American Journal of Applied Sciences 10 (11): 1363-1370, 2013

ISSN: 1546-9239

©2013 Science Publication

doi:10.3844/ajassp.2013.1363.1370 Published Odlingl1) 2013 (http://www.thescipub.com/ajas.toc)

A NON-LINEAR ABSOLUTELY-STABLE
EXPLICIT NUMERICAL INTEGRATION
ALGORITHM FOR STIFFINITIAL-VALUE PROBLEMS

L2Essam R. El-Zahar

!Department of Mathematics, College of Sciences amuahities,
Salman Bin Abdulaziz University, P.O. Box 83, Alkhdr1942, KSA
2Department of Basic Engineering Science, Facul&rafineering, Shebin EI-Kom, Menofia University, gy

Received 2013-05-25, Revised 2013-09-07; Accepte@-D9111
ABSTRACT

The time-step in integration process has two @giris. The first one is the time step restrictihre to
accuracy requirement. and the second one is the time-step restrictientdwstability requiremernt;, The
most of explicit methods have small stability regicand consequently small. It obliges us to solve stiff
problems with small step sizg; << 1, The implicit methods work well with stiff problesmbut these
methods require more work per step than the exptiethods. In this study, a non-linear absoluthbk
explicit one step numerical integration algorithen proposed for solving non linear stiff initial-ual
problems in ordinary differential equations. Thegaaithm is based on deriving a non-linear relation
between the dependent variable and its derivatiees the well known Taylor expansion. The accuratthe
methoddepends on some unknown parameter inserted in rTayfmansion and determined from the error
analysis.The accuracy and stability properties of the methdinvestigated and shown to yield at least third
order andA-stable. The results obtained in the numericaleerpents show the efficiency of the present
method insolving stiff initial value problems.
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1. INTRODUCTION analysis of large ODE systems. Implicit methods are
commonly used in solving stiff problems in ODEs
The initial value problems with stiff ordinary because of their stability (Fatunla, 1982; Gugtaal.,
differential equations occur in many fields of apgl 1985; Butcher, 2000). Lack of stability causes the
sciences, particularly in the studies of electrigiatuits, normally efficient explicit methods to be unsuigbbr
vibrations, chemical reactions, biological economic stiff problems but recently many authors introduced
systems. The problem of stiffness has been known fo developed explicit methods to solve stiff problems
some time and has attracted the attention of manyAhmad et al., 2004; Ahmad and Yaacob, 2005;
numerical analysts leading to surveys of methodstitf Haireret al., 1993; Lambert, 1973; Novati, 2003; Otunta
problems. Explicit numerical integration method® ar and lkhile, 1999; Egbako and Adeboye, 2012; Wu and
intrinsically faster than commonly used implicit Xia, 2001; 2007; Niekerk, 1987; 1988; Wu, 1998).
methods. Implicit integration methods solve a systd Traditional linear multistep numerical integration
equations for each solution step often requiriegative methods, both explicit and implicit, are based on
solution methods (Burden and Faires, 2010; Lambert,polynomial approximations in the time domain, while
1991) to satisfy nonlinear algebraic equationsutmh rational methods are based on rational function
of the equations is the main computational costhin  approximations. In this study, we introduce a nema-n
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linear absolutely stable explicit one-step ratiomathod 6h? (y,)* + O(h")

that can be used to solve stiff problems effecyiv€he B = ehy, - 37y + @I ¥+ O(F ) )
method is based on deriving a non-linear relation : :

between the dependent variab_le and its derivaficen Thus we get Equation (6):

the well known Taylor expansion. The accuracy & th

method depends on some unknown parameter inserted i eh(y, )’ 5
Taylor expansion and determined from the erroryaisl Yia =Y +W ' (6)

The accuracy and stability properties of the methaosl
investigated and shown_to yield at least third-oraled where, y.=y(x.)and it is assumed that
A-stable. Some numerical examples are presented to ! !

illustrate the performance of the method. 6y, = 3hy + @It yf'# 0.
Now the parametep is determined from the local
2. MATERIALSAND METHODS truncation error of the approximation (6).

