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ABSTRACT 

High-precision positioning of laser beams has been a great challenge in industry due to inevitable 

existence of noise and disturbance. The work presented in this study addresses this problem by 

employing two different control strategies: Proportional Integral Derivative (PID) control and state 

feedback control with an observer. The control strategies are intended to stabilize the position of a 

laser beam on a Position Sensing Device (PSD) located on a Laser Beam Stabilization (or, laser beam 

system) system. The laser beam system consists of a laser source, a Fast Steering Mirror (FSM), a PSD 

and a vibrating platform to generate active disturbance. The traditional PID controller is widely used in 

industry due to its satisfactory performance, various available tuning methods and relatively 

straightforward design processes. However, design of filters to obtain the derivative signal is challenging 

and can unexpectedly distort the dynamics of the system being controlled. As an alternative, use of an 

Observer-Based State Feedback (OBSF) method is proposed and implemented. The state-space model of 

the laser beam system is utilized and an observer is applied to estimate the state of the system, since all 

the state variables cannot be measured directly. For observer design, eigenvalue assignment and optimal 

design methods are used and compared in terms of system performance. Also a comparative analysis 

between the PID and OBSF controllers is provided. Simulations and experimental results show that the 

OBSF controller rejects disturbance better and has a simpler design procedure. 

 

Keywords: Laser Beams, Proportional Integral Derivative, Feedback Control, Position Sensing Device 

1. INTRODUCTION 

The term “laser” originated from an acronym for 

Light Amplification by Simulated Emission of Radiation. 

Lasers work on the principle of quantum mechanics to 

create a beam of light through optical amplification with 

all photons in a coherent state, usually with the same 

frequency and phase. Laser beams has a wide variety of 

applications, such as communication, transmitting data, 

printing, weapon systems, recording and various surgical 

and industrial applications. The requirement of high 

accuracy in the pointing of the laser beams poses a 

complicated challenge for the successful operation of 

these systems. This arises due to difficulty in aiming the 

beam on the intended target, narrow beam divergence 

angle and vibration of the pointing system. The work 

presented here intends to design controllers that correct 

or minimize dynamic laser beam pointing errors. The 
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controllers are validated through simulations and 

experiments. The operation of the control system of a laser 

beam is demonstrated in Fig. 1. In operation, the beam 

comes from the laser source to the FSM and is reflected 

through a glass splitter to the target. The effect of the 

disturbance is normally magnified and appears on the target. 

The glass splitter refracts a small percentage of the beam 

to a position sensing device. The PSD measures the 

displacement of the beam from the target and sends 

feedback signals to the controller. The control system 

sends control signals to steer the FAM/actuator such 

that the beam remains stable on the target (Perez-

Arancibia et al., 2009a; Bai et al., 2005; Quanser, 2010). 

Techniques to address the problem using passive 

approach have been developed (Zia, 1992; Bodson et al., 

1994; Anderson and Sarkodie-Gyan, 2004), there; both 

feedback and adaptive feed-forward control techniques 

were implemented using two actuators (a fast steering 

mirror and a secondary acoustic speaker located near the 

precision mirror) for reducing an acoustically induced 

jitter. Another approach is the implementation of an 

adaptive controller that applies Recursive Least Squares 

(RLS) algorithm to predict dominant output disturbance 

frequencies and dynamically computes control 

commands to minimize the output error (Arancibia et al., 

2004; Chi-Ying et al., 2008; Richard et al., 2011; Tsu-

Chin et al., 2011). 

A study presented in (Arnon and Kopeika, 1997) 

considers the implementation of passive and active 

vibration isolator which reduces the transmission of 

vibrations from the system to the target. The passive 

isolator reduces high frequency vibration disturbances 

while the active isolator dampens low-frequency, high 

amplitude vibrations (Baek et al., 2006; Chang and Liu, 

2007). More attempts have been made to investigate the 

problem in (Knibbe, 1993; Perez-Arancibia et al., 2009b) 

by utilizing mechanical techniques for nutation. A known 

amount of tracking error is introduced into the system by 

high frequency nutation signals, which were used to 

determine the position of the laser beam. 

