American Journal of Applied Sciences 9 (6): 83281112
ISSN 1546-9239
© 2012 Science Publications

Reengineering L egacy to Modern System with
One Time Checker for Information System Evolution

Sudhakar, P. and P. Sakthivel
Department of ECE, Faculty of Information and Comimation Engineering,
Anna University, Chennai, India

Abstract: Problem statement: The prime focus of Information System (IS) evalatiprocess is the
aggrandize productivity and quality of various caments of the system. The evolution process is
always challenging as it leads to an increase @ralvcomplexity especially when the system changes
are mostly confined to part of iApproach: In this respect to improve efficiency and decrease
complexity, we propose a Reengineering model narRelgngineering Legacy to Modern (RL2M)
system. In this proposed work, reengineering tepmiwas implied to demonstrate how modern
system could be obtained by converting a legacieay®r application. This approach was developed
to impose the dynamic program slicing as a metheldich was basically used for simplifying
programs by focusing on selected aspects of seosarfo avoid the issues of reengineering, we
propose a method named One Time Checker (OTC)€dgady system conversion. Before the
implementation of the migrated system, the conmgrgystem enters into OTC which was easily
integrated with any reengineering approaRlesults: The intermediate outcome of RL2M was to
compute the dynamic slices for the legacy systelne dbtained slices would be converted to a new
system which was further integrated to a Very La$gale Integrated (VLSI) application. In several
VLSI applications, the integration could be morditeis by mapping the entire system components.
A wrapper was created which acts as a common aderthat would be linked with the legacy
system for effective conversio@onclusion: During reengineering, all the legacy systems are n
compatible with the new system, which leads to énaacy. The main advantage of this proposed
work is the OTC can be integrated with any reengiimg process and it is virtual to end user with
respect to the application.

Key words: System evolution, legacy system, reengineeringadyc slicing, wrapper, VLSI

INTRODUCTION interface between the applications. When the system
reusable, then the system components shared by the
Legacy systems are old computer systems that afigew system and hence the repetition is avoidettiete

continuously be used as they still function for theer components are too complex, then it is difficult to
requirements. A software program in the legacyesyst modify and extract the information to new systerne T
is expected to perform for many years and alsongude cost, platform and time are the main featuresdeatde
frequent updates and changes. Constant changasho s that whether the older system is easy to maintaito o
legacy software systems are always expected to fag@develop or redesign the system to modern one.
some quality issues. A way to eradicate those probl Major researchers are still working with systems
in the legacy system s Reengineering. Thenhat were designed and implemented long ago for
reengineering IS a method of analyslls. and 9aiNiNgarious organizations. Those systems depend upon
comprehensive knowledge from the existing system S2ome older technologies and their platforms wouwt n
as to rebuild the source code according to the new . o
system requirements. During the new systemo.ro.vIde easy support to the USETS. Moreover itewy v
development process, programmers have higher ¢dvel difficult to add more functionality in a Iegacy_sﬁgm .
abstraction in statement level, usually with thép hef and also to_o complex to recover from situation® lik
an application development environment. This studyr@rdware failure, disaster etc. and Legacy systeeds
describes an imp|ementation of a wrapper that @n bCOﬂtanOUS maintenance which requires SlgnlflCM.C
used to translate/rehost the legacy programs im0 t The prices of the new system are fallen so much
new systems. A good reengineering approach shoultecently and the things are feasible because oé wid
hide the complexity of legacy system. It acts as aravailability of components.

Corresponding Author: Sudhakar, P., Department of CSE, Faculty of Inféienaand Communication Engineering,
Annamalai University, Annalamalai Nagar, India
832

Am. J. Applied Sci., 9 (6): 832-841, 2012

Reverse engineering address, omissions and include upgrades and repeat
these process until desired level of migration is
m achieved. In RL2M, the program slicing is usedles t
Apply RL2M |l N jodem debugging technique in the system extraction psoces
system The program slicing is a well established technitpre
program understanding and comprehension. In oaler t
increase the precision of the program slicing,netihe