Consider the initial-value problem given by 2.1.Local Truncation Error

Equation (1: The local truncation error.f is readily obtained

from subtracting (6) from Taylor series expansion(2)

y'=1(xy). y@)= . and collecting terms in h Equation (7):

y(x), f(x,y)OR, 1)
xO[a,b]OR, - 20+ 1y~ 30/
1T 12)/1 ’

where it is assumed that fsatisfies all the reauoénets of
the uniqueness theorem in order for (1) to havaique e +[2((P—1))/,-')/,-"+ ij)JhA + O(HF)
solution. The interval [a, b] is divided into a nioen of 24(y, ¥ '
subintervals [}x:1 ] with X, = a and x= a + jh, such that

h is the step size. Suppose that we have solved i is clear that the relation (6) has at leastosec
numerically the problem in (1) up to a poiftaxd have order of accuracy.

obtained a value jyas an approximation of yx : - ;
Assuming the localization hypothesis (Lambert, 991 From_equatl.ng to zero the coefficient dfih (7) we
get Equation (8):

y, =y(x;) , we are interested in obtaining an approximate

(7)

the following method is developed. ¢=
By considering Taylor’'s expansions of(x) about
X;, we have Equation (2 and 3):

(8)

value, y,,,, for the true valuey(x,,) . For that purpose, [

V),
2y )

and a local truncation error given by Equation (9):

h? h®
A‘+1Ey(x‘-¢-1)_y‘:hy,'_'—7)[’_'—7y'm_'—"" (2) 3 _ " 2\ (4)
i i i 2 67} TJ+1 - 3()/,') 4)/13/1’){’:' (){) ¥ h* + o(hs) (9)
2 3 3 24()/])
8,2Y,-y(0,) =hy =y +0 (=@ - (3)

From (6) and (8) the numerical scheme is readily

where, @ is some parameter which determined later from obtained, which may be written in the form Equatio0):

the error analysis. 12h
From (2) and (3) we have Equation (4): Yiazy,+ _u oy , _y 20, (10)
12(y,Y - 6hy Y+ (3(§F- 2y§)

Aj+1Aj = hz(y; )2 + O(h4), (4)
After applying this scheme we will take as
and from (3) and (4) we have Equation (5): approximation for the true solution of (1) afxhe value
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yi+1 given by (10). Repeating the procedure along thethen g¢=0and we obtain as a particular case of the
nodes on the integration interval we will obtaidiscrete  present method, the scheme given by:
solution for the problem in (1).

2
2.2. Consistency and Stability Vi = % y, %0,
y; —nigy;
Subtracting yfrom both sides of (10) and dividing : :
the result by h, leads to Equation (11): that is, the first-order scheme in (Fatunla, 198®)ich
results to be exact when the differential equatioifl)
Yia 7Y _ 12h(y ¥ y #0. (11) verifies (15), i.e., the solution of the differaitequation
h 120y, ¥ -6hyy+ H @ f- 2y} is of the form:
Taking limit as h tends to zero, on both sidegld), y(x)=—P— p q,rOR.
we have Equation (12): q+rx
Yia 7Y Remark 2
lim [”’] =y, =f(x,y)). (12) ) o
h-0 h We observe that when the solution of the diffeegnt

equation in (1) verifies the Equation (16):
Suggesting that the scheme defined by (10) is
consistent. 3(Y' (x))? = 2y (X)Y" (x), (16)
In order to examine the present method for the

the present method, the scheme given by:

y' =2y,
_ o 2h(h)y
where, A is a complex constant and Rp0. For this Yin =Yt o o
equation, Equation (10) can be rewritten as Eqndfi8): Y
Where:
_6+3(M)+ (MY /2 (13)
"6=3(M)+ (MY /2 f,=y,f=yrandf #0,

Setting z = Ah in the above equation, the that is, the second-order scheme in (Lambert, 1973;
amplification factor is therefore Equation (14): Niekerk, 1987; 1988), which results to be exact nvtres
differential equation in (1) verifies (16), i.ehet solution

_12+6z+ 7 of the differential equation is of the form:

R(Z)_12— 6z+ 2

(14)

+
. . , . i y(x):L qx’ p,q, r, IR
which is the (2, 2)-Pade’ approximation to the r+sx

exponential & and thus the method is A-stable
(Hairer et al., 1993). The stability region of the Remark 3
method consists of the left-half complex plane.ngdsi
MATLAB we plot the stability region for the method
and the region as given kig. 1.

We observe that the present method has at least
fourth-order of accuracy when the solution of the
differential equation in (1) is one of the followgifiorms:

Remark 1
We observe that when the differential equatio(ijn ye)=p+aer™,
is autonomousy’ =f(y) and verifies the Equation (15): .« y(X) U L
q+rem’
2(y (x))* = y(x)y" (), (15) e y(x)=ptan(gx+ r),
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Fig. 1. 3D stability region for the present method

where p,q,r,s,m are real constants. For theseicolut The problem has been integrated on the interval
forms the coefficient of hin the error Equation (9) is [0,0.5] and the results are presented Table 1 for
vanished. This occurs for example when the difféaén  different numbers of steps, NI. The errors havenbee
equation in (1) is a Reccati equation with constantdefined as the maximum of the absolute errors en th
coefficients, i.e., ¥x) = p+ay(x)+r(y(x)}. In fact it may  nodal points in the integration interval:

be verified easily that the present method is dyabe

same with the fourth order method in (Niekerk, 1988 Emax =, MAX Y1)~ Yl
when the solution of the differential equation ih) (

verifies the Equation (17): or as the absolute error at the final point:
3/ () + (Y (9)" Y0 = 4 ()Y (Y (¥), (17) E(x=b)=[y(b)= wul-

