also 

in case of long loops or say infinite loops in the script, 

we need to suspend the application because execution 

cannot go infinitely as it will exhaust battery power and 

other resources. So identification of such infinite loops is 

critical to the smooth interpretation of the script.  

As we discussed in the previous section that script 

interpretation involves traversing an AST in a non-recursive 

manner using a set of logical stacks like Execution Context 

Stack, Instruction Stack. The stack information form a 

logical context for a given script execution.  

For case 1, the logical context has to be saved when 

the execution undergoes suspension and it has to be 

retrieved on resumption. Saving the stack information 

will give the advantage in terms of knowing the current 

AST node that was under execution just before 

suspension. That’s clearly the top of the stack. So 

resumption of the interpretation will follow naturally 

since the next node information that is to be processed is 

already in the stack. 

For case 2, every time, after execution of one 

instruction form the stack, will be compared with the 

allocated time period. If the duration of time is less, it 

will continue for the next instruction, else will suspend 

the execution and wait for the next time interval. 



Sambit Kumar Patra et al. / American Journal of Applied Sciences, 10 (4): 403-413, 2013 

 

412 Science Publications

 
AJAS 

Table 2. Instruction push type 

Push Type Syntax  

E_PUSH_AS_SWITCH_CONDITION Switch  
E_PUSH_AS_SWITCH_CASE_BODY Switch-

CaseE_PUSH_AS_CASE_CONDITION Case with Condition 

E_PUSH_AS_SORT Sort 
E_PUSH_AS_DO_STMT Do-

StatementE_PUSH_AS_TRY Try 

E_PUSH_AS_CATCH Catch 
E_PUSH_AS_THROW_EXPR Throw-Expression 

E_PUSH_AS_RETHROW_EXPR Rethrow-Expression 

E_PUSH_AS_REPLACE Replace  

E_PUSH_AS_UNARY_EXPR Unary-Expression 

E_PUSH_AS_FUNC_NAME_EXPR Function-Name-Exp 

E_PUSH_AS_FUNC_EXPR_RESOLVED Function-Expr  

E_PUSH_AS_ARG_LIST_EVALUTED Function-Argument  

E_PUSH_AS_RETURN Return Statement  

E_PUSH_AS_NEW_CALL New Call  

E_PUSH_AS_WITH With Statement  

E_PUSH_AS_FORIN_LEFT FOR-IN Statement 

E_PUSH_AS_CALLBACK Callback Funtions 

E_PUSH_AS_FORIN_RIGHT FOR-IN Statement 

E_PUSH_AS_MAP MAP Statement  

E_PUSH_AS_LABEL_EXECUTED Lable Statement  

E_PUSH_AS_WITH_ARGUMENT With Arguments  

E_PUSH_AS_EVAL Eval Statement  

E_PUSH_AS_TRY_CATCH TRY with Catch  

E_PUSH_AS_THROW Throw Statement  

E_PUSH_AS_CATCH_PREV CATCH Statement 
E_PUSH_AS_FORIN_NEXT FOR-INNext 

E_PUSH_AS_SET_TIMEOUT_STMT Set-Time-Out 
E_PUSH_AS_SUSPENSION Suspension 

E_PUSH_AS_NEW_AFTER_CALL New after Call  

E_PUSH_AS_TRY_END Try-End Statement 
E_PUSH_AS_LEFT_PRIMITIVE Left Primitive 

E_PUSH_AS_RIGHT_PRIMITIVE Right Primitive  

E_PUSH_AS_DYN_COMP_INLINE Inline Script  
E_PUSH_AS_FOREACH Foreach  

E_PUSH_AS_DEFAULT_RETURN Default Return   

E_PUSH_AS_NEW_RETURN New Return   
E_PUSH_AS_FINALLY Finally Statement  

E_PUSH_AS_EVAL_NODE eval Statement  

E_PUSH_AS_DELETE Delete Statement  
E_PUSH_AS_TYPEOF Type-of Statement 

E_PUSH_AS_CALL Call Statement  

E_PUSH_AS_APPLY Apply Statement  

E_PUSH_AS_LEFT_DOT DOT-Operator   
 
Table 3. Execution time 

Objects in MS Execution time  

Array 610 
Date 62 
Error 735 
Math 562 
Reg Exp 1985 
String 1265 
Total (in MS) 5219 

 
 
Fig. 4. Scripts Vs execution time 

 

3.13. Evaluation 

Expect LEFT, RIGHT, ROOT, as per the ECMA 

specification, we have added different instruction type as 

follows (Table 2). 

We have downloaded the test scripts of ECMA 

objects from OMA-ESMP test cases (Open Mobile 

Alliance-ECMA Script Mobile Profile). The evaluation 

time has been calculated (Table 3) considering  the 

interval time of 10 milliseconds and other constraints. 

Figure 4 represents the scripts with the respective 

execution time.  

4. CONCLUSION 

This study presents a non recursive algorithm for   the 

JavaScript. We have tested and verified this algorithm 

with top10 Alexa web-sites in different mobile devices. 

It executes all the scripts of the web-sites without 

blocking any mobile operation. We have ported, tested 

and verified our script engine with low end devices such 

are Moto RAZR v3 (brew 3.15), Qtopia (Linux OS), 

Samsung (Windows) and Nokia Series (Symbian OS). In 

future, this can be optimized further and execution time 

can be reduced further.  
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