Legacy

A 4

system

w program slicing with dynamic point of data which is
known as dynamic slicing. For Migration, we use
Forward engineering wrapping which surrounds the existing thing, indisel
and application system and acts as an interfack wit
Fig. 1: RL2M System Overview new operations. Hence, reengineering with wragpi

o o)) gives a new and improved look to a legacy systém. |
By considering these factors, it is essential talifyoor the |egacy system is infeasible then the good isoius
transform the legacy system to the modemyy wrap the legacy system. The time needed for
environment. It is about retaining and extending th \yyapping is minimum comparing to redeveloping or
value of the legacy investment through migration torestrycturing which are the phases of reengineering
new platforms.The process of re-organising a system Almost all the reengineering activities perform a
that related components are collected together in @,ccessful transformation. But they failed to prela
single module. Usually a manual process is camigtl oot resultant system. Consider a legacy system
by the sy]'csterr]n wgspectllon_ anpl re-orgaryldsano;:. Th ighly constrained then the transformation itselfai
p?c;pgsgtign :;[m((aj i:n a(e(:\{oal:]g?r;isls to provide changeyqious one. After the transformation the resultant
P pTr?e above diagpram Fig y1 gi'ves the simple procesgys'[er.n will not provide user friendly system. More
X effort is requires to examine and alter the tasystem

activities i.e., the overview of RL2M. The trangbat of S) . .
the legacy to improved system is called forwardwh'Ch is a time consuming process. The transfoonati

engineering and vice versa. In reengineering, it idS NOt possible for a large process and erroneasis t
tedious to assure that the changes made in theylegacriented —system. Though the transformation is
system will not introduce any bugs in the migratingSuccessful, the updating to that target system in
system. The existing system is typically structuirgd consideration of latest technologies is a tediask.t
multiple components, each consisting of hundreds oPuring reengineering, it is tedious to analyzelégacy
Lines of Code (LOC) and components. Beforesystem. The major problem faced in the reengingerin
migrating the source code to target code, we shouldctivity is that one-part of the reengineering telzawe
have at least a partial understanding of existinghe knowledge on legacy systems and others hawe onl
software. The existing systems are often hard ton the target system. Based on the assumption, the
maintain, improve and expand is the reason beltiad t transformation is made especially in the situatisash
migration. The basic reengineering tasks areas bigger size, time pressures, the exclusive ifumebf
preparation for functional enhancement, improvelegacy and target systems etc., as they are indistepa
maintainability, migration, improve reliability efclt with each other. In reengineering there are many
makes the software easier to change and improve ifsossibilities for the incompatibility, inaccuracy
reusability. The ultimate thing of Reengineeringtds moreover they are very contrast with each othem Ou
!ietﬁpttlhe gldtertsystetm af itis and add the newshin 5 nnsed RL2M also faces all those problems. Fsr th

' aMiS?atiSngo f‘orgea S%/Zv?/mblatform eads to align PUIPOSE: We propose a new method named One Time
applications with current and future needs throttgh _Chelpker (OTCr)] folr(Ie%acy system conversion. A§ game
addition of functionality and through application Iurggrlerse(?u-li-rce:rzei(t:sSs;ties;:(r:?i?)tnsycs)tjrmp?gggsae%algT(z:r is
restructuring. A process of converting a predeteehi not built for RL2M it is only implemented in RL2M.

code to another with a same or different code lieda oTCi v int tod | . .
code conversion. The code conversion process ¢snsis~ ', IS €asily Integrated in any reengineering appino
which enhances the reengineering process.

of a number of specific steps as follows: Desigrdato
target programming system after analyzing legacy ,)
programming system and its attributes, developqelf?‘ted work_: In the literature, only few t_hmgs are
migration model and associated procedures betweedvailable which address database reengineering and
legacy and target systems. Convert the legacy tmde Software quality. Manual translation of legacy to
modern language through compiling/simulating therne modern system is the most common approach. In this
test program, refine models to correct anomaliesapproach, two editors are required for legacy and
833

Am. J. Applied Sci., 9 (6): 832-841, 2012

modern system separately. The effectives of theualan method how to convert the legacy source code toeinod
translation process are determined by the degree fi@iven architecture. Zahi and Sarh(@009) discussed

which the legacy code meets the compatibilityabout the business process retrieval from the iegac
considerations. It is impossible for migrating krg information system through functional analysis of

programs using manual conversion such as VLSlstahile components of the legacy system.
Another approach is an automated translation aidgg

system to modern language. This approach performs MATERIALSAND METHODS
rigorous analysis on a legacy system, providingutbet

output on the changes required to the new systéis. T
approach allows easy movement between legacy a
modern language. But the effectiveness measured b
means of technique and the effort put on that tieclen

Existing research work extracts the legacy systeah s legacy system (3) Slicing of the code (4) Mapping
as rules. Many approaches to the reuse and in@grat g4 ,rce and destination program to create temp8jte (
of legacy system took_pla_ce in the previous wotks. Creating a wrapper (6) Execution (7) Integrate &SV
legacy system modernization, number of approaches kpplication. The RL2M architecture is shown in Hig.
available and several techniques were proposedeSomp_ |nitially, the source program is analyzed thaplies
of the work presents a generalized model of thehe inventory of all applications “artifacts”. lhis step,
software life cycle that recognizes explicitly the we have to analyze all the components of the legacy
legacy system to the attainment of new system frongystem including tables, views, indexes, data [mgfi
reusable components. In the constructs identification, the legacy progres

Jainet al. (2011) propose a method to extract ataken with various constructs. Then the programh wit
business rule from a legacy C++ without reengimegri required_ constructs is categorized according tarobn
Zhanget al. (2011) gives some to find the variables flow activities. It also enables to check whethke t
occurrence in the instruction stream. Stilkerithal. |€gacy system follow the syntax and semantic. The
(2011) discussed about how to combine isolatedclega primary requirements for these construct 'de““m?

