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Abstract: Problem statement: For ordinary dynamic systems (i.e., non-delayedyjous methods
such as linear least-squares, gradient-weightedt-tepiares, Kalman filtering and other robust
techniques have been widely used in signal proogssbbotics, civil engineering. On the other hand,
time-delay estimation of systems with unknown tideay is still a challenging problem due to
difficulty in formulation causedApproach: The presented method makes use of the Lambert W
function and analytical solutions of scalar firstker Delay Differential Equations (DDESs). The
Lambert W function has been known to be usefuldlvisg delay differential equations. From the
solutions in terms of the Lambert W function, th@rdnant characteristic roots can be obtained and
used to estimate time-delays. The function is diyemmbedded in various software packages (e.g.,
MATLAB) and thus, the presented method can be headied for time-delay systemBesults. The
presented method and the provided examples shosvdaa®rmulation and accuracy of time-delay
estimation. Conclusion: Estimation of time-delays can be conducted in aalyical way. The
presented method will be extended to general systddDES and application to physical systems.

Key words: Delay Differential Equations (DDEs), Finite SpeatruAssignments (FSA), Ordinary
Differential Equations (ODES), various software ksges

INTRODUCTION 2003). If the time-delay is known, then, many pdwier
control techniques (e.g., Smith predictor, Finite
Parameter estimation deals with the problem ofSpectrum Assignments (FSA)) can be applied.

obtaining mathematical models that represent dyoami The method presented here is inspired from a well-
systems based on observed data. For ordinary dgnamknown technique for Ordinary Differential Equations
systems (i.e., non-delayed), various methods aréODESs), which is available in various system dyrzami
available in the literature, such as linear legstases textbooks (Palm, 2009). The technique is based on
gradient-weighted least-squares, Kalman filterimgl a analytical solutions to ODEs in terms of expondntia
other robust techniques (Ljung, 1999; Panich, 2010)functions. The method has not been feasible tofarse
They have been widely used in signal processingsystems of DDEs due to lack of analytical solutitms
robotics, civil engineering. On the other hand,eim DDEs. The Lambert W function has been known to be
delay estimation of systems with unknown time désay useful to solve DDEs (Yét al, 2010a; Corlesst al,
a challenging problem that has attracted continuoug996). Through the Lambert W function-based method,
attention during the last four decades (Ren, 20B8%n it is possible to extend the estimation technigoe f
though considerable efforts have been made o0©®DEs to DDEs. This study shows the estimation of
parameter estimation, there are still many opertime-delays based on the Lambert W function with
problems in time-delay identification due to difflty  illustrative examples.
in formulation (Richard, 2003; Belkourat al, 2009;
Khan, 2011; El-Fallah and El-Sallam, 2011; Khan andEstimation of delay from free responses. The
Khan, 2010). Obviously, one can expect that theemorLambert W function has been used to solve DDEs (Asl
accurate the knowledge on the delay is, the hi¢iier and Ulsoy, 2003). For example, consider a firsieord
achievable control performances will be (Richard,scalar homogenous DDE:
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X(t) = ax(t)+ g x(t- h) (1) solution in Eq. 5 has an analytical form expressed
terms of the parameters of the DDE in Eq. 1, aea
Unlike ODEs, two initial conditions need to be and h. One can explicitly determine how the paramset

specified for DDEs: A reshape function, g (t), ot~ &€ involved in the solution and, furthermore, heach
<0 and initial point, ¥ at time, t = 0. Tﬁe quémtit_y h. parameter affects each characteristic root. That

denotes the time-delay. The characteristic equation €nables one to formulate estimation of time-deiays

Eq. 1 is given by: an anglytic way. Alsq, _each eigenvalue is
distinguished by k, which indicates the branch o t

s—a-g &= ( ) Lambert W function as seen in Eq. 5. The functi®n i
already embedded in various software packages, such
as Matlab.

