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Abstract: Problem statement: Hand geometry contains relatively invariant features of an individual. 
Palmprint recognition is an efficient biometric solution for authentication system. The existence of 
several hand-based authentication commercial systems indicates the effectiveness of this type of 
biometric. Approach: We proposed a palmprint verification system using high order Zernike moment 
that was robust to rotation, translation and occlusion. Zernike moment was an efficient algorithm for 
representing the shape features of an image. The design consists of feature extraction and matching of 
image using high order Zernike moment. Zernike moments at high orders was calculated from the 
image and the image was classified using K-Nearest Neighborhood (KNN). The reason for using 
Zernike moment was that it was the best algorithm due to its orthogonality and rotation invariance 
property. Results and Conclusion: Computational cost can be reduced by detecting the common term 
of Zernike moment. Experiments and classifications have been performed using Hong Kong PolyU 
palm print database with 125 individuals’ left hand palm images; every person has 5 samples, totaling 
up to 625. We then get every person’s palm images as a template (totaling 125). The remaining 500 are 
used as the training samples. The proposed palmprint authentication system achieves a recognition 
accuracy of 98% and interesting working point with False Acceptance Rate (FAR) of = 1.062% and 
False Rejection Rate (FRR) of = 0%. Experimental evaluation demonstrates the efficient recognition 
performance of the proposed algorithm compared with conventional palmprint recognition algorithms. 
 
Key words: Zernike moment, KNN classification, computational cost, recognition, conventional 

palmprint, recognition algorithms, false rejection rate, efficient algorithm, classified 
using, reduced by detecting, common term  

 
INTRODUCTION 

 
 A biometric recognition system is essentially a 
pattern recognition system that acquires biometric data 
from an individual, extracts a salient feature set from 
the data,compares this feature set against the feature 
set(s) stored in the database and executes an action 
based on the result of the comparison (Krishneswari and 
Arumugam, 2012; MeenakshiDevi et al., 2009; Breu et 
al., 1995; Al-Hamami and Ani, 2005; Basha et al., 
2011). 
 In mathematics, Zernike moment is a sequence of 
polynomials over a unit disk. It is named after Frits 
Zernike; it plays an important role in beam optics. 
Moment functions are used to capture global features of 
the image in pattern recognition and image analysis 
(Prokop and Reeves, 1992). Zernike moments are used 
in a wide range of applications on image analysis as 
they have minimum redundancy (Teague, 1980) and 
rotation invariance.  

 A palmprint image is uniquely determined by its 
geometrical moments of all orders. Low-order moments 
contain less information, while high-order moments are 
vulnerable to noise. The use of orthogonal moments 
makes it possible to describe a palmprint image with a 
‘finite number of moments and get benefit from the 
inclusion of high-order moments’. However, there are 
also some technical difficulties in the calculation of 
Zernike moments due to the very high computational 
complexity and lack of numerical precision. It is 
usually not possible to calculate them accurately in 
reasonable time when the desired moment order is high 
and/or the images to be processed are large. Little 
attention has been paid to the efficient and accurate 
calculation of Zernike moments (Mukundan and 
Ramakrishnan, 1995). (Mukundan and 
Ramakrishnan, 1995) proposed a recursive algorithm 
for computing the Zernike and Legendre moments in 
polar coordinates.  
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 As a final point a more recent study, by (Gu et al., 
2002) employed the square to circular transformation of 
Mukundan  and Ramakrishnan (1995) and more 
efficient recursive relations to develop an even faster 
algorithm but its accuracy is still limited when 
compared with that of (Mukundan and Ramakrishnan, 
1995) because of approximate coordinate 
transformation.  
 