) . . . the input source program should be executable én th

components with the mixed mode operation. Siegh

| (2010 dacl di ¢ h desired environment. These programs are categorized
al. (2010) generated a class diagram from eventsevhelyenenging upon the constructs. If all the requénets

the OOA techniques usefulness and interaction igre satisfied, then the legacy program is compited
increased significantly. Bastaki (2012) developed ajields a batch file for the program slicing.
based framework using JAVA applets in an interactiv For the given input program the slices are

manner by providing the simulation of executabletC+ computed for obtaining the program slice of smaller
code. Cheret al. (2010) developed a method to classsize or of equal size in the worst case for theiqdar
diagram and sequence diagram from the Java bina§xtension of the program. Dynamic slicing is onehef
byte code. Costat al. (2010) developed an open Program slicing techniques Wher_e the source program
source java framework to help students in theifd€Composes and produces the slices.

approach to the study of graph algorithms. It idetsia

In this study, we propose a new model called
r%sengineering Legacy to Modern system (RL2M) for
abstracting source code from legacy system. This
pproach involves the functionalities: (1) Program
analysis (2) Identification of the constructs frahe

library that anyone can easily use to develop custo Input program Program Consiructs
algorithms. Mousaviet al. (2010) gave an Ontology > analysis P identification
driven PRS like model (O-PRS), which used Ontology

with OWL format to represent Believes, Plans and l
Events .It implementing BDI agents which are used i

Mobile Workforce Brokering Systems (MWBS), a Mapping Template Program
multi-agent system that automated the process of €] creation € slicing
allocating tasks to Mobile Workforces. Merey al.

(2011) introduced a method for efficient migratiafy
legacy system to web applications. Hwagl. (2009)

focused on improving reusability and extensibility Wrapper Execution VLSI
legacy system and proposed an automated approach t creation > > system
migrating legacy systems. Mustafet al. (2005)

discussed various demerits and limitations of the
current reengineering techniques. They also idedté Fig. 2 RL2M Architecture Diagram
834

Am. J. Applied Sci., 9 (6): 832-841, 2012

The input program contains faults in which The application of this algorithm are architecture
program slicing determine those statements and theeconstruction, identify reusable functions, progra
failure has been revealed for a given input. It§rall ~ comprehension, debugging and maintenance. Hence the

the statements in a legacy system that affectyahee 1aws are relieved fr?.m 4 Ifega;:]y systemsa Ifl. all the
of the variable occurrence. It is used for simptify requirements are satisfied for the computed slites)

) . the RL2M system will create a corresponding filatth
programs by focusing on selected aspects of secsanti

| _ ¢ hat infl he valiih contains the main function of a target system as a
t consists of statements that influence the valithe o pjate. A template method defines the program

variable occurrence for a specific program inpu&l$o skeleton of an algorithm. The mapping is a coltectf
distinguishes between multiple occurrences of #vees opjects that specifies the transformations that are
instruction. Program slicing has the ability toisisén required to migrate a part of the legacy systenme Th
tedious and error prone tasks. In RL2M, a noveldynamically sliced construct of the source progeard
algorithm is presented below to perform a progranthe obtained slice are mapped to the destination
slicing. This algorithm initially gets the input Program. Itis sophisticated to the user while gheper
program and defines the slicing criteria in whitlet name given for the template because the destination
slicing variable is initialized. The algorithm faer ~ (@rget system attain the output position. This is
splits a program and checks the program for errorg)€cessary that the sliced output is again c_onvet[te.d

) X . , the source code rather than contain the instrustion
This algorithm checks the input program without

_ ;) . _"number alone and avoid overlapping or collisions
tedious computational complexity also with less&im patveen the legacy systems.

for computation. Wrapper is a popular software component that
. o converts a system from one version to another. &ega
Algorithm for program slicing: systems can be used on various models ranging from
standard file structures to relational and data etsod
1. Get the Input program to be sliced To deal with this heterogeneity, a wrapper must hid
2. Define the slicing criterias(, v) wheres = the model that a legacy system implements by
statement numbey,= slicing variable providing a more and common model e.g. a canonical
3. Check whether the slicing variablds present in model that is highly generic and more flexible thhe
statement numbexin the Input program legacy systems. Wrapping surrounds the existing, dat
4. Ifvis available irs, go to step 5, else escape line individual program, application system and inteefac
and continue with new operations. Hence wrapping gives a new and

