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ABSTRACT 

The present study deal with constructing an analytical model within Hamiltonian formulation to design 

invariant relative orbits due to the perturbation of J2 and the lunisolar attraction. To fade the secular drift 

separation over the time between two neighboring orbits, two second order conditions that guarantee that 

drift are derived and enforced to be equal. 
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1. INTRODUCTION 

 Within the last decades several projects have been 

started where the goal is to use multiple satellites 

working as one. Thus formation flying clusters is a 

relatively new concept in space science. The design of 

relative navigation and control systems of the spacecrafts 

in this cluster is certainly one of the most challenging 

topics. In order to ease the tasks of these subsystems, a 

proper reference trajectory must be conceived and a 

relative motion, which shows no drift even in presence of 

perturbation forces, could be a very attractive solution. 

Mentioned here the most important papers dealing with 

this problem, the dominant J2 oblateness effect in 

perturbations is considered as the main destroyer to the 

formation configuration and J2 invariant orbit is firstly 

defined by (Schaub and Alfriend, 2001) in mean orbital 

elements to minimize the amount of fuel to maintain. 

They introduced an analytical technique to derive a class 

of orbits that are termed ‘invariant’ orbits. Satellites 

placed into ‘invariant’ orbits are not immune to the 

disturbance force, but instead two satellites placed into 

these orbits will have the same drift and thus the cluster 

remains together. The ‘invariant’ orbits are created by 

using two first order conditions that determine the 

correct differences in semi-major axis, eccentricity and 

inclination. Zhang and Dai (2002) removed the drifts by 

adjusting the semi-axis of the follower satellite and 

obtained a similar conclusion. However, all the above 

works are based on the mean orbital elements instead of 

the Cartesian coordinates, which prevents the J2 invariant 

orbit from being applied. Biggs and Becerra (2005) 

proposed a method to determinate the J2 invariant orbit 

with the leader’s orbit of zero inclination based on the 

targeting method in chaos dynamics. Subsequently, (Yan 

and Alfriend, 2006; Breger and How, 2006; Xu and Xu, 

2007; Sabatini et al., 2009) investigated J2 invariant 

relative orbits from the perspective of relative orbital 

elements and relative Cartesian coordinates, thereby 

achieving different types of invariant conditions through 

numerical searches. El-Salam et al. (2006) used the 

Hamiltonian framework to construct an analytical 

method to design invariant relative constellation orbits 

due to the zonal harmonics; up to the second order, 

assuming J2 being of order 1. Rahoma and Metris (2012) 

constructed an analytical method using Hamiltonian 

framework to design invariant relative emphasized on 

secular oblateness perturbations due to the zonal 

harmonics J2, J3, J4 and the third body effect, assuming J2 

being of order 1. 

 After this introduction, the model of the oblateness of 

the Earth, truncated beyond the second zonal harmonic J2 

and the lunisolar attractions is devoted. The Hamiltonian 

of the problem was constructed by consideringn2; the 

mean motion of the Moon; as the small parameter of the 

problem. The normalized Hamiltonian of the system 

considered, F, after eliminating the short, intermediate and 

long period terms respectively using a perturbation 

technique based on Lie series, Lie transform and Bohlin’s 

technique, is represented as (Radwan, 2002). The 
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expressions for the time rate of change of the secular 

elements are obtained, second order conditions are 

established between the differences in moment an 

elements are equal on the average.  

1.1. Problem Formulate 

 We consider the motion of artificial satellites in the 

Earth’s gravity fields and perturbed by lunisolar attraction. 

 Let us assume, with sufficient accuracy, the 

following assumptions: 
 

• The geopotential is restricted to the J2 part, like in 

the main problem of artificial satellite theory 
• Sun and Moon move in circular orbits in the fixed 

ecliptic plane. Then we can set u2 = n2t + const and 
u3 = n3t + const, where (u2, n2) and (u3, n3) are the 
argument of latitude and the mean motion of Moon 
and Sun respectively. Noting that the time appears 
explicitly through u2 and u3, we augment the set by 
the addition of the pair k2 = n2t + const, k3 = n3t + 
const and their conjugatesK2and K3respectively. 
Lunisolar potential are truncated at the second 
Legendre polynomial term. 

2. MATERIALS AND METHODS 

2.1. The Normalized Hamiltonian 

 Consideringn2as the small parameter of the problem, 

the orders of magnitude up to the second order of the 

involved parameters are defined as 

follows ( )2n = 0.03 Zero≡O he normalized Hamiltonian of 

the system considered, F, after eliminating the short, 

intermediate and long period terms respectively using a 

perturbation technique based on Lie series and Lie 

transform to eliminate the short and intermediate terms 

and Bohlin’s technique to eliminate the long period 

terms can be represented in terms of Delaunay set as 

(Equation 1-4), (Radwan, 2002): 
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where, µ = k
2
m0, is the gravitational const., m0, m2 and 

m3 is the mass of Earth, Moon and Sun respectively Sj = 

sin ij and Cj = cos ij, j = 2, 3 refer to Moon and Sun and i 

is the inclination: 
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where, R is the radius of the Earth, α is the semi major 

axis of the satellite. 