MATERIALS AND METHODS 
 
 Moment functions of image intensity values are 
used to capture global features of the image in pattern 
recognition and image analysis (Teh and Chin, 1988). 
Zernike moments are used in various applications in 
image analysis. When compared to various moment 
based descriptors, Zernike moments have the 
advantages of minimal redundancy, rotation invariance 
and robustness to noise.  
 Zernik polynomials were introduced by F. 
Zernike. Zernike moments are a sequence of 
orthogonal polynomial inside a unit disk. Based on a 
set of complex polynomials that form a complete 
orthogonal set over the interior of the unit circle 
(Khotanzad, 1990).  
 They are defined to be the projection of the image 
function on these orthogonal basis functions.  
 The Zernike polynomial of order q and repetition p 
can be described by the following Eq. 1: 
 

jp `
q,p q,p q,pV (x, y) V ( , ) R ( )e ϕ= ρ ϕ = ρ  (1) 

 
 where q is a positive integer or zero and p is an 
integer, subject to the following constraints q-|p| is even 
and q<|p|, ρ is the length of the vector from origin to (x, 
y), φ is the angle between vector ρ and the x-axis in a 
counter clockwise direction and Rq,p (ρ) is the Zernike 
radial polynomial.  
 The Zernike radial polynomials,Rq,p (ρ), are 
defined as Eq. 2:  
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 From Eq. 1 the bases functions are orthogonal, thus 
satisfying Eq. 3 and 4: 

2 p,q m,n p,m q,nx y2 1

a 1
V (x,y)V (x,y)∗

+ ≤

+
∫ ∫ = δ δ

π
  (3) 

 
Where: 
 

a,b

1 if a b

0 otherwise

=
δ = 


 (4) 

 
 The Zernike moment of order q with repetition p 
for a digital image function f(x, y) is given by Eq. 5:  
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where, V∗

q,p (x, y) is the complex conjugate of Vq,p (x, 
y). In order to compute the Zernike moments of a given 
image, the origin is assumed to be the center of mass. 
The function f (x,y)ɶ  can be represented as Eq. 6: 
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where, N is the maximum order of Zernike moments, 
Cq,p is the real part of the Zq,p and Sq,p denotes the 
imaginary part of Zq,p : 
 
 To compute higher order Zernike moments, it is 
expensive and too difficult. In order to reduce the 
computational complexity common terms in Zernike 
moments are detected with different order and 
repetition. Specifically, by substituting Eq. 2 and 1 in 5 
and re-organizing the terms the Zernike moments can 
be calculated as follows.  
 Moments can be calculated in the following form: 
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 The χp,l given in Eq. 7 is the common term in the 
computation of Zernike moments with the same 
repetition as shown in Fig. 1; for the case of repetition 
m = 0. Table 1 demonstrates the common terms to 
compute Zernike moments up to order N. Table 1 
illustrates all the χp,l to be computed for each repetition 
up to order 10.  
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Fig.1: The common terms to compute Zernike moments 

up to 10 orders with zero repetition  

 
Table1:  χp,l Computation to compute zernike moments up to order 

10 and repetition p 
Repetition p χp,l 

0  χ0,0, χ0,2 , χ0,4, χ0,6, χ0,8, χ0,10  

1  χ1,1, χ1,3 , χ1,5, χ1,7, χ1,9 

2  χ2,2, χ2,4 , χ2,6, χ2,9, χ2,10 

3  χ3,3, χ3,5 , χ3,7, χ3,9 

4  χ4,4, χ4,6 , χ4,8, χ4,10 

5  χ5,5, χ5,7 , χ5,9 

6  χ6,6, χ6,8 , χ6,10 

7  χ7,7, χ7,9 

8  χ8,8, χ8,10 

9  χ9,9 

10  χ10,10 

 
The second row of the table corresponds to the χp, l 
shown in Fig. 1. Once all the entries in Table 1 are 
computed, Zernike moments with any order and 
repetition can be calculated as a linear combination of 
χp, l as shown in Eq. 7. Also, note that the coefficients 
βq,p,l are independent of the image or the coordinates; 
therefore, they can be stored on a small lookup table to 
save further computation.  
  The properties of Zernike moment are as follows:  
There are even and odd values of Zernike polynomials 
Eq. 8 From Eq. 1 we can incur that even and odd 
Zernike polynomials can be written as follows: 
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Where: 
p and q  = Nonnegative integers with q>p 
φ = The azimuthal angle  
ρ = The radial distance 0≤ρ≤1 
 