5. Letk = v; count_line = 0; array found_variablesj ~ Improved look which allows reusing legacy
- - components. This component helps in complex

=V .
6. For each statement liné in Input program problems which unlocks the value of the legacy tnhpu
' statements and open a new solution to rebuild the legacy syste

In RL2M it actually includes a new source to a lega
system by act as an interface between them. Wheen th
legacy system are kept unchanged, while the new

{count_line =count_line+ 1
If variablek is present irh then

{move the statement lirleto an arrayound [] }} component is designed and developed by the modern
7. lineno=0 practices. Wrappers are used to extract, updade a
8. Let converted [] to store converted codet as control the implicit constructs of the legacy systby
statementemt as comment anfth as function the preceding steps. Wrappers provide robustmess
9. For each statement lihén arrayfound [] also deliver a target system in an effective martoer
{Let variablek = found [line_no] the user. It is typically encompasses a combinatibn
If variablek = st then other process such as reverse engineering, rastingt
{Convertk and Addto arrayconverted [] and forward engineering.
Execution is the process by which a computer or
If variablek = fn then avirtual machine carries out the instructions of

a computer program of new application. The

instructions in the program trigger sequences rop&

If variablek = cmt then actions on the executing machine. Thos_e actions

produce effects according to the semantics of the

{Add kto arrayconverted] ~ } instructions in the program. The migrated code bl
line_no =line_no + 1} used in a VLSI application where Integrated Circuit

10. Display arragonverted] (IC) contains millions of transistors, each a femrim

835

{Convertk and Addto arrayconverted []
}

Am. J. Applied Sci., 9 (6): 832-841, 2012

size for a specific function. Because of wide raggof
application, the destination program is applie/irSl Legacy system Target system
application. It is laborious since it has charast&s
such as process variation, stricter design rulest:jass
success etc., Integration of VLSI sometimes leads t

serious effects which are avoided by OTC. To canaer

legacy system to modern system, the RL2M first
preprocess the input legacy system for their fomsti
and then convert the functions to the modern system

A

Each of the above mentioned process in the RL2M v
has got their own importance. The assumptions made Reenaincerine Target system
are that during the slicing of the required corastit is process execution and
necessary in getting back the input program andldho compilation
ensure efficiency and accuracy of target systenmcele

each process is in turn dependent on each other. Th
entire RL2M is going to be sequential. No procems c
be give priority. The RL2M has to be carried outFig. 3: Process Diagram of OTC

sequentially not simultaneously. The main challeimge

any reengineering approach is to take legacy system OTC provides very easy and user friendly
and deliver a good translation methods and ate#ut conversion system that will support all the platfsr It
which leads to a new target system that keepslth& o 550 provides the integration among the resource

functionality while applying translation method it op, 4 ing with the distributed environment along vitis

any serious defects. For this purpose, OTC is a . . .
sophisticated and valuable methodology for the'eW technologies such as web services and tradlition

reengineering. It applies a gradual process in @ethods. In additio.n, our proposed component suit f
reengineering approach and produces a target systeifferent programming languages that would be able
which satisfies the target system compatibility andcommunicate with the network also. The idea fos thi
requirements. As name implies OTC checks the targetchnique is quite simple based on a fact that each
system once again for its user requirements safisfa system has its own peculiar and exclusive function.

It is based on Meta programming concept. It is @opl this OTC, tokenization will be performed which is a
as pattern based generation and it is an autort@séd inoar one. The set of delimiters which defaults to

OTC mainly used in situations like where hard tawe ommon whitespace characters mav be specified at
the target system complicated transformations, VLS o P nay P
creation time or on a one token basis.

integration, time consuming process etc. i -a])
Each system has its own peculiar and exclusive N this OTC, we have built-in functions which
function. All systems follow some unique patter®sir ~ comprises of Libraries, Tokenization, Pattern miagh
aim is to define and identify that pattern befohe t and the special function contains the appropriatere
implementation of the converted target system. Thisand their solutions. After the termination of

approach is automated wherein the manual conversioengineering process the resultant system istetser
is also available as optional at the stage of el@twf ;410 OTC then the target system is obtained. Is thi

target system. Our approach is suggested for man%rc fiag is introduced when the flag is true thae t
business organizations as it captures the legasigrsy resultant is readv for compilation and it is falsen we
and represents them accurately. To overcome all theeSu ' y priat It W