An alternate approach demonstrated in (Kwabena, 

2012; Landolsi et al., 2011) implements Proportional-

Integral-Derivative (PID) controllers together with a 

beam-stabilized optical switch to stabilize a beam at a 

desired angle to maximize the optical power detected by 

a photodiode using a voice-coil motor actuator. Such 

studies have showed that the proportional-integral-

derivative controller is an effective method of stabilizing 

the laser beam with minimal switching time. 

Proportional-integral-derivative controllers are the widely 

used controllers for industry applications. However, not 

much work has been done on stabilizing laser beams using 

observer-based state feedback. 

The objectives are: 

 

• To design and implement a PID controller on a 

laser beam stabilization equipment to stabilize the 

beam on a PSD 

• To design an alternate controller using an observer-

based state feedback method 

• To compare the controllers in terms of design 

procedure and performance through simulations and 

experiments and 

• To determine the most effective controller based on 

performance 

 

 
 

Fig. 1. Operating principle of the control system of a laser beam (Quanser, 2010) 
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1.1. Design of Proportional Integral Derivative 

Controller 

The purpose of this chapter is to design a 
proportional-integral-derivative controller Fig. 2 that 
uses all these three terms to compensate for any error 
recorded by the position sensing device on the target. 
This controller will determine the right amount of 
voltage that will steer the actuator in a way that the beam 
is always reflected directly to the center of the position 
sensing device even in active disturbance. 

It is assumed that there is no actuator saturation and 
amplifier offset, Thus, Vc,amp = Vc, where Vc(s) is the 
Laplace Transform of the voice-coil digital-to-Analog 
voltage and Vc,max is the maximum voltage that can be 
supplied to the voice-coil by the power. 

The Transfer Function (T.F) of the actuator is given 

by Equation (1): 
  

k
P(s)

s( s 1)
=

τ +
  (1) 

 
where, K, the open-loop steady state gain, is 2200 

mm/(V.s) and τ, the open-loop time constant, is 0.005s. 

The Transfer Function (T.F.) of the closed loop 

disturbance-to-position of the system, Gx,d, is given as 

(Quanser, 2010): 
 

2

x,d 3 2

d p i

s ( s 1)
G

s (1_ Kk )s Kk s Kk

τ +
=

τ + + +
 (2) 

 
where, kp is the proportional control gain, kd is the 

derivative control gain and ki is the integral control gain. 

1.2. Determination of the Control Gains 

For the ideal-proportional-integral-derivative gains, the 

denominator of Equation (2) (closed-loop T.F.) is compared 

with the third-order characteristic equation and obtained as 

Equation (3-5):  
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For implementation of PID controller, a filter (low-

pass filter) is used to obtain the displacement of the PSD 

signal. The main role of the filter in the design is to 
remove noise from the system, since noise turns to 
magnify after taking the derivative of the signal. 

1.3. PID Controller 

The filter with its desired parameters is selected and 

the PID controller is built. The performance is analyzed to 

determine robustness. Figure 3 is a block diagram of the 

designed controller. The proportional, integral and 

derivative gains after applying the low-pass filter are 

kp = 0.722 V/mm, kd = 0.002 V.s/mm and ki = 0.360 

V/mm/s (Kwabena, 2012) for ω0 = 562.7rad/s, ζ = 1 

and p0 = -0.5. 

The gains, kp, kd and ki are placed in the proportional 

gain block, integral gain block and derivative gain block 

respectively as shown in Fig. 3. The low-pass filter is 

placed in the filter block and simulations are performed 

to validate the controller, before experiments are 

performed. The cutoff frequency, ωf, of the 2nd order 

filter is selected as ωf = ωf×10 and the damping ratio is 

0.5 to have a phase margin larger than 75 degrees. 

1.4. Design of State Observer 

When information about the dynamics of the system 

is limited an observer that computes an estimate of the 

entire system’s state vector from the output of the plant 

for control is used. Figure 4 shows a block diagram of 

the laser beam system that utilizes an observer-based 

state feedback for control. The plant plus the actuator 

intended to regulate the displacement of the laser beam is 

modeled in its space-vector form. 

1.5. Modeling of Beam System with the Observer 

The dynamic of the laser beam system can be 

modeled in its state space form as (Ogata, 2002; 

Franklin et al., 2008) Equation (6-7):  
 

x Ax Bu= +&  (6) 

 

y Cx=  (7) 

 

where, A and B are system and input matrices 

respectively, x and u are state vectors,c is the output 

matrix (Krokavec and Filasova, 2007; Luenberger, 1964). 