 The radial polynomials Rpq are defined by Eq. 9: 
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 The orthogonality in the radial part is given by Eq. 
10  as follows: 
 

1 p p
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 Orthogonality in the angular part is represented by 
Eq. 11: 
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 As orthogonal frequently appears in conjunction 
with Bessel functions it is also called the Neumann 
factor (Kintner, 1976). The product of the angular and 
radial parts establishes the orthogonality of the Zernike 
functions with respect to both indices if integrated over 
the unit disk Eq. 12: 
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where, d2 = rdr dφ defined as Jacobian of the circular   
 coordinate system and where q-p and q'-p' are both 

even. A special value is 
p

R (1) 1
q

=  : 

 
 The parity with respect to reflection along the x 
axis is given by Eq. 13: 
 

p p
q qZ ( , ) Z ( , )± ±ρ ϕ = ± ρ ϕ  (13) 

 
 The parity with respect to point reflection at the 
center of coordinates is: 
 

p p p
q qZ ( , ) ( 1) Z ( , )ρ ϕ = − ρ ϕ + π  

 
where, (−1)p could as well be written (−1)q because q-p 
is even for the relevant, non-vanishing values. The 
radial polynomials are also either even or odd is given 
by Eq. 14: 
 

p p p
q qR ( ) ( 1) R ( )ρ = − −ρ  (14) 

 
 The periodicity of the trigonometric functions 
implies invariance if rotated by multiples of 2π /m 
radian around the center which is stated by Eq. 15: 
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 The features of the image are extracted using 
Zernike polynomial and the resultant is Zernike 
moment of the image. 
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where, p and q are the dimensions of the image 
considered for the operation. Here, l is the order of the 
moment. In our experiment we consider order l = 4The 
total computational cost for Zernike moments of order 
up to the Nth is: 
 

1
for multiplication

960(N2)(N 1)(N3 132N2 1387N 3240)+ + + +
 

1
foradditions

960(N 2)(N 1)(N3 92N2 947N 2280)+ + + + +
 

 

 The features are obtained by calculating the 
magnitude of the image by finding the moment. The 
values are normalized before classification. Due to its 
orthogonality we can use Zernike moment for image 
feature extraction and reconstruction of image. 
  Feature that can be extracted using Zernike 
moment (Chora’s, 2007). 
 
General features: Application independent features 
such as color, texture and shape. According to the 
abstraction level, they can be further divided into the 
following: 
 
• Pixel-level features: Features calculated at each 

pixel, e.g., color, location 
• Local features: Features calculated over the results 

of subdivision of the image band on image 
segmentation or edge detection  

• Global features: Features calculated over the entire 
image or just regular sub-area of an image 

 
Domain-specific features: Application dependent 
features such as human faces, fingerprints and conceptual 
features. These features are often a synthesis of low-level 
features for a specific domain. The fingerprints line and 
palm print can be observed at particular axis which can 
be used for matching the points with the test image.  

 
 
Fig. 2: Block diagram of the proposed design 
 
Table 2: Comparision 
Cateogories    
rate Sample number Recognition 
Identification based 120 93.30%        
on gabor transform 
Wavalet transform 50 96.30%        
Lu et al. (2006)  
Hierarchical method 386 97.80%        
Boiman et al.(2008) 
This method  125 98%            
 
The moment function of the 2-D image is used in object 
recognition and identification of images. Zernike 
moment function is effectively used in the pattern 
recognition of palm print images as their rotational 
invariants can be easily constructed (Table 2). 
 
 Proposed design description: Figure 2 shows overall 
framework of the proposed palmprint biometric 
authentication. From Fig. 2, it can be seen that the 
moment features are extracted and classified using K-
Nearest Neighbourhood algorithm.We use K-NN 
algorithm to find the matching score between the test 
image and the original image stored in the database. 
 