above mentioned drawbacks on every approach, wenSure that the resultant syst.em contains someuseri
introduce a new method where the bug detection an@ITors or exceptions. When it leads to false them t
rectification is done on target system. The basidiuman interaction may be needed for examination. Fo
requirements expected for OTC is a legacy systetn anthis purpose, we develop a window which contains
the method for reengineering. The compiled legacyerror and warnings. It is automated and producesst
systems that were obtained by debugging techniquegccurate translation and the system is ready for
such as program slicing, breakpoints etc., und&rgoe .ompijation where the interference and incompatbil
reengineering transformation process and produce .. een legacy and target system are avoided. This

target system. Our method is to check and ensarte th : . L
target system for their peculiarities and exclusiveOTC is possible to develop for all the systems il

function. This proposed new method is named as On¥e'Y €asy to integrate with any reengineering apgio -
Time Checker (OTC) which takes place before theThe manual compilation is minimized because of this
compilation and execution of target system aftex th automated error debugging task. The proposed poces
reengineering process. diagram is given below Fig. 3.

836

Am. J. Applied Sci., 9 (6): 832-841, 2012

abrupt errors also it carries many corrective messu
By considering these factors the time consumptibn o
the proposed OTC is negligible also it equalizeat th
time in compilation and debugging of the particular
target system. The above described OTC and their
time consumption properties are described with
suitable examples.

oTC

v
Tokenization Pattern matching Debuggin RESULTS

(IQ
4Q

We have conducted an experiment by using RL2M
i i model to evaluate how program slicing works and the
Fig. 4: Module Diagram for OTC source code converted to modern language. We

The OTC provides many modules which happe considered a partially Object Oriented (OO) languag

sequentially. The modules presented are (i) Tokeniz! K& C++ as the legacy language. Though it supports
(i) Pattern Matching (i) Debugging. Tokenize several OO features, it has some limitations sush a

function breaks the code into tokens based on thefecurity constraint due to usage of pointers. &sdoot
creation time. It does not distinguish the legacyl a Support the network interface and hence cannotsbkd u
target code but the libraries take care of thatin web based projects. Unlike Java it is also not
Tokenization is a simpler task. Standardized andlatform independent. OO programming has many
updated libraries provide a generic way to acches t positive aspects over the non object oriented. Many
exclusively features of target system in patternlegacy systems were developed before the OO
matching. At pattern matching the executed code iprogramming concept. Most reengineering activities
matched and sends for verification. All the systeas a focus on the functionality of the original progrand
particular structure which is verified for pattern the OO redesign results entirely new in which dhly
matching. In this rule based matching is perfornm. designer understand the original program. Theseaire
successfully store and retrieving the executednarog sufficient as they not only take more time and also
we provide a Hash table which contains a key whichequired more effort for designers besides it istatie
implement the method. OTC provides programprone due to the human involvement. Hence conversio
debugging, testing, parallelization, integratioafesy, of non object oriented to object oriented languisgbe
understanding, maintenance and metrics and sdst aCpee of the hour. Our experiment dealt with thisdkof
as power of reengineering ap_proach. The p”marys.goaconversion to convert the partially OO code to pure
of th|s OTC are to provide a simple, familiar OO code. It is infeasible to convert C++ to Jawsat
ar_ch|te_cture that can be. portable in any Legacyesys is too costly and time consuming process while
migration and provide high performance to the esefu develoi BUt i RL2M th ina tak
for checking the migration. The module diagram off€d€Veloping. but In our € wrapping lakes
place for conversion it leaves the code in current

OTC is given below in Fig. 4. : 1 .
In debugging module, the most probable errors an§hvironment and connects to a new environment &ith

their solutions are stored. This automated debggginMinimum change to legacy system. RL2M hides the
point out the appropriate errors and replaces th wi 'egacy C++ program and performs the execution of
correct one. In this module we store and retrigwe t Java. The process of our proposed RL2M is explained
possible error. There is no need for special coatiurt ~ below with suitable examples.
technique for debugging. Hence, the target system RL2M gets the legacy input C++ program first and
compilation becomes easy. In this OTC there areesomthen the processor analyzes the statements oégjaey
constraints such as it support only one termindltie code. It also identifies all the input statemermtsas to
information handled in OTC is text based. It isgibe replace it by their equivalent Java program. Heade
that more than one user can use this OTC at a tim@es and access specifiers are inserted in thelem
simultaneously but it is same as that of theThe branching and looping statements are similar in
reengineering approach. both the legacy and new application but for plagnin

When OTC is integrated in reengineering approacitgach and every statement into Java file, theselsimp
the main criteria to consider is time. It may takere constructs are identified and the conversion takase.
than 12 sec and less than 1 min depends upongke taFor object identification the character is checkede
and the program input. Although it takes more titne either object or a variable. If it is a variablee thata
completely reduce the programmer burden at the timéypes, if it is an object they can be created onith
of debugging. The OTC automatically replaces theclass name which for a user defined data type.