The exponential term,”®, induced by the time-
delay term x (t-h), makes the characteristic eguati

transcendental (i.e., infinite dimensional and naedr). ¢ o | e ime-del he Lambert W
Thus, it is not feasible to find roots of Eq. 2,igthhas 'unction: In estimating time-delays, the Lambert

an infinite number of roots. The Lambert W functign fUnction is used to find the rightmost eigenvaluést
defined as (Corlesat al, 1996): 1st order scalar DDEs, it has been proved that the

rightmost characteristic roots are always obtaibgd
using the principal branch, k = 0 (Shinozaki andrivio
2006). For first-order scalar delay differentiabiations

as in Eq. 1, one has to consider two possible dases
rightmost characteristic roots: characteristic ¢igna

of DDEs as in Eg. 2 can have one real dominanta@oot
%o complex conjugate dominant roots. Thus, when
estimating time-delays using characteristic rodtss

Rightmost characteristic root and the lambert w

W(x)e"™ = x 3)

For detailed explanations on definition and
properties of the function, refer to (Corletsal, 1996).
Based on the Lambert W function, a new approach h
been developed for systematic analysis and coofrol

systems with time—delays (vet al, 2(_)10a). The required to decide whether it is the former or ldtter.
function allows handling of the exponential termifie o oo ition for decision is derived using the ke

characteristic equation thanks to its unique dédiniin W function (Yi et al, 2010b). The branches of the

Eq. 3. Th(_en, using t.he La”?be” w fu!']cnon, theLambert W function and the specific range of each
characteristic equation in Eq. 2 is solved as: branch are helpful in deriving the condition (Ceset
al., 1996). As seen in Fig. 1, when the argumenhef t

(s-a) €= 2 function, x, is greater than -1/e the values of(W/is
h(s- a)é "= 3 he™ real. However, if x < -l/e, the values of (%) is

ah\ w(adhe ah)_ o complex and, thus, the rightmost characteristi¢saoe
W(a“he ) & =ahe ) two and complex conjugates. Using the fact, wetlyet
h(s- a)= V\,( a héa“) conclusion regarding existence of the complex

1 conjugates rightmost characteristic roots as Eq. 6:
szﬁw(q, héa“)+ a

_ 1 1 _
If a;he™ < —= (thus, k> = ]
As seen in Eq. 4, the characteristic root, s, is ° e( a W% )

obtained analytically in terms of parameters,q@ral h.  then the rightmost roots are complex conjusk

Then, the solution to Eq. 2 is given by using the

Lambert W function. Then, considering the initial L . .

conditions, the solution to Eq. 1 is given by usthg For ODEs, an estimation technique using the

Lambert W function as (Asl and Ulsoy, 2003): Ioggnthmlc decreme_nt pr0\{|des an effective way to
estimate the damping ratia; (Palm, 2009). The

technique makes use of the form:

s=-Ew, + jw,/1-&° 7
The coefficient,C, , is determined analytically (Yi
et al, 2010a) or numerically (Asl and Ulsoy, 2003) For the characteristic root, s, of 2nd order ODEs.
from initial conditions, g(t) and x Note that, unlike Using the characteristic root in Eq. 7, the welbkm
results by other existing methods for DDEs, theexact solution is obtained as:
956

(6)

x(t) = ieSk‘ci Where:§:% W (a & 9 (5)



x(t) = Ag " sin(oon 1-&%t+ (p)
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(8)

Example |: Logarithmic decrement for estimation
(O<cillatory): Consider the system in Eqg. 1 with
parameters, a = -14& —-1.5 and h = 1, withp= 1 and

From measured responses and the solution form ig (t) = 1. As explained in Introduction, DDEs haae

Eq. 8, the parameters and o, are estimated (Palm, infinite number of characteristic roots (e.g., §ég 2).
2009). The concept is applied to DDEs as below.

Lambert W function W (x)

-3r -1le

8}
n

Thus, the solution to DDEs has the infinite sedéthe
exponential of the characteristic roots as sediqn5.
Note that the rightmost roots are always obtaingd b
using the principal branch (k = 0) and/or k = -1
(Shinozaki and Mori, 2006).

Instead, even though it is not an exact solution,
using only the two rightmost (i.e., dominant) coel
conjugate characteristic roots, (s —0.3070 + 1.9176i
and s; = —-0.3070 -1.9176i), the free solution can be
approximated as:

X(t)=C, "+ C,e"+ C, €™+ .= ¢c& g &' (9

Fig. 1. Two real branches of the Lambert W funttio where, G and C; are complex constants. Or, using
the principal branch, k = 0 and k = 0. Those twoEuler’s identity the approximated solution in Eqcén
branches are used to identify the dominantbe written in the form of:

characteristic roots of DDESs (Corlextsal, 1996)

40 X
30 - x . Rightmostroot obtained by using
20 the principal branch (k = 0) 5o =-
PAVE X
0.3070 +1.91176;
X \
> 10k \
& x A
v x
°r x
-10 | x
. /
20 L % 5.1 =-0.3070-1.9176i
30 b *
x
40 L_x

