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Abstract: Problem statement: For ordinary dynamic systems (i.e., non-delayed), various methods 
such as linear least-squares, gradient-weighted least-squares, Kalman filtering and other robust 
techniques have been widely used in signal processing, robotics, civil engineering. On the other hand, 
time-delay estimation of systems with unknown time-delay is still a challenging problem due to 
difficulty in formulation caused. Approach: The presented method makes use of the Lambert W 
function and analytical solutions of scalar first-order Delay Differential Equations (DDEs). The 
Lambert W function has been known to be useful in solving delay differential equations. From the 
solutions in terms of the Lambert W function, the dominant characteristic roots can be obtained and 
used to estimate time-delays. The function is already embedded in various software packages (e.g., 
MATLAB) and thus, the presented method can be readily used for time-delay systems. Results: The 
presented method and the provided examples show ease of formulation and accuracy of time-delay 
estimation. Conclusion: Estimation of time-delays can be conducted in an analytical way. The 
presented method will be extended to general systems of DDEs and application to physical systems. 
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INTRODUCTION 

 
 Parameter estimation deals with the problem of 
obtaining mathematical models that represent dynamic 
systems based on observed data. For ordinary dynamic 
systems (i.e., non-delayed), various methods are 
available in the literature, such as linear least-squares 
gradient-weighted least-squares, Kalman filtering and 
other robust techniques (Ljung, 1999; Panich, 2010). 
They have been widely used in signal processing, 
robotics, civil engineering. On the other hand, time-
delay estimation of systems with unknown time delay is 
a challenging problem that has attracted continuous 
attention during the last four decades (Ren, 2005). Even 
though considerable efforts have been made on 
parameter estimation, there are still many open 
problems in time-delay identification due to difficulty 
in formulation (Richard, 2003; Belkoura et al., 2009; 
Khan, 2011; El-Fallah and El-Sallam, 2011; Khan and 
Khan, 2010). Obviously, one can expect that the more 
accurate the knowledge on the delay is, the higher the 
achievable control performances will be (Richard, 

2003). If the time-delay is known, then, many powerful 
control techniques (e.g., Smith predictor, Finite 
Spectrum Assignments (FSA)) can be applied. 
 The method presented here is inspired from a well-
known technique for Ordinary Differential Equations 
(ODEs), which is available in various system dynamics 
textbooks (Palm, 2009). The technique is based on 
analytical solutions to ODEs in terms of exponential 
functions. The method has not been feasible to use for 
systems of DDEs due to lack of analytical solutions to 
DDEs. The Lambert W function has been known to be 
useful to solve DDEs (Yi et al., 2010a; Corless et al., 
1996). Through the Lambert W function-based method, 
it is possible to extend the estimation technique for 
ODEs to DDEs. This study shows the estimation of 
time-delays based on the Lambert W function with 
illustrative examples. 
 
Estimation of delay from free responses: The 
Lambert W function has been used to solve DDEs (Asl 
and Ulsoy, 2003). For example, consider a first-order 
scalar homogenous DDE: 
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dx(t) ax(t) a x(t h)= + −ɺ  (1) 

 
 Unlike ODEs, two initial conditions need to be 
specified for DDEs: A reshape function, g (t), for −h≤ t 
<0 and initial point, x0, at time, t = 0. The quantity, h, 
denotes the time-delay. The characteristic equation of 
Eq. 1 is given by: 
 

sh
ds a a e 0−− − =  (2) 

 
 The exponential term, e−sh, induced by the time-
delay term x (t-h), makes the characteristic equation 
transcendental (i.e., infinite dimensional and nonlinear). 
Thus, it is not feasible to find roots of Eq. 2, which has 
an infinite number of roots. The Lambert W function is 
defined as (Corless et al., 1996): 
 

W(x)W(x)e x=  (3) 
 
 For detailed explanations on definition and 
properties of the function, refer to (Corless et al., 1996). 
Based on the Lambert W function, a new approach has 
been developed for systematic analysis and control of 
systems with time-delays (Yi et al., 2010a). The 
function allows handling of the exponential term in the 
characteristic equation thanks to its unique definition in 
Eq. 3. Then, using the Lambert W function, the 
characteristic equation in Eq. 2 is solved as: 
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 As seen in Eq. 4, the characteristic root, s, is 
obtained analytically in terms of parameters, a, ad and h. 
Then, the solution to Eq. 2 is given by using the 
Lambert W function. Then, considering the initial 
conditions, the solution to Eq. 1 is given by using the 
Lambert W function as (Asl and Ulsoy, 2003): 
 

Skt 1 ah
k k k d

k

1
x(t) e C Where :S W (a he ) a

h

∞
−

=−∞

= = +∑   (5) 

 
 The coefficient, I

kC , is determined analytically (Yi 

et al., 2010a) or numerically (Asl and Ulsoy, 2003) 
from initial conditions, g(t) and x0. Note that, unlike 
results by other existing methods for DDEs, the 

solution in Eq. 5 has an analytical form expressed in 
terms of the parameters of the DDE in Eq. 1, i.e., a, ad 
and h. One can explicitly determine how the parameters 
are involved in the solution and, furthermore, how each 
parameter affects each characteristic root. That 
enables one to formulate estimation of time-delays in 
an analytic way. Also, each eigenvalue is 
distinguished by k, which indicates the branch of the 
Lambert W function as seen in Eq. 5. The function is 
already embedded in various software packages, such 
as Matlab. 
 
