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Abstract: Problem statement: There have been much reported on decisions from experience, also 
referred to as decisions in a complete ignorance fashion. Approach: This note lays out a Bayesian 
decision-theoretical framework that provides a computable account for decisions from experience. 
Results: To make the framework more tractable, this note sets up and examines decisions in an 
incomplete ignorance fashion. The current discussion asserts that well-known behavioural effects, such 
as the hot stove effect and the Bayesian framework may lead to different predictions. 
Conclusion/Recommendations: The framework is applied to the continuity form to predict a 
possibility from their experience. We conclude that the reasonable prediction is sometimes leads them 
to the unreasonable conditions. 
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INTRODUCTION 
 
 The Bayesian decision-theoretical framework is 
useful to examine behavioural tendencies in decisions 
under ambiguity. A concept of the Bayesian framework 
is one of normative framework that are ubiquitously 
used by behaviourists to provide a computable account 
for behavioural tendencies in “decisions from 
experience”. It asserts that the Bayesian decision 
maker's ultimate goal is to judge the likelihood of 
events by updating her/his subjective probabilities in 
the face of new evidence as a result of sequential search 
process (Fujikawa, 2007). 
 An area of decisions from experience (also referred 
to as “decisions in a complete ignorance fashion”) is 
fast moving. Many research based on laboratory 
experiments has been presented (Barron and Erev, 
2003; Hertwig et al., 2004; Weber et al., 2004; Erev 
and Barron, 2005; Yechiam and Busemeyer, 2006; 
Fujikawa, 2009; Barron and Yechiam, 2009). For 
example, Table 1 shows two choice problems presented 
in Fujikawa (2009), where the participants chose, at 
each period t (t = 1, 2, …, 400), between two unmarked 
buttons that provided outcomes sampled from two 
distributions, “R” and “S”. 
 
Table 1: There choice problem and aggregated proportion of R 

choices in Fujikawa (2009) 
Problem R S PR 
1 (4, 0.8) (3, 1) 0.48 
2 (32, 0.1) (3, 1) 0.22 

 Let (v, p) denote a distribution, where the outcome 
v occurs with probability p (otherwise zero). The right 
hand column of Table 1 (PR) shows the aggregated 
proportion of R choices over 400 trials. The 
maximisation rate over the 400 trials was 0.28 in 
Problem 2, for example. This result suggested that 
deviations from maximisation (i.e., the participants' less 
selection of R) in a state of complete ignorance were 
the consequence of the “hot stove effect” that could 
lead to a bias toward Fujikawa (2009) indicated the 
existence of the hot stove effect in decisions from 
experience with analysing results of his experiments, 
involving the state of complete ignorance. 
 The participants did not receive prior information 
on the payoff structure, but received the feedback that 
was limited to obtained payoffs at each round t. That is, 
the experiments was run on a state of complete 
ignorance, where they were disclosed neither possible 
payoffs nor its likelihoods. The apparatus in this state, 
however, seems to have challenging in examining the 
existence of the hot stove effect in light of the Bayesian 
framework that combines prior information on the 
payoff distributions with data to obtain a posterior 
estimate. The participants who were in the state of 
complete ignorance were likely to fail to use Bayesian 
framework, as they were not provided with any prior 
information on the payoff distributions. 
 This note extends Fujikawa (2009) by laying out 
the Bayesian decision-theoretical framework that 
accounts for decisions from experience. Instead of a 
state of complete ignorance employed by Fujikawa 



Am. J. Applied Sci., 9 (4): 609-614, 2012 
 

610 

(2009), we shall here employ a state of “incomplete 
ignorance” in which the Decision Makers (DMs) can 
obtain posterior estimates calculated by the Bayesian 
framework. A state of incomplete ignorance is defined 
as one, where the DMs are disclosed possible payoffs of 
available options, but not disclosed likelihood of 
payoffs. Making possible payoffs available to the DMs 
(participants in laboratory experiments) could allow 
them to update data through the Bayesian framework. 
 

MATERIALS AND METHODS 
 
A state of complete ignorance: We now define a state 
of complete ignorance as the state, where the DM's 
prior probability distribution (i.e., the distribution at t = 
0) is uniform. A state of complete ignorance was 
experimentally manipulated in previous studies on 
decisions from experience introduced above. The 
authors used pairwise choice problems, such as the 
following Problem X: 
 
• Problem X. Choose between 
• Ay:  γ points with probability of P*AX; 0 otherwise 
• By: θ points with probability of P*BX; 0 otherwise 
 
 We let γ, θ > 0, P*

AX , P*
BX E [0,1], PP*Ay > ,P*

BX. 
The DM is usually not provided with any prior 
information on the payoff structure and she is 
repeatedly asked to make decisions, relying on the 
obtained feedback in the situation in the past. Thus, it is 
unknown to the DM that one selection of P*

AX (P*
BX) 

yields γ (θ) points with probability of P*AX (P*
BX) and 

zero point with 1- P*Ay (1- P*
BX). It is, however, known 

to her that one selection of each option yields certain 
payoffs with unknown probabilities. Suppose that the 
DM is asked to choose either AX or BX t (0 ≤ t ≤ T) 
times in Problem X. Given that each of the mutually 
exclusive and exhaustive outcomes x is equally likely, 
the prior probability distribution of AX is:  
 

1
1

1

1
for0 x x

x 1f (x)

0 forx 0 or x x

 ≤ ≤ += 
 ≤ ≥

 

 
 In case of a state of complete ignorance, x1 may 
largely vary among the DMs, as they do not have any 
prior information on possible outcomes and probabilities. 
For example, some participants in Fujikawa (2009) were 
likely to have high x1, while others low. Thus, it seems that 
a prior probability distribution on AX would largely vary 
among the participants. 
 