• The images are stored in a database folder 
• Images are read one by one and features are 

extracted using Zernike moment. 
• The features are normalized and stored in a 

variable for training and testing. 
• The classification algorithm is called to plot the 

cluster graph of test and train image 
• We can find the matching score by subtracting the 

value of the reconstructed images between the train 
and test image. 

• The clusters also show the particular cluster of 
train images where the test image belongs. 

• The scoring value is either zero or very close to 
zero.  

• We chose the score which is exactly equal to zero 
or the value which is nearest to zero. 

• The matched image output is obtained from the 
group of train images by determining the scoring 
value. 
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Algorithm: 
 
1) Take an image window and place it in a squared 

window such that its size is maximized without 
distortion. 

2) First create a square of size max (width, height) 
and put the original image into the center. 

3) Resize the square image to a size smaller than the 
desired size in order to take into account the 
spherical nature (disk!) of the Zernike moments. 

4) Now create a black square of the desired size and 
put the created image into its center 

5) Converts the elements of an array into unsigned 8-
bit (1-byte) integers 

6) Calculate the Zernike basis functions up to an order 
for a square image of size size (rows=cols!) 

7) All pixels out of the disk inscribed into the image 
square are ignored. 

8) Create a structure consisting of  
a. The Zernike basis functions (image Size, order of 

moment, with negative or not). 
9) Calculate the Zernike moments from the palmprint 

image. The COMPLEX Zernike moments of the 
palmprint image is computed using the Zernike 
basis functions. Iterate through the moments, 
beginning from the lowest to the highest  

10) Reconstruct an palmprint image from some of its 
Zernike moments. We suppose that some amount 
of first (lower) order moments, not necessarily all 
moments, are available  

11) The required data to reconstruct image are as 
follows:- 

a. The complex zernike moments  
12) The size of the square image 
13) The Zernike basis functions must be recomputed to 

derive lower order polynomials  
 
 The image can be classified using reconstructed 
image value. The difference between the moment 
values give the similarity count which can be used in 
the classification.  
 The classification is the grouping of the cluster of 
images between the test image and train image. The 
mean distance between the centroid of the train image 
and the test image is calculated. The nearest point is 
chosen and plots the value which forms a cluster. The 
distance calculation is based on Euclidean distance 
weight function. If the value is too far it is not 
considered.  
 In 2-D, the Euclidean distance (Hu et al., 1962) 
between (x1, y1) and (x2, y2) is given by Eq. 16: 
  

2 2(x1 x2) (y1 y2) c− + − =   (16) 

 Euclidean distance algorithm of classification is 
non-parametric as their classification is directly 
dependent on the data Boiman et al. (2008). The objects 
are trained according to the data and the test image can 
be classified using the same process as the object or 
image was trained. 
 Non-parametric classifiers have several very 
important advantages that are not shared by most 
learning-based approaches: 
 
• Can naturally handle a huge number of classes 
• Avoid over fitting of parameters, which is a central 

issue in learning based approaches 
• Require no learning/ training phase. Although 

training is often viewed as a one-time 
preprocessing step, retraining of parameters in 
large dynamic databases may take days, whereas 
changing classes/training-sets is instantaneous in 
nonparametric classifiers 

 
 The nearest neighbor classifier Boiman et al. 
(2008) relies on a metric or a distance function between 
points. For all points x, y and z, a metric T(x, y, z) must 
satisfy the following properties: 
 
• No negativity : T(x, y) ≥ 0 
• Reflexivity : T(x, y) = 0 if and only if x = y 
• Symmetry : T(x, y) = T(y, x) 
• Triangle inequality : T(x, y) + T(y, z) ≥ T(x, z) 
 
 The nearest neighbor classifier is used to compare 
the feature vector of the prototype image and feature 
vectors stored in the database. It is obtained by finding 
the distance between the prototype image and the 
database. Let C11, C21, C31… Ck1 be the k clusters in the 
database. The class is found by measuring the distance 
T(x(q),Ck) between x(q) and the kth cluster Ck1. The 
feature vector with minimum difference is found to be 
the closest matching vector. It is given by Saradha and 
Annadurai (2005): 
 

K kT(x(q),C ) min{ x(q) x : x C= − ∈  
 
 Nearest-neighbor classifiers provide good image 
classification when the query image is similar to one of 
the labeled images in its class. 
 