For comparison, the numerical solutions errors
3. RESULTSAND DISCUSSION obtained using the third-order rational methods in

) Lambert, 1973; Niekerk, 1987; 1988) and the presen
To test the proposed method, we have integrateqnetnod are shown ifiable 2.

four initial value problems. All the computationserg Table 2 shows us that the numerical solutions
done in MATLAB environment with double precision gptained by the present method and the method in
arithmetic on a personal computer with a Pentiusetda (Niekerk, 1988) approximate the true solution teagr
processor (2019 MHz). extend more than that obtained by the two methads i
3.1 A Stiff Equation (Lambert, 1973; Niekerk, 1987).

The present method was tested on the stiff problem3'2' A Stff System

taken from Equation (18) (Ahmaat al., 2004): The above method may be also applied to a system
of equations. If we have y,f(x,§)R™ in (1), we have
y'(x) = -100y(x)+ 99€" , y(0F C (18) just to consider the formula in (10) for every
component. Let be the stiff system taken from Eiguat
which has exact solution: (19) (Wu and Xia, 2001):
33 o 0x Yi(x) = =1002y, (x)+ 100q y (x)* . ¥ (0 : (19)
v =€ -e™). Yo(0) = ¥,(%) = y,00 (14 (,00)). v,(0)=1

///// Science Publications 1366 AJAS



Essam R. El-Zahar / American Journal of ApplieceSces 10 (11): 1363-1370, 2013

Table 1. Errors for y'(x) = -100y (x) + 99§ y(0) = 0.

NI E(x =0.5) Emax CPU

32 1.0939e-010 5.8527e-003 000
64 6.0547e-012 6.1440e-004 000
128 3.2374e-013 7.4115e-005 000
256 1.8652e-014 9.1751e-006 000
512 1.7764e-015 1.1437e-006 000

Table 2. Maximum absolute errors for various third ordettimoels compared to the present method.

NI Lambert (1973) Niekerk (1988) Niekerk (1987) Tresent method
32 2.9703e-002 6.2563e-003 2.9703e-002 5.8527e-003
64 2.9555e-003 9.3643e-004 2.9555e-003 6.1440e-004
128 3.2825e-004 1.2507e-004 3.2825e-004 7.4115e-005
256 3.9126e-005 1.6110e-005 3.9126e-005 9.1751e-006
512 4.7555e-006 2.0397e-006 4.7555e-006 1.1437e-006

The exact solution is:

2009; El-Zahar, 2012; 2013; El-Zahar and EL-Kabeir,

2013). The present method was tested on two sirlgula
perturbed problems taken from (Ramos, 2005).

Consider the first non-linear singularly perturbed
The results for every component of the solution |VP given by Equation (20):

on the interval [0, 1] appear inrable 3. For

comparison, the numerical solutions errors obtained ey'(x) = —-y(x)(y(x) —1)cos(x), y(OF 0.5 (20)
using the third-order methods in (Lambert, 1973;

Niekerk, 1987; 1988) and the present method arewhich has exact solution:

shown inTable 4 and 5.

In Table 4 and 5, the maximum absolute error
generated by the third-order methods in (Lambe&T,31
Niekerk, 1987) show us that the numerical solutidos
not approximate the true solutions of the stiff teys This problem exhibits an initial layer near x = 0.
correctly using 128 integration steps. We insesh@a (-) ~ Table 6 shows the numerical results obtained with the

to indicate this phenomenon. This is because thd-th  present method when the integration is performethen
order rational methods in (Lambert, 1973; Niekerk, interval [0,1 for a small value of the perturbation

1987) are not A-stable methods. Obviously, 128
integration steps are not enough to meet the #abil Parameterg = 0.01. Table 7 also shows us that the
restrictions. Therefore, there is a need to in@ethe  Present method performs better compare to the mstho
number of integration steps in order to obtain the in (Lambert, 1973; Niekerk, 1987; 1988).

accurate numerical solutions. The second non-linear singularly perturbed IVP

Table 4 and 5 also show us that the third order given by Equation (21):

method in (Niekerk, 1988), L-stable method, perferm
better compare to the present method for 256 iategr
steps, but not for 512 integration steps.

v, (x) =™, y,(x)=€e".