A state of incomplete ignorance: We here aim at 
introducing the Bayesian framework to examine 

behavioral tendencies in decisions from experience. For 
this aim, let us present a state of incomplete ignorance 
that is concerned with the situation, where the DMs 
have incomplete information on the payoff structure. 
Let us consider the following Problem Y: 
 
• Problem Y. Choose between 
• AY: γ points with probability of P*AY; 0 otherwise 
• BY: θ points with probability of P*BY; 0 otherwise 
 
 We let γ, θ > 0, P P*AY , P*

BY E [0,1]. The DM 
makes a choice between AY and BY at each period t 
(t=1, 2, …, T). She is informed of possible payoffs of 
each option, but not informed of corresponding 
probabilities. That is, she knows that one selection of 
AY (BY) yields γ (θ) points with an unknown 
probability. Thus, the density function of her a priori 
formulated beliefs is: 
 

0.5 ifx orx 0
f (x)

0 ptherwise

= γ =
= 


 

 
 A goal of Bayesian DMs is to compute a posteriori 
probabilities from a priori probabilities. Since the DM 
does not possess the available objective prior 
information on P*AY, she is to compute a posteriori 
probabilities of P*AY from a priori probabilities of P*AY  
and her experienced probability Pexp. Below, we shall 
apply a theoretical framework to the case of P*

AY, as the 
same argument holds for the case of P*

BY. For 
computing the a posteriori probabilities, we consider 
the case of n events: We define an event Rk (k = 1, 2, 
…, n) as an event that P*

AY falls within region k ( (k-
1)/n ≤ P*

AY < k/n) at period t. Each Rk has a probability 
Pt(Rk) = St(k)/n that defines the likelihood of Rk. Each 
event is exclusive to the all of the other events. Thus: 
 

t y

x 1,2,...,n, y 1,2,....,n,x y :

p (Rx R ) 0.

∀ ∈ ∀ ∈ ≠
∩ =

  (1) 

 
Note that: 
 

n
nn

tk 1
t k t k1

k 1

S (k)
P ( R ) p (R ) 1

n
=

=

∪ = = =∑
∑   (2) 

 
 As P*

AY belongs to one of the regions. For 
example, if n=2, there are two possible events that are 
R1 (0≤P*

AY<0.5) and R2 (0.5≤p*
AY≤1) and their 

probabilities are Pt(R1) = St(1)/2 and Pt(R2) = St(2)/2. 
The P*

AY belongs to either of the region, so the sum of 
the probabilities is Pt(R1) + Pt(R2)= Pt(R1 U R1) = 1. By 
definition, we can calculate the probability of the event 
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Pt+1(Wt+1) at period t+1, where Wt+1 is an event that the 
highest payoff, γ, being realised at the period t+1. To 
calculate the probability Pt+1(Wt+1), we separate it to 
Pt+1(Wt+1 | Rk) when an event Rk occurs. From Eq. 1 and 
2, we can calculate Pt+1(Wt+1) as follows Eq. 3: 
 

n

t 1 t 1 t ! t 1 k1

n

t ! t 1 k t k
k 11

n
t

t 1 t 1 k
k 1

p (W ) P (W R )

p (w R )p (R )

S (k)
p (w R )

n

+ + + +

+ +
=

+ +
=

= ∪

=

=

∑

∑

 (3) 

  
 Now we estimate and calculate Pt+1(Wt+1 | Rk). We 
approximate this as follows Eq. 4: 
 

t 1 t 1 k

2k 1
P (W R )

2n+ +
−

 (4) 

 
 Having observed the result of period t + 1 
sequence, the DM updates the possibility St(k)/n of an 
event Rk by using the Bayesian framework. Thus 
 

t
n

tj 1

t 1t !

t
n

tj 1

t 1

(2k 1)s (k)

(2j 1)s ( j)
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=

++

=

+
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 (5) 

 
 Equation 5 is discrete and we apply it to continuous 
representations. By so doing, we get Eq. 6: 
 

t

n t
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t 1

t 1

t

n

tj 1

t 1
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n

1
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 By using infinity, we assume St (k)/n to be a 
continuous probability distribution. Then, we define the 
continuous probability density function pt(x) with the 
following properties Eq. 7 and 8: 

k t
tn

k 1 t

n

k
p ( )lim lim lim S (k)np (x)dx

n n nn n
− = =

→ ∞ → ∞ → ∞∫  (7) 
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where, k=1,2, ..., n and x is the imaginary possibility of 
the P*