837

Am. J. Applied Sci., 9 (6): 832-841, 2012

init:

Deleting: H:'\CppZlava\buildibuilt-jar.properties

deps-jar:

Updating property file: H:\CppZlava\build\built-jar properties
compile:

run:

Current File is H:\CppZJava\buildclasses'cppljava\testing. cpp
Want to use default file...[T/nln

Enter Path

E:\prgZl.cpp

Fig. 5: Retrieving a C++ Program as Input

C:\Docunents and Settings\javaharhahu\Desktopsepp pomiprg21Xjavac Main. java
Mote: Main.java uses or overrides a deprecated API.
Mote: Recompile with -Klint:deprecation for details.

C:\Docunents and Settings\jauahaehahu\Desktopscpp pomipro2ldjava Hain

Fig. 6: A Successful Conversion of C++ Program

97
96 P

95 4 / e
94 + / \
93 A\

92 | s \

91 o \
901 ¥ ’
89
88
87

if.. else switch do...while while for
Fig. 7: Percentage Efficiency in code conversion fo
control structures

The converted program which will be stored in the
directory where the input C++ program is stored
already. The output Java is viewed on Java editdr a
can be compiled in that same editor. After comjulfat

a Java class is created for the C++ input and ld&sc
content corresponding to the functions and statésnen
which are to be mapped later. The main program
contains the structure of main with the main method
which the functions from class program can be dadle
runtime while mapping with file contents C++ intava

as output. The output of the slice is mappedt@ Jor
creating a Java program to obtain the Java tempfate
classes and main function. The experiments were

Hence the object identified and replaced with newconducted for more than 50 programs and the results
operator in the Java statements. Hence the objeets are discussed below.

identified to the class objects and not variablad a

The graph in Fig. 7 shows the efficiency of the

replacing the operator with thus performing theyRL2M experiment that was conducted for various
require operation. The operators +, - and * arecontrol structures and the performance of RL2M Wwhic
converted in RL2M as operatorMinus, operatorPlusyields significant performance in code migratiorheT
operatorMul respectively. Any other normal arithimet various constructs in C++ is successfully convetted

operations are to be left as such without convgrim

this approach.

Java and as it yields a good efficiency. Our pregdos
method is evaluated based on the cost of execatidn

The above Fig. 5 shows a step of retrieving a C+4how they get to the desired accuracy. All of owutts
program which would be converted to Java. The C+4yere generated from independent experiments and the
program is collected from the computer system byesuits are averaged for further work. A static seau

entering the path it has been stored in the sysidter

the input is given to RL2M, we have to run the RL2M
model so as to convert the input C++ to output Jav
For this retrieving step we must have a collectidn

C++ programs with various constructs. These program
are categorized depending upon the constructs. Th
C++ program may or may not contain the classes by
default. This process analyzes the program for the

which allows errors to occur when the internalestzfta
program is invalid or a legacy program is invalfdt is

case examine an input program to see what is
supposed to do and what is not supposed to do. This
té(pe of inconvenience is reduced by means of OTC
which is discussed later.
The above graph in Fig. 8 contains the main result

construct type that undergoes the slicing algoriom ©Of the experiment conducted and compares the

identify the flaws in the taken C++ program.

The above Fig. 6 gives successful conversion oRL2M technique.

C++ to Java.

performance of various OO concepts which undergoes
It yields a good result for
constructors, inheritance, function overloading.

Am. J. Applied Sci., 9 (6): 832-841, 2012

Table 1: Time consumed by various programs for ktign

90 -
Attributes OoTC Non-OTC
801 Arithmetic operators 38 sec 52 sec
Realtional operators 40 sec 75 sec
701 Compound assignments 52 sec 72 sec
60 | ‘ Fyn(;tion calls 63 sec 75 sec
—e— Effeciency Bitwise operators 30 sec 56 sec
501
| After reengineering, tokenization is the simple imoek
40 its performance is based on creation time and a per
301 token basis. It breaks statements into tokens. A
201 tokenization maintains a pointer which maintains a
current position past the characters and it adwatiee
101 current position. At the next module, the obtained
0 , i i , tokens are matched with predefined inbuilt OTC
Constructors Function Inheritence Inline Exception libraries. In thiS, transformed statements scattere

erloadi functi andling L -
ovetloading ametion handling throughout the program for finding the irrelevant

o o i) statements when it found irrelevant statements it

Fig. 8: Percentage efficiency in code conversion foiakes automated corrective measures. The matching
various programs is made efficient by the use of some data strusture
)) search techniques.