The observer is constructed from the state space model of 

the laser beam system dynamics as Equation (8-9):  

 

ˆ ˆx Ax Bu= +&  (8) 

 
ˆy cx=  (9) 
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Fig. 2. Block Diagram of a PID Controller in Closed-loop 
 

 
 

Fig. 3. Block diagram of the proportional integral derivative controller 
 

 
 

Fig. 4. Block diagram of state feedback observer model 
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where, x̂  is the estimate of the actual state, x. Since the 

exact initial condition, x(0), of the laser beam system 

cannot be obtained the observer will be used to 

determine that information. The dynamics of the 

observer is obtained as Equation (10):  

 

ˆ ˆ ˆx Ax Bu L(y Cx)= + + −&  (10) 

 

L, is the observer gain. Where K, the open-loop 

steady state gain, is 2200 mm/(V.s) and τ, the open-loop 

time constant, is 0.005s the plant transfer function for the 

laser beam is given by Equation (11):  
 

2

c

X(s) 2200

V (s) (0.005s s)
=

+
 (11) 

 
X(s), is the position measured by the position 

sensor and Vc (s), is the amount of voltage that enters 

voice coil actuator. From the equation of motion, the 

system matrices are obtained as: 
 

[ ]
[ ]

200 0
Systen Matrix A

1 0

1
Input Matrix B

0

Output Matrix C 0 440000

Control Matrix D 0

− 
 
 

 
 
 
=

 

 
Then, the equation of motion of the laser beam 

system in matrix vector form is Equation (12):  
 

1 1

2 2

200 0 1x x
U

1 0 0x x

  −     
= +      
      

&

&
  (12) 

 
where, x1 is the displacement and x2 is the velocity of the 

beam. 

1.6. System Controllability 

The controllability of the system is obtained from the 

state space model and used to determine if it is possible 

for the system to be controlled. The first step to 

determine if the system is controllable is to compute the 

controllability matrix (Chen, 1999; Haddad and Bernstein, 

1992). The controllability matrix, Cr is derived from 

MATLAB using the command “ctrb (A, B)”. The 

controllability matrix is obtained as (Zhou et al., 1996): 

 

r

1 200
C

0 1

− 
=  
 

 

Let v1 and v2 be vectors of columns 1 and 2 of matrix 

Cr respectively. If α1 and α2 are scalar, then (Chen, 1999; 

Ogata, 2002; Franklin et al., 2008): 

  

1 1 2 2

1 2

v v 0

1ff 0

∝ × + ∝ × =

∝ =∝ =
 

 

Then v1 and v2 are linearly independent of each other, 

therefore columns 1 and 2 of the controllability matrix 

are linearly independent. Thus the rank of the 

controllability matrix is 2. Since the size of the state 

vector is 2 and the rank of the controllability matrix is 2, 

then the system is controllable. 

1.7. System Observability 

The observability of the system is obtained from the 

state space model and used to determine if the state of 

the system can be observed if an estimator is designed. 

Observability matrix, 0v is obtained by using the 

command “obsv (A, C)” in MATLAB. The observability 

matrix is obtained as:  

 

v

0 440000
0

440000 0

 
=  
 

 

 

The columns 1 and 2 of the matrix 0v are linearly 

independent. Thus the rank of the observability matrix is 

2. Since the number of rows of the state matrix is 2 and 

the rank of the observability matrix is 2, then the system 

is observable.  

1.8. Pole Placement Design of Observer 

Pole placement is a technique assigning the 

locations of poles of in the closed-loop system such that 

desired response is achieved when control effort is 

applied. The location of the poles corresponds directly 

to the eigenvalues of the system, thus, the eigenvalues 

control the characteristics of the response (Ogata, 2002; 

Franklin et al., 2008). If the selected poles are not 

desirable, it will require a larger effort to control the 

system making the design expensive.  