Fig. 2: Spectrum: The rightmost root is always lete by
using the principal branch, k = 0, of the Lambert W

s

R (s)
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function, W (Shinozaki and Mori, 2006)
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Fig. 3: Simulink model of the system in Eq. 1: the
response of the system can be obtained through

Out.1

numerical integration of the model

X(t) = Be % sin( 1.9176t ) (10)

where, B andp are constants. The solution form in Eq.
10 is similar to solutions to 2nd order ODEs.
Comparing the ODE solution in Eq. 8, one can fimel t
relation:

R(s)=&w, = -0.3070

0(s) = w, /1~ & = 1.917¢

Then using algebraic manipulation, one can get
Eqg. 12:

(11)

0, = RO+ 1K) 2 £ :{R(S»Fi(f{)[@}z (12)

With the numbers in Eqg. 11, the resulting damping
ratio is¢ = 0.1581. Also, the damped natural frequency:
On the other hand, the response of the system il Eq
can obtained by running simulation using
Matlab/Simulink as shown in Fig. 3 for the same
parameters. Then, the result response, x(t), isctiep
in Fig. 4. As seen in the figure, the peaks are:

X peaka = 0-4074, whent= 2.900
=0.1492,whent= 6.180 (13)
X peas=0.0546,when = 9.450(

peak 2
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Fig. 4: Response obtained through numerical integra
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\ X(1=2.9)=0.4074
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X (t=9.45) = 0.0546
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Fig. 5: Iteration offsloveto estimate the time-delai;
Initial guess for was 2.5 and the final answer is
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where, P is the period of the response, x(t). Thies,
damping ratio can be obtained by using Eq. 10 ahd 1
as (Palm, 2009):

o)
= - 15
¢ VAT? + &7 (13)

For the values gax and ¥eakzin Eq. 136 = 1.0043
and, thus,{ = 0.1578. The frequencwy is also
estimated from the response in Fig. 4ags= 2u/P =
1.9156 where the period is P =t; = 3.28. The values
obtained by using the Lambert W function and
measuring peaks of the response are close.

Estimation of time-delays: Assume that the time-
delay, h, is unknown and the response is measurad a
Eq. 13. Then, using the analysis the unknown
parameter, h, can be estimated by following thpsste

Step 1. Measure peak amplitudes and times (e.qg., Eq
13
Step 2: Calculaté andwg (e.9., Eq. 15)

Step 3: Calculate the ro@to, + w,y/1-&%i

Step 4: Solve the equati(m:% W, (a,he™ ¥ ¢

Note that in Step 4, the equation is nonlinear
function with only one unknown, h. The equation can
be solved nonlinear solvers (e.g., fsolve in M3tlaks
shown in Fig. 5, when the results in Eq. 13 areduse
(see Fig. 5), the estimated time-delay is 1.001d an
close to the actual value (h = 1).

Example 1l: Logarithmic Decrement for Estimation
(Non-Oscillatory)

Consider the system in Eq. 1 with parameters, a =
-1, a = 0.5 and h = 0.5. Then the simulated response of
the system is shown in Fig. 6

The estimation method is very similar to the
previous example. However, unlike that of Example 1
in Fig. 4, the response in Fig. 6 decays simply dwvee

Fig. 6:Response obtained through numerical integra with any peak. Thus, instead of peak values agjinlB8

of the Simulink model in Fig. 3 for a=1, ad =

the value of x(t) is measured for every one second.

05and h=0.5

The logarithmic decremend is defined as the
natural logarithm of the ratio of two successive

Then, the values are:

X, =0.661,whent= 1

amplitudes; that is:

x(t)

5= In( ] = In[ Xpeal ) ]= In(X pakd! }] = (14
X(t + P) XpeakZ(t 2) X peak&t )

X, =0.447,when} =

X, =0.302,when}=

X, =0.204,whenf=

X, =0.138,whent =
958

N ('S I NEN

tm

(16)
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r provided examples illustrate ease of use of thenoukt

Initial guess of h =2 . . . . . ..
- and effectiveness considering difficulty in estimgt
o ] time-delays. The presented method will be exterided
general systems of DDEs (higher than 1st ordengusi
the matrix Lambert W function (Yeét al, 2010a) and
. P will be applied to delay problems in network system
and fault detection of actuators by authors.

Estimated time-delay (h)

N * *
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