Rightmost characteristic root and the lambert w 
function: In estimating time-delays, the Lambert W 
function is used to find the rightmost eigenvalues. For 
1st order scalar DDEs, it has been proved that the 
rightmost characteristic roots are always obtained by 
using the principal branch, k = 0 (Shinozaki and Mori, 
2006). For first-order scalar delay differential equations 
as in Eq. 1, one has to consider two possible cases for 
rightmost characteristic roots: characteristic equations 
of DDEs as in Eq. 2 can have one real dominant root or 
two complex conjugate dominant roots. Thus, when 
estimating time-delays using characteristic roots, it is 
required to decide whether it is the former or the latter. 
The condition for decision is derived using the Lambert 
W function (Yi et al., 2010b). The branches of the 
Lambert W function and the specific range of each 
branch are helpful in deriving the condition (Corless et 
al., 1996). As seen in Fig. 1, when the argument of the 
function, x, is greater than -1/e the values of W0(x) is 
real. However, if x < -1/e, the values of W0(x) is 
complex and, thus, the rightmost characteristic roots are 
two and complex conjugates. Using the fact, we get the 
conclusion regarding existence of the complex 
conjugates rightmost characteristic roots as Eq. 6: 
 

ah 1
d 0

d

1 1 a
If a he (thus,h W ( e ))

e a a

then therightmost rootsarecomplex conjugates

− −< − >
 (6) 

 
 For ODEs, an estimation technique using the 
logarithmic decrement provides an effective way to 
estimate the damping ratio, ζ (Palm, 2009). The 
technique makes use of the form: 
 

2
n ns j 1= −ξω ± ω − ξ  (7) 

 
 For the characteristic root, s, of 2nd order ODEs. 
Using the characteristic root in Eq. 7, the well-known 
exact solution is obtained as: 
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( )nt 2
nx(t) Ae sin 1 t−ξω= ω − ξ + φ  (8) 

 
 From measured responses and the solution form in 
Eq. 8, the parameters ζ and ωn are estimated (Palm, 
2009). The concept is applied to DDEs as below. 
 

 

 

Fig. 1:  Two real branches of the Lambert W function: 
the principal branch, k = 0 and k = 0. Those two 
branches are used to identify the dominant 
characteristic roots of DDEs (Corless et al., 1996) 

 

 

 

Fig. 2: Spectrum: The rightmost root is always obtained by 
using the principal branch, k = 0, of the Lambert W 
function, W0 (Shinozaki and Mori, 2006) 

 

 

 

Fig. 3: Simulink model of the system in Eq. 1: the 
response of the system can be obtained through 
numerical integration of the model 

Example I: Logarithmic decrement for estimation 
(Oscillatory): Consider the system in Eq. 1 with 
parameters, a = −1, ad = −1.5 and h = 1, with x0 = 1 and 
g (t) = 1. As explained in Introduction, DDEs have an 
infinite number of characteristic roots (e.g., see Fig. 2). 
Thus, the solution to DDEs has the infinite series of the 
exponential of the characteristic roots as seen in Eq. 5. 
Note that the rightmost roots are always obtained by 
using the principal branch (k = 0) and/or k = −1 
(Shinozaki and Mori, 2006). 
 Instead, even though it is not an exact solution, 
using only the two rightmost (i.e., dominant) complex 
conjugate characteristic roots (s0 = −0.3070 + 1.9176i 
and s−1 = −0.3070 -1.9176i), the free solution can be 
approximated as: 
 

s0t s 1t s 1t s0t s 1t
0 1 1 0 1x(t) C e C e C e ... C e C e− + −

− + −= + + + +≃  (9) 

 
where, C0 and C−1 are complex constants. Or, using 
Euler’s identity the approximated solution in Eq. 9 can 
be written in the form of: 
 

( )0.3070tx(t) Be sin 1.9176t− + φ≃  (10) 

 
where, B and φ are constants. The solution form in Eq. 
10 is similar to solutions to 2nd order ODEs. 
Comparing the ODE solution in Eq. 8, one can find the 
relation: 
 

n

2
n

R(s) 0.3070

s 1 1.9176

= ξω = −

ℑ( ) = ω − ξ =
 (11) 

 
 Then using algebraic manipulation, one can get 
Eq. 12: 
 

2 2
n 2 2

R(s)
{R(s)} { }(s) ,

{R(s)} { (s)}
ω = + ℑ ξ =

+ ℑ
 (12) 

 
 With the numbers in Eq. 11, the resulting damping 
ratio is ζ = 0.1581. Also, the damped natural frequency: 
On the other hand, the response of the system in Eq. 1 
can obtained by running simulation using 
Matlab/Simulink as shown in Fig. 3 for the same 
parameters. Then, the result response, x(t), is depicted 
in Fig. 4. As seen in the figure, the peaks are: 
 

peak1 1

peak2 2

peak3 3

X 0.4074,when t 2.9000

X 0.1492,when t 6.1800

X 0.0546,when t 9.4500

= =

= =

= =

 (13) 
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Fig. 4: Response obtained through numerical integration 

of the Simulink model in Fig. 3 
 

 
 