 Using the Hamiltonian canonical equations of the 

motion, to write the secular drift in the argument of mean 

latitude (θ = l +g): 
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and the secular drift rates of the longitude of the 

ascending node: 
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 Using an intermediary variable 21 eη = − , Equation 

5-8 can be rewritten using Keplerian elements, as: 
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 To proscription two neighboring orbits from 

drifting apart, the average secular growth needs to be 

equal. Since the mean angle quantities l, g and h do not 

directly contribute to the secular growth, their values 

can be chosen at will. However, the mean moment a 

values L, G and H (and therefore implicitly a, e and i) 

must be carefully chosen to match the secular drift 

rates. To hinder the satellites from drifting apart over 

time, it must be matched all three rates. We impose the 

condition that the relative average drift rate of the angle 

between the radius vectors be zero i.e.: 
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

 and h


can be rewritten as, Equation (11) and (12)  
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where, the non-vanishing coefficients xθ
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 and xh
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 are 

computed in Appendix I. 

And: 

 

h

S S

1 s odd 0 s odd

0 s even, 1 s even

θ  − = =
δ = δ = = − =

 

 

2.2. Second Order Expansions Conditions 

 Using the second order expansions conditions 

described by (Rahoma and Metris, 2012) for iθ


and 

ih


from the mean value denoted by 0 to write the drift 

rate about reference orbital elements: 
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where, we make use of the fact that (L, ,i)θ = θ η& & and 

h h(L, ,i)= η& & only, also supposing δθ that is the difference 

in mean latitude rates δL = Li – L0, δη = ηi - η0, δi = ii – 

i0, x = L, η, i and x0 = L0, η0, i0.  
 Note that this theory will lead to an analytical 

second order conditions on the mean orbit elements. 

To establish a more precise set of orbit elements 

satisfying Equation 9 and 10, either δL, δη or δi could 

be chosen and the remaining two moment a orbit 

element differences found through a numerical root 

solving technique.  
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 The required derivatives can be evaluated as: 
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 To enforce equal drift rates
i

θ& and 
i

h& between 

neighboring orbits, we must set δθ&  and h
⋅

δ equal to zero 

in expanded Equation 13 and 14, yields: 
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 Equation (15) and (16) are two simultaneous 

nonlinear algebraic equations in three unknowns, namely 

δL, δη, δi. When one of these three unknowns is assumed 

known (say δi), these two equations can be solved as: 
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 Substituting Equation 17 into Equation 15 yields an 

algebraic equation of fourth degree in δη only in the form: 



Walid Ali Rahoma / American Journal of Applied Sciences, 10 (4): 307-312, 2013 

 

311 Science Publications

 
AJAS 

4 3 2

1 2 3 4 s
d ( ) d ( ) d ( ) d d 0δη + δη + δη + δη + =  (18) 

 
Where: 
 

2 2

1 2 LL 1 2 L 1d c c c cη= θ − θ + θηη& & &  

2 2 4 LL 2 3 4 1 L 1 2 L iL

2

1 i 1 3

1
d 2c c (c c c c ) c c i

2

1
c i 2c c

2

η

η ηη

 = θ − + θ − θ + θ δ 
 

 + θ δ + θ 
 

& & & &

& &

 

2 2

3 4 2 5 LL 4 3 5 1 L 3 2 3 4 1

2

L iL 1 3 i 1 i ii

d (c 2c c ) (c c c c ) c (c c c c )

1 1 1
i 2c c i c i i

2 2 2

η ηη

η η

= θ − + θ + θ − +

     θ + θ δ + θ + θ δ + θ + θ δ δ     
     

& & &

& & & & & &

 

4 4 s LL s 3 L 4 3 5 1 L iL

2

3 i 1 3 i ii

1
d 2c c c c (c c c c ) i

2

1 1
c i 2c c i i

2 2

η

η η

 = θ − θ − + θ + θ δ 
 

   + θ θ δ + θ θ δ δ   
   

& & & &

& & & &

 

2 2

5 5 LL 5 3 L iL 3 i ii

1 1
d c c c i c i i

2 2

   = θ − θ + θ δ + θ + θ δ δ   
   

& & & & &  

3. RESULTS AND DISCUSSION 

3.1. Solution of the Quartic Equation 18 

 The roots of the quartic Equation 18 can be written as: 
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 Substituting the four roots δη‘s into Equation 17 yields 

the four constraints δL’s that guarantee the invariance of the 

relative motion of certain satellite constellation: 

 
2 2 2

2 4 5
1,2

1 3

2 2 2

2 4 5
3,4

1 3

C (a b c 2ab 2bc 2ac) c (a b c) c
( L)

c (a b c) c

C (a b d 2ab 2bd 2ad) c (a b d) c
( L)

c (a b d) c

+ + − ± + − − +
δ = −

− − +

+ + + + + − +
δ = −

+ − +

m

m m

 

4. CONCLUSION 

 This study introduced an approach to optimizing J2 

and lunisolar attraction invariance between spacecraft 
that explicitly minimized the fuel use required to achieve 
the invariant states. This approach also allowed weights 
to be assigned the emphasis on invariance (i.e., 
preventing drift), minimizing fuel use and maintaining a 
desired geometry. In a formation where the principle 
control objective is to “not drift,” the proposed approach 
could be used as a fuel-optimized formation flying 
control algorithm. 
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