But the migrating Java not merely supported the \ye conducted the matching by hash table where
concepts like inline functions. If we compile tgacy searching and matching are sequentially. The OTC
system as like inline fun(_:tlo_ns or graphics _|tesl|bus debugging is different from compilation and execnti
to programmer to compilation and execution and thernis module omits some abrupt errors. In this medul
human involvement is necessary. To eliminate thesgome appropriate errors stored and the correspgndin
bugs it is necessary to check the target systemrdef g ions also given. There is another option whibee
going to execution. This complexity is very common ijeas inserted as comment lines. Human interadtion
all reengineering approaches. Apart from these th@qt possible because it works virtually but it veitable
transformation is successfully done for constriié® 3¢ the end of transformation where the flag became
overloading, conditional branching, iteration f5se if it is true it is ready for compilation.
statements, arrays and compound statements. The oTC js the most powerful techniques to transform
number of mcorrectly converteq programs is Sample‘%xistiong syetm to modern system. It provides uaiqu
and sends for experiment after integrating OTC.r&he foatyres like a detailed output on the changesssecg
are numerous rules defined for these conversion angij make transformation a much more efficcient and
they were discussed below. _ _ o reliable process. It is able to integrate on any

The major reasons for reengineering fails in theeengineering process and there is no need toujee
reengineering process itself because reengineeriNgemory which is considered to be the significant
method doesn’t avoid the contrast between the legacyenefits of OTC. As the experiment results condilicte
system and target system and the human consideratie, oTC, it gives increased performance and reduced
is needed. The manual debugging process does ngyden of target system compilation. The future knor
sophisticate for each and every process and it igay pe the extension of the transformation to lyighl
impossible for process like VLSI. Our proposed RL2M taqious legacy systems with minimum time
efficiently handles this situation. For our taken requirements. The process is much more efficiedt an
examples it gives good results. Although it giveSgiyes considereable improvement when the modules
§u_ccessfu| conversion it fails in input programiseli grouped together as a single unit in the targetpiem
inline functions, graphics etc. To overcome thes€iself. OTC takes a few times more for executioritas
drawbacks and to enhance all reengineering approach it in with reengineering approach. The following
we propose an automated technique name as OTC. Thisye considerations are explained below. The time
OTC helps to removes the bugs in target systemonsymed for OTC and non OTC process conducted on
successfully and enhances the approach easily. various programs are given in Table 1.

Experiments were conducted for our proposed Thjs table concludes that the time needed to
system and the results discussed below. In oupTC is high than non OTC process but it is
experiment in RLZM C++ act as legacy and thenegligible on performance aspect of view because
resultant is Java. Legacy source is inserted & thabrupt target system errors takes more time to
transformation approach and the OTC integrates iwvith compile also it is very tedious.

839

Am. J. Applied Sci., 9 (6): 832-841, 2012

DISCUSSION CONCLUSION

All input is once again checked in this OTC to
ensure the target system functionalities. In our

experiment the considered graphics functionalitipsit entire source program into the modern one. In this

system is successfully traced by OTC and it suggest h ted interf that b
by the Java functionalities such as AWT components"?‘pproac 1, We created a common Interface that can be
Then the user interaction made easier where thinked with the legacy system which is dynamically

programmer complexity reduced considerably. Thesliced and results are obtained. The main advardage
results of this OTC are discussed below with stgtab applying dynamic slicing technique is, the source
examples. More than 50 programs were considered arfogram and its components are identified with eesp
there is a good improvement with OTC. The proposedo a slicing criterion and the same is converted an
OTC is integrated in any reengineering approachsso verified after the migration. Since program sliciisga

to easily eliminate the target system bugs. Thewel debugging by using the RL2M and OTC techniques, the
Fig. 9 explains the efficiency of systems with O&a@ migration can be done without any errors even witj
Non OTC process. In the first phase of OTC Javaun time inputs. The output of these two tools is
undergoes the tokenization after that the tokett®m® mapped to Java for creating a Java program to robtai
matched with inbuilt functions. After the debugging the java template of classes and main function.