AY. 
 Thus, Eq. 6 is Eq. 9: 
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From Eq. 8, we have: 
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t 1
t 1
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0
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 (10) 

 
 As shown in Eq. 8, pt(x) is a probability density of 
Pt(Rk), so that Eq. 11: 
 

1

t0
p (x)dx 1=∫  (11) 

 
 Without losing much generality and accuracy, it 
can be said that the DMs are updating the probability 
density pt(x) from experienced results. Simply put, we 
define Eq. 12: 
 

w t !
t

1 t !

f (x) x ifW isrealised
f (x)

f (x) 1 ufW isrealised
+

+

 == 
=

 (12) 

 
 Equation 10 is transformed as Eq. 13:  
 

t t
t ! 1

t t0

f (x)p (x)
p (x)

f (y)p (y)dy
+ =

∫
 (13) 
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Fig. 1: The process of probability dencity change in case of realised Wt+1 and t 1W + . We label the axes: P*

AY on x-

axis and pt(x) on y-axis 
 
 Equation 13 holds true at any time period t, thus: 

 

t

1 kk 1
t 1 1 t

1 kk 10

p (x) f (x)
p (x)

p (y) f (y)dy

=
+

=

=
∫

∐

∐
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 Letting r be a total number of times of the highest 

payoff realised, we have Eq. 14:  
 

t
y (1 y) t

k w 1 exp exp
k 1

f (x) f (x) f (x) x(tp )(1 x) (1 p )−

=

= = − −∏  (14) 

 
 Finally, we obtain:  

t
exp exp

t 1 1 t
exp exp0

x(tp )(1 x) (1 p )
p (x)

xy(tp )(1 y) (1 p )dy
+

− −
=

− −∫
 (15) 

 

 Thus, pt+1(x) only depends on Pexp (i.e., the 
proportion of the highest payoff realised) at period t and 
initial probability density of p1(x). If we assume the 
initial probability density function has the constant value 
as p1(x)=1 then Eq. 15 only depends on Pexp as Eq. 16: 
 

exp exp
t 1 1 t

exp exp0

x(tp )(1 x)(1 p )
p (x)

xy(tp )(1 y) (1 p )dy
+

− −
=

− −∫
 (16) 
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RESULTS 
 
 Figure 1 shows a process of the earlier stage: It 
shows how the probability density changes as a result 
of an alternative case in each trial. At period t = 1, 
there is no prior information on the probability of the 
highest payoff, so that its density is constant as p1(x) = 
1. After the decision is made at t = 1, the DM will face 
either of the two events in choosing an option at t = 2: 
(1) an event that the highest payoff is realised (i.e., an 
event W2); (2) an event that the lowest payoff is 
realised (i.e., 2W ). If the highest payoff is realised, 
the probability density function is updated as p2(x) = 
2× by the result. If, on the other hand, the lowest 
payoff is realised, the probability density function is 
updated as p2 (×) = 2−2× by the result. At t = 3, the 
following three cases are possible: first, p3(x) = 3x2 if 
events W2 and W3 are realised. 
 Second, p3(x) = 6×(1-x) if either of the two 
conditions is met: (i) a condition that 2W  and W3 are 
realised; (ii) a condition that W2 and 3W  are 
realised. Third, p3(x) = 3(1−x) if 2W  and 3W  are 
realised. 
 

DISCUSSION 
 
 Figure 2 shows the earlier stage of the population 
histogram for the case of P*

AY = 0.5. In this case, the 
population of the DMs are divided into two 
symmetrical situations: (1) a situation, where the lucky 
DMs face an event W and (2) a situation, where the 
unlucky DMs face an event W . Stochastically and 
approximately, the population is gathered to the center 
of the histogram, predicting the probability density 
function as similar to Gaussian. 
 On the other hand, Fig. 3 shows the earlier stage of 
the population histogram for the case of P*

AY = 0.1. In 
this case, the population of the DMs are divided into the 
asymmetrical situation. Stochastically and 
approximately, the population is gathered to Pexp = 0.1, 
predicting the probability density function with its 
maximum value at x = 0.1. From these aspects, by 
using the Bayesian framework, we can predict P*

AY 
intuitively by the mathematical background without any 
previous information and its coefficient of confidence 
stochastically depends on its trial number which 
increases the value of it. 

  

Fig. 2: The temporal development of population distribution in the case of P*AY = 0.5 

 

 
 

Fig. 3: The temporal development of population distribution in the case of P*AY = 0.1 



Am. J. Applied Sci., 9 (4): 609-614, 2012 
 

614 

CONCLUSION 
 
 An attention is to be given to future laboratory 
experiments to show robustness of the Bayesian 
decision-theoretical framework developed in this note, 
which could provide an alternative account for 
behavioural tendencies in decisions from experience. 
For example, Fujikawa (2009) presented experiments 
on decisions from experience and discussed the 
existence of the hot stove effect, the predictions of 
which are different from predictions implied by the 
Bayesian framework. Future experimental work will 
help us document whether people often make choices 
predicted by well-known behavioural effects (e.g., 
the hot stove effect and the effect of curiosity), or 
choices predicted by the Bayesian framework. 
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