The pole locations of the system are obtained from 

the denominator of the closed-loop response equation by 

finding the characteristic roots or eigenvalues of the 

characteristic equation. The equation for the closed loop 

response is (Quanser, 2010) Equation (13): 

 

x,d 2 2

0 0

s( s 1)
G

s 2 s

τ +
=

τ + ξω τ + ω τ
 (13) 
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From the denominator of Equation (13) gives: 

 
2

1,2

(0.005)s (2.547)s 1297.44 0

s 254.7 441.15i

+ + =

= − ±
 

 

The desired poles are obtained as: 

 

1 2
p 254.7 441.15i,p 254.7 441.15i= − − = − +  

 

The control gain K, is derived from MATLAB using 

the Ackermann command in Equation (14): 

 

( )K acker A,B,p=  (14) 

 

The observer is designed to regulate the laser beam 

by estimating the state of the system. The estimator gain, 

L, is also obtained from the Ackermann formula using 

the MATLAB command in Equation (15): 

 

L’ acker(A ',C' t)=  (15) 

 

where’ denotes the transpose of system matrix, A and the 

output matrix C respectively. t is the desired observer pole 

location. For a faster decay of the estimator error, the 

desired estimator Pole location t, is chosen by a factor of 5 

(Ogata, 2002; Franklin et al., 2008; Zhou et al., 1996): 

 

1 2
t 1273.5 2205.8i, t 1273.5 2205.8i= − − = − +  

 

The resulting observer gain, L is: 

 

13.677
L

0.005

 
=  − 

 

 

1.9. Optimal Design of Robust Observer 

The design of the observer using the Ackerman 

formula does not provide robust estimation in the 

presence of noise in the system. Observer design through 

the Ackerman formula can make the estimator unstable 

and inaccurate because it does not recognize the 

disturbance from the process and noise from the sensor. 

Thus, the estimated state will diverge from the real state 

if disturbance and noise is introduced into the system 

(Ogata, 2002; Franklin et al., 2008; Zhou et al., 1996).  

The Kalman technique is used to design a robust state 

estimator to generate optimal estimates of the state of the 

system. The Kalman takes the state-space model of the 

system where not all outputs are available for 

measurement and considers all other inputs (noise) as 

stochastic as shown in Fig. 5. The method uses known input 

u and covariance matrices Qn, Nn and Rn from the process 

disturbance w and measurement noise, v to compute the 

optimal estimator gain L. The covariance matrices are: 
 

{ } { } { }Qn E ww ' ,  Rn  E vv '  and Nn  E wv'= = =  

 
where, w and w’ are the process disturbance vectors and 

its transpose respectively, while v and v’ denote the sensor 

noise vector and its transpose. This system is assumed to 

be corrupted by noise (Zhou et al., 1996; Skogestad and 

Postlethwaite, 1996) Equation (16 and 17): 
 
x Ax Bu w= + +&  (16) 
 
y cx v= +   (17) 

 
The dynamics of the observer with the error in 

estimation is given by Equation (18): 
 

ˆ ˆe Ax Bu w Ax Bu L(Cx v Cx)

e (A LC)e w Lv

= + + − − − + −

= − + −

&

&
 (18) 

 
Due to the introduction of process and measurement 

noise into the system, the difference between the real 

state variable and the estimated state variable will not be 

minimized to zero. Thus, the error will not approach zero 

asymptotically, x̂  grows further apart from x. In order to 

ensure that the effect of this error and disturbance on the 

target remains minimized as possible, the optimal linear 

quadratic estimator LQE technique using the Kalman 

filter is used to choose the optimal estimator gain, L. 

The optimal observer gain which minimizes this 

error caused by the process disturbance and 

measurement noise is Equation (19): 
 

1L PC V−= ×  (19) 
 
where, p is the solution of the Algebraic Ricatti Equation 

(ARE): 
 

1PA AP PC V CP W 0−+ − × + =  (20) 
 
p, should be a unique positive semi-definite solution of 

Equation (20) ARE. C, is the output matrix of the laser 

beam system, w and v are the disturbance and noise matrix 

respectively. The optimal choice of L, Kalman filter gain is 

obtained from MATLAB by the command Equation (21): 
 

( )[kest,L,P]  kalman sys,Qn,Rn,Nn=  (21) 
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Fig. 5. Diagram showing introduction of noise and disturbance on LBS 

 
The optimal observer gain, L is: 

 

5.6529
L

0.0051

 
=  
 

 

 

The solution to the ARE is: 

 

3
0.7025 0.0003

p 10
0.0003 0.00001

−  
= ×  

 
 