Fig. 5: Iteration of fslove to estimate the time-delay, h: 

Initial guess for was 2.5 and the final answer is 
1.0014. The actual value is 1 

 

 
 
Fig. 6: Response obtained through numerical integration 

of the Simulink model in Fig. 3 for a = −1, ad = 
0.5 and h = 0.5 

 
 The logarithmic decrement δ is defined as the 
natural logarithm of the ratio of two successive 
amplitudes; that is: 
 

peak1 1 peak 2 2

peak2 2 peak3 3

x (t ) x (t )x(t)
In In In

x(t P) x (t ) x (t )

    
δ ≡ = = =        +     

 (14) 

where, P is the period of the response, x(t). Then, the 
damping ratio can be obtained by using Eq. 10 and 14 
as (Palm, 2009): 
 

2 24

δξ =
π + δ

 (15) 

 
 For the values xpeak1 and xpeak2 in Eq. 13, δ = 1.0043 
and, thus, ζ = 0.1578. The frequency ωd is also 
estimated from the response in Fig. 4 as ωd = 2π/P = 
1.9156 where the period is P = t2−t1 = 3.28. The values 
obtained by using the Lambert W function and 
measuring peaks of the response are close. 
 
Estimation of time-delays: Assume that the time-
delay, h, is unknown and the response is measured as in 
Eq. 13. Then, using the analysis the unknown 
parameter, h, can be estimated by following the steps: 
 
Step 1: Measure peak amplitudes and times (e.g., Eq. 

13 
Step 2: Calculate ζ and ωd (e.g., Eq. 15) 

Step 3: Calculate the root 2
n n 1 iξω + ω − ξ  

Step 4: Solve the equation ah
0 d

1
s W (a he ) a

h
−= +  

 
 Note that in Step 4, the equation is nonlinear 
function with only one unknown, h. The equation can 
be solved nonlinear solvers (e.g., fsolve in Matlab). As 
shown in Fig. 5, when the results in Eq. 13 are used 
(see Fig. 5), the estimated time-delay is 1.0014 and 
close to the actual value (h = 1). 
 
Example II: Logarithmic Decrement for Estimation 
(Non-Oscillatory) 
 Consider the system in Eq. 1 with parameters, a = 
−1, ad = 0.5 and h = 0.5. Then the simulated response of 
the system is shown in Fig. 6 
 The estimation method is very similar to the 
previous example. However, unlike that of Example 1 
in Fig. 4, the response in Fig. 6 decays simply over time 
with any peak. Thus, instead of peak values as in Eq. 13 
the value of x(t) is measured for every one second. 
Then, the values are: 

 

1 1

2 2

3 3

4 4

5 5

x 0.661,when t 1

x 0.447,when t 2

x 0.302,when t 3

x 0.204,when t 4

x 0.138,when t 5

= =

= =

= =

= =

= =

 (16) 
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Fig. 7: Iteration of fsolve to estimate the time-delay, h: 

Initial guess was 2 and the final answer is 
0.4766. The actual value is 0.5 

 
 The decay rate γ is obtained as the average of the 
natural logarithm of the ratio of two successive 
amplitudes; that is Eq. 17: 
 

1 2 3 4 5

1 2 3 4

x x x x x
In In In In In

x(0) x x x x

5

       
+ + +       

        γ ≡  (17) 

 
 Using the values in Eq. 16, the value decay rate is 
γ= -0.3961. Because the rightmost characteristic root 
the system is single and real, the free solution can be 
approximated as Eq. 18: 
 

s0t s 1t s0t
0 1 0x(t) C e C e C... C e−

−= + + ≃  (18) 

 
 Finally, one can get the equation as: 
 

1 h
0 0

1
S W (0.5 h e ) 1 0.3961

h
− ×= × × + = − = γ  (19) 

 
 The Eq. 19 has one unknown and, thus, can be 
solved using nonlinear solvers. When using fsolve in 
Matlab with 1 as the initial guess for the time-delay, h, 
the iteration is shown in Fig. 7. The estimated time-
delay is 0.4766 and close to the actual value (h = 0.5). 
 

CONCLUSION 
  
 This study has presented a new tool for the time-
delay estimation of 1st order time-delay systems. Use 
of the Lambert W function enables solving for the 
characteristic roots and identifying the rightmost ones. 
From the responses in the time-domain the real and 
imaginary parts of the rightmost characteristic roots are 
approximated. Then by equating them to the rightmost 
characteristic roots in terms of the Lambert W function, 
one can formulate estimation of time-delays. The 

provided examples illustrate ease of use of the method 
and effectiveness considering difficulty in estimating 
time-delays. The presented method will be extended to 
general systems of DDEs (higher than 1st order) using 
the matrix Lambert W function (Yi et al., 2010a) and 
will be applied to delay problems in network systems 
and fault detection of actuators by authors. 
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