RESULTS AND DISCUSSION 
 
 To evaluate the effectiveness of our proposed palm 
print Zernike moment based authentication scheme, a 
database containing palmprint samples is required. For 
our research, we use PolyU Palmprint Database, 
collected by the Biometric Research Center at The 
Hong Kong Polytechnic University, which is a widely 
used database in palmprint research.  
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Fig. 3: Zernike Moments calculation and matching result 
 

 
 
Fig. 4: Result of KNN classification for the 

Palmprint images 
 
 The database contains 7752 greyscale images, 
corresponding to 386 different palms with 20-21 
samples for each in bit- map image format. We selected 
125 individuals’ left- hand palm images; every person 
has 5 and totaling up to 625. We then get every 
person’s palm images as a template (totaling 125).The 
remaining 500 are used as training samples. The 
experiments are conducted in MATLAB with image 
processing Toolbox and on a machine with an Intel core 
2 Duo CPU processor. The test database has 125 
different untrained images that undergo the same 
algorithm as trained image and we compare this to the 
original trained image.  
 Zernike moments at high orders are calculated from 
the images and the image is classified using KNN. This 

algorithm is more effective as it has some advantages: 
orthogonallity and rotation invariance property.  
 Here the computational cost is reduced by 
detecting the common terms of Zernike moments. 
These characteristics are able to minimize information 
redundancy and provide geometrical invariance.  
 Figure 3 represents the calculation of Zernike 
moments and shows the difference between two 
images. If the difference between two images is zero, it 
means there is a perfect match. If the difference 
between two images is high, it indicates that the images 
do not match. Figure 4 shows the KNN classification of 
palmprint image. Out of 125 images, 5 images of 
different persons are taken for testing.  
 The colored circles are the test image 
representations. We designed and implemented an 
automated palmprint authentication system by applying 
a novel feature extraction and by matching images 
using high order Zernike moment invariants. 
 We designed and implemented an automated 
palmprint authentication system by applying a novel 
feature extraction and by matching images using high 
order Zernike moment invariants. Zernike moments at 
high orders are calculated from the images and the 
image is classified using KNN. This algorithm is more 
effective as it has some advantages: orthogonallity and 
rotation invariance property. Here the computational 
cost is reduced by detecting the common terms of 
Zernike moments. These characteristics are able to 
minimize information redundancy and provide 
geometrical invariance. The proposed palmprint 
authentication system achieves a recognition accuracy 
of 98% and interesting working point with False 
Acceptance Rate (FAR) of = 1.062% and False 
Rejection Rate (FRR) of = 0%. The experimental 
results demonstrate the effectiveness of the proposed 
approach for palmprint authentication using Zernike 
moments compared with conventional palmprint 
recognition algorithms. 
 

CONCLUSION 
 
 Computational cost can be reduced by detecting the 
common term of Zernike moment. Experiments and 
classifications have been performed using Hong Kong 
PolyU palm print database with 125 individuals’ left 
hand palm images; every person has 5 samples, totaling 
up to 625. We then get every person’s palm images as a 
template (totaling 125). The remaining 500 are used as 
the training samples. The proposed palmprint 
authentication system achieves a recognition accuracy 
of 98% and interesting working point with False 
Acceptance Rate (FAR) of = 1.062% and False 
Rejection Rate (FRR) of = 0%. Experimental 
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evaluation demonstrates the efficient recognition 
performance of the proposed algorithm compared with 
conventional palmprint recognition algorithms. 
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