 

1.10. State Observer 

Figure 6 is a block diagram of the laser beam system 

with an observer. Simulations are performed to verify the 

response of the controller. The observer gain, L and 

control gain, K, obtained are placed in the observer gain 

block and control block to test the controller through 

simulations before experiments are performed. 
The available output, displacement, is measured by 

the position sensing device as X(mm). The observer 
continuously estimates the state of the system based on 
the output (X) from the PSD. Other output parameters 
like velocity and acceleration can be obtained from the 
estimator. This estimatator output is Uc, in the form of 
voltage. The diagram shows block locations for the 
observer gain L, control gain U. System matrix (A), 
input matrix (B) and output matrix (C). 

1.11. Experimental SET-UP 

The experimental set-up shown in Fig. 7 and 8 
consist of four main components: PC, laser beam 
stabilization component, Quanser Personality Intelligent 
Data (QPID) acquisition board and a Peripheral 
Component Interconnect (PCI) express board. These are 
inter-connected and act as a Hardware-In-the-Loop 
(HIL). The PCI board is inserted into the CPU and 
connected to the QPID terminal board through analog 
cables. The terminal board is then connected to the laser 

beam stabilization component through analog and 
encoder cables before the system is powered. 
Experiments are run on this system by generating real-
time codes from models that runs on a real-time kernel 
of the processor of the PC. After designing the 
appropriate controller, the design is built and tested 
through simulations on the computer. 

 The laser beam stabilization component in Fig. 7 

consists of a stationary laser source for providing the 

laser beam, a FSM which acts as an actuator mounted on 

a vibrating platform, a DC motor for subjecting the 

platform to active disturbance and an amplifier. The 

amplifier makes sure that the voltage or maximum power 

that is being supplied to the actuator by the Digital-to-

Analog convertor (D/A) is not exceeded and it also 

magnifies the signal from the position sensing device to 

the Analog-to-Digital converter. The QPID acts as a data 

acquisition board and also acts as a Digital-to-Analog-to-

Digital convertor (D-A-D), thus it digitizes the analog 

position signal of the laser beam measured by the 

position sensor for the computer and also converts 

digitized control signal from the computer to analog 

form for the actuator. Controllers intended to stabilize 

the vibrations induced into the beam using the FSM and 

feedback from the position sensor are designed. 

The laser beam is subjected to active disturbance by 

increasing the disturbance voltage; this causes an offset 

load attached at the end the D.C motor to revolve producing 
a back and forth sliding motion, thereby inducing vibrations 

into system. The controller intended to stabilize the system 
is switched on and the response is analyzed. 

1.12. Simulation Set-Up 

To prevent any damages to the laser beam 

stabilization equipment, simulations are performed to 

validate the design before implementation. Figure 9 is a 

block diagram of the experimental set-up to test the 

controllers through simulation (Chua et al., 2007). 
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Fig. 6. Block diagram of the OBSF controller 

 

 
 

Fig. 7. Schematic diagram of a laser beam stabilization experimental set-up 

 

 
 

Fig. 8. Experimental set-up of the laser beam system 
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Fig. 9. Block diagram of experimental setup 
 

This block diagram consist of four main blocks; (1) 

the Control System block, which contains the controller, 

(2) the Signal Generator block which subjects the system 

to active disturbance by regulating the frequency and 

amplitude of the input signal, (3) Plant, is the actuator of 

the system and (4) the Scope is the position sensor for 

detecting the position of the laser beam. 

2. DISCUSSION 

2.1.Simulation and Experimental Results 

The response of the system employing the PID and 

observer-based state feedback controllers respectively for 

an input sine signal of 12 Hz frequency and 1mm 

amplitude is shown in Fig. 10 and 11, respectively. A 

comparison of simulation response of the controllers in 

closed-loop is shown in Fig. 12. In closed-loop, the 

response of the observer-based state feedback 

controller shows that the high amplitude vibration of 

the laser beam reduced to an amplitude of 2 mm while 

for the PID controller, the amplitude of the laser beam 

decreases to about 1.7 mm. 

Both controllers proved to be stable and effective in 

eliminating the 12 Hz disturbance and significantly 

rejecting the 350 mm amplitude and stabilizing the 

vibration of the laser beam. However, the 

proportional-integral-derivative controller sustains a 

relatively smaller amplitude. The results for both 

controllers are considered satisfactory shown in Fig. 