phase the equivalent Java code will generate asttar The Proposed RL2M gives a good conversion
system. In our experiment we provided a conversion technique when compared to other techniques due to
some main features such as call by reference,bgall their semantics checkers and wrapping. As like rothe

value, function overloading, inline functions and approaches RL2M have to faces some challenges
inheritance. It is a powerful rule based matchaanhique : L : , .
P q especially situations like VLSI integration. OTC

and the efficiency may be improved by hash table. ; ; .
The above graph reveals the effeciency that wa&8codnizes these issues and makes the conversion

conducted for different programs and it ensureg tha@ccurately for tedious and larger tasks. The fuiuwek
OTC gives considerable improvement in theProposes the extension of OTC and RL2M where the
performance and accuracy during transformation. OT®@Xxclusive functions in legacy system are to be redpp
provides a detailed output on the changes necgssagnd converted to the equivalent target system then
will make transformation a much more efficcient andwork as an executable target system itself wittogs.
reliable process. It is able to integrate on any

reengineering process and there is no need toujpee REFERENCES

memory which is the other benefits of OTC. The fatu

work proposes the extension of the transformatmn tpastaki, Y.A., 2012. A Framework for Teaching
highly tedious legacy systems with minimum time Programming on the Internett A Web-Based

In several applications, the transformation of
egacy system could be more difficult by mapping th

requirements. The process is much more efficiergrwh Simulation Approach. J. Comput. Sci., 8: 410-419.
the process executed in the target compiler itself. DOI: 10.3844/jcssp.2012.410.419 '
55 Chen, L., J. Wang, M. Xu and Z. Zeng, 2010.
' = OTC Reengineering of java legacy system based on
—— Non-OTC aspect-oriented programming. Proceedings of the
24 4 2nd International Workshop on Education
;""l! . ' - " Technology and Computer Science, Mar. 6-7,
| | am [/ "L R am e IEEE Xplore Press, Wuhan, pp: 220-223.
157 | W VAR Vi DOI: 10.1109/ETCS.2010.298

.‘ oo/ /o Costa, G., C.D. Ambrosi and S. Martello, 2010. reef
N educational java framework for graph algorithms.
J. Comput. Sci., 6: 87-91. DOI:
10.3844/jcssp.2010.87.91
Hwang, K.S., J.F. Cui and H.S. Chae, 2009. An
automated approach to componentization of java
source code. Proceedings of the 9th IEEE
International Conference on Computer and
Information Technology, Oct. 11-14, IEEE Xplore
Fig. 9: Efficiency on different programs (OTC Vs Press, Xiamen, pp: 205-210. DOl
non OTC) 10.1109/CIT.2009.19
840

135 7 9 11131517192123 2527 29 3133

Am. J. Applied Sci., 9 (6): 832-841, 2012

Jain, A., S. Soner, A.S. Rathore and A. TripatBil2 Stilkerich, M., J. Schedel, P. Ulbrich, W. Soder-
An approach for extracting business rules from prejkschat and D. Lohmann, 2011. escaping the
Intornational Conference on Electonics Computer 01U of the legacy: Step-wise migration (0 a tpe-

. safe language in safety-critical embedded systems.
Technology (ICECT), April 8-10, IEEE Xplore Proceedings of the 14th IEEE International

P , K k i, : 90-93. DOL) _ .
16.efio9llcélcn¥aEgmggll.5821963 Symposium on Object/Component/Service-
Meng, X., J.Shi, X. Liu, H. Liu and L. Wang, 2011. Oriented Real-Time Distributed Computing

Legacy application migration to cloud. Proceedings ~ (ISORC), Mar. 28-31, IEEE Xplore Press, Newport

of the IEEE International Conference on Cloud Beach, pp: 163-170.DOI: 10.1109/ISORC.2011.29

Computing (CLOUD), Jul. 4-9, IEEE Xplore Press, Zahi, A. and A. Sarhan, 2009, Formalized model of

Washington, pp: 750-751. DOL: stabile reengineering information system functional

10.1109/CLOUD.2011.56 elements (business processes). J. Comput. Sci., 5:
Mousavi, A., M.D.J. Nordin and Z.A. Othman, 2010. g5 951 pQJ:10.3844/cssp.2009.915.921

An ontology driven, procedural reasoning syStem'Zhang, R., Y. Zheng, S. Huang and Z. Qi, 2011.

like agent model, for multi-agent based mobile . . .
workforce brokering systems. J. Comput. Sci., 6: Structured dynamic program slicing. Proceedings

557-565. DOI: 10.3844/jcssp.2010.557.565 of the International Conference on Computer and
Mustafa, K., K. Gowthaman and R.A. Khan, 2005. Management (CAMAN), May 19-21, IEEE Xplore
Measuring the function points for migration Press, Wuhan, pp: 1-4. DOI:

project: A case study. Am. J. Applied Sci., 2: 1218 10.1109/CAMAN.2011.5778759
1221. DOI:10.3844/ajassp.2005.1218.1221
Singh, S.K., S. Sabharwal and J. P. Gupta, 2010. An
event-based methodology to generate class
diagrams and its empirical evaluation. J. Comput.
Sci., 6: 1301-1325. DOLl:
10.3844/jcssp.2010.1301.1325

841