_ 1
y(X) - 1+ e(fsinx/s) .

ey (x) = —%y(x)(y(x) -20), y(0)=1, (21)

3.3. Singularly-Perturbed Problems whose solution is:

Singularly-perturbed IVPs usually contain a small

parameter that multiplies the first-order derivatifhese y(x) = 20
H : -x/4g) *

problems are characterized by the presence ofdkers 1+19€¢7/%)
where the solution varies very fast, whereas awam f
the layers the solution behaves regularly and sarie This problem exhibits an initial layer near x = 0.
slowly (Rooset al., 1996). These problems are stiff and Numerical results are presentedTiable 8 and 9
their numerical treatment presents some majorand show that the present method performs better in
computational difficulties (Ramos, 2005; Kumetral., solving stiff singularly perturbed IVPs.
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Table 3. Error for problem 4.2 at different numbers of stel.

E(x=1.0) Brax
NI y1(X) Ya(X) ya(X) Y2(X) CPU
32 4.5662e-001 3.8980e-001 4.5662e-001 3.8980e-001 000
64 1.5596e-001 1.6419e-001 1.7750e-001 1.6419e-001 000
128 1.4152e-002 1.6671e-002 2.3643e-002 1.7270e-002 000
256 3.6021e-004 6.8793e-004 5.4919e-003 7.2391e-004 000
512 6.2172e-015 8.2712e-015 9.1038e-015 8.3267e-015 000

Table 4. Maximum absolute error for various third order huets compared to the present methodx}y.

NI Lambert (1973) Niekerk (1988) Niekerk (1987) Tresent method
128 - 5.4981e-001 - 2.3643e-002

256 2.2900e-005 2.4594e-005 2.2900e-005 5.4919e-003
512 3.9324e-011 3.9285e-011 3.9324e-011 9.1038e-015

Table 5. Maximum absolute error for various third order hwets compared to the present methogx}y.

NI Lambert (1973) Niekerk (1988) Niekerk (1987) Tpresent method
128 - 2.5710e-003 - 1.7270e-002

256 6.6659e-006 6.5227e-006 6.6659e-006 7.2392e-004
512 3.8425e-011 3.8386e-011 3.8424e-011 8.2716e-015
Table 6. Error for ey'(x) = -y(x)(y(x) —1)cos(x), y(0F 0.f, ate = 0.01.

NI E(x =1.0) Enax CPU
32 2.5484e-010 2.7205e-002 000
64 1.3254e-012 2.1262e-003 000
128 1.1124e-015 1.2033e-004 000
256 1.1102e-016 7.3435e-006 000
512 2.2204e-016 4.,5858e-007 000
1024 5.5511e-016 2.8952e-008 000

Table 7. Maximum absolute error for various third order hwets compared to the present method

NI Lambert (1973) Niekerk (1988) Niekerk (1987) Tresent method
32 3.2336e-001 1.6844e-001 3.2336e-001 2.7205e-002

64 6.3922e-002 2.0369e-002 6.3922e-002 2.1262e-003
128 9.3648e-003 1.9050e-003 9.3648e-003 1.2033e-004
256 1.2233e-003 2.0804e-004 1.2233e-003 7.3435e-006
512 1.5466e-004 2.4482e-005 1.5466e-004 4.5858e-007
1024 1.9388e-005 2.9752e-006 1.9388e-005 2.8958e-00
Table 8. Error for ey'(x) = —B—loy(x)(y(x) -20), y(0)= Late = 0.01.

NI E(x = 1.0) Eoax CcPU
32 7.1218e-011 8.3838e-003 000
64 4.3094e-012 5.2925e-004 000
128 2.7001e-013 3.2854e-005 000
256 1.4211e-014 2.0499e-006 000
512 3.5527e-015 1.2807e-007 000
1024 3.5527e-015 8.0032e-009 000
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Table 9. Maximum absolute error for various third order hoets compared to the present method.

NI Lambert (1973) Niekerk (1988) Niekerk (1987) Tresent method
32 - 1.3335e-001 - 8.3838e-003

64 3.0792e-002 1.5067e-002 3.0792e-002 5.2925e-004
128 5.7584e-003 1.7731e-003 5.7584e-003 3.2854e-005
256 7.4959e-004 2.1548e-004 7.4959e-004 2.0499e-006
512 9.4739e-005 2.6572e-005 9.4739e-005 1.2807e-007
1024 2.6027e-005 3.2996e-006 2.6027e-005 8.0032e-00
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