12, therefore the peformance of the controllers are 

tested experimentally on the actual laser beam system. 
Figure 13 is a plot of experimental response of the 

PID in open-loop that is switched to closed-loop after 

11.5 sec. From observation, the beam is displaced from 
the reference point immediately when the controller is 
switched from open-loop to closed-loop. This offset 
however decreases linearly over time and gradually 
approaches steady state at zero. 

Experimental response of the observer-based state 

feedback controller and robust is shown in Fig. 14 and 

15, respectively. From observation, the laser beam 

oscillation stabilizes on the position sensing device after 

switching to closed-loop with a 12 Hz input disturbance 

frequency. In open-loop the laser beam vibrates with an 

amplitude of approximately 0.7 mm; however, this 

vibration minimizes to an amplitude of approximately 

0.01 mm at steady-state. 

The response of the robust observer in Fig. 15 is 

similar to the observer-based state feedback controller in 

Fig. 14 because the experiment was peformed under well 

regulated conditions and the amount of lighting in the 

room was controlled.  

Comparisons between the controllers are made to 

investigate the method that best regulates the laser beam, 

in terms of rejecting oscillations in the laser beam. 

Figure 16 is a comparison of the experimental response 

of the controllers. Comparison of system gain for the 

controllers is at Fig. 17 and Table 1 describes the 

differences in the controllers. 

After experimental implementation of all three 

controllers, the gains of the closed loop system are 

compared. The closed-loop gains are observed for a 

series of different disturbance frequencies. The lower the 

system gain, the more efficient the controller is in 

rejecting disturbance. For all three controllers, the 

system maintains a gain below 0.05 for a range of 

disturbance frequencies as evident in Fig. 17. 
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Fig. 10. Simulation response of PID controller 

 

 
 

Fig. 11. Simulation response of OBSF controller 
 

 
 

Fig. 12. Comparison of closed-loop simulation responses 



Kwabena A. Konadu et al. / American Journal of Applied Sciences, 10 (4): 374-387, 2013 

 

384 Science Publications

 
AJAS 

 
 

Fig. 13. Experimental response of PID controller 

 

 
 

Fig. 14. Experimental response of OBSF controller 
 

 
 

Fig. 15. Experimental response of robust observer 
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Fig. 16. Comparison of experimental response of controllers 

 

 
 

Fig. 17. Comparison of System Performance for Controllers 

 
Table 1. Observed comparison of controllers 
Character- State Proportional 

Istics feedback integral derivative 

Settling time Quicker convergence, achieves  Slow convergence, achieves 

 steady state very fast steady state at a slow rate 

Accuracy and No filter is required. One does A filter is required when taking the  

stability not need to obtain the signal. derivative of the signal to be 

 for D action in proportional integral derivative controller multiplied with kd. 

Design Compact form, since the model Design of control requires a  

procedure is expressed in relatively complicated process. It 

 matrix-vector form, the calculation handles scalar multi-variable models, 

 is friendly. Calculation of control gains is MATLAB-friendly. and requires designing extra filters for tuning. 

Robustness Handles uncertainty like process disturbance and A bit cumbersome in handling noise 

 measurement noise in a relatively simple way  
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3. CONCLUSION 

This study presented the design of a PID controller that 

uses the feedback signal from a position sensing device to 

regulate a voice-coil actuator. The controller has been 

designed to stabilize a laser beam such that the incident 

laser beam on the FSM is reflected to the middle of the 

position sensor even in the presence of noise and active 

disturbance. An alternate observer-based state feedback 

scheme for controlling the laser beam system has been 

proposed. This controller models the laser beam system as a 

linear time-invariant plant and estimates the state of the 

plant by stabilizing the beam at all conditions. 

A comparison has been made to investigate the 

appropriate and effective control method based on design 

procedure and performance. Simulation results 

demonstrate that both controllers are effective and 

suitable for eliminating vibrations and stabilizing the 

laser beam on the PSD. The observer-based state 

feedback controller is relatively simple and the design is 

straight forward if the model and state of the system can 

be obtained while the design process for the PID 

controller is relatively complicated due to the design of 

filters, which alters the dynamic of the system.  
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