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Bayesian Framework in Repeated-Play Decision Making
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Abstract: Problem statement: There have been much reported on decisions frorerexgze, also
referred to as decisions in a complete ignoraneshida. Approach: This note lays out a Bayesian
decision-theoretical framework that provides a cotaple account for decisions from experience.
Results: To make the framework more tractable, this notes sgt and examines decisions in an
incomplete ignorance fashion. The current discusagserts that well-known behavioural effects, such
as the hot stove effect and the Bayesian frameworky lead to different predictions.
Conclusion/Recommendations. The framework is applied to the continuity form poedict a
possibility from their experience. We conclude ttheg reasonable prediction is sometimes leads them
to the unreasonable conditions.

Key words. Complete ignorance, decisions from experience,npdete ignorance, Decision Makers
(DMs), framework more tractable, different predicis

INTRODUCTION Let (v, p) denote a distribution, where the outeom
v occurs with probability p (otherwise zero). Thght
The Bayesian decision-theoretical framework ishand column of Table 1 £P shows the aggregated
useful to examine behavioural tendencies in deassio proportion of R choices over 400 trials. The
under ambiguity. A concept of the Bayesian framéwor maximisation rate over the 400 trials was 0.28 in
is one of normative framework that are ubiquitouslyproblem 2, for example. This result suggested that
used by behaviourists to provide a computable awcou deviations from maximisation (i.e., the participgiess
for behavioural tendencies in “decisions from gelection of R) in a state of complete ignoranceewe
experience”. It asserts that the Bayesian decisiog,e consequence of the “hot stove effect” that aoul

maker's ultimate goal is to judge the likelihood ofjgaq 1o a bias toward Fujikawa (2009) indicated the
events by upda‘un‘g her/his subjective pI‘ObabI_|ItIIEES existence of the hot stove effect in decisions from
the face of new evidence as a result of sequeseich experience with analysing results of his experiment

process (Fullkawa,.2.007). . involving the state of complete ignorance.

An areg_of de.C|S|ons from experience (also r.e.ﬁarre The participants did not receive prior information
to as “decisions in a complete ignorance fashids”) o, the payoff structure, but received the feedbhek
fast moving. Many research based on laboratoryyas |limited to obtained payoffs at each round ttTi,
experiments has been presented (Barron and Ereihe experiments was run on a state of complete
2003; Hertwiget al., 2004; Webeet al., 2004; Erev ignorance, where they were disclosed neither plessib
and Barron, 2005; Yechiam and Busemeyer, 2006payoffs nor its likelihoods. The apparatus in thiste,
Fujikawa, 2009; Barron and Yechiam, 2009). Forhowever, seems to have challenging in examining the
example, Table 1 shows two choice problems predenteeXistence of the hot stove effect in light of theyBsian
in Fujikawa (2009), where the participants chose, affamework that combines prior information on the

each period t (t = 1, 2, ..., 400), between two urkear payoff distributions with data to obtain a posterio

buttons that provided outcomes sampled from twog(s)tr;mfgteé iTL'(e)ra{)nirng'\?eargtS"k\évlhoto\’\glet(;nu;zeBs.tatg of
distributions, “R” and “S”. P 9 y agm

framework, as they were not provided with any prior

Table 1: There choice problem and aggregated ptioporof R information on the payoff distributions.

choices in Fujikawa (2009) This note extends Fujikawa (2009) by laying out
Problem R S P the Bayesian decision-theoretical framework that
1 (4,028) 3@ 1) 048 accounts for decisions from experience. Instead of
2 (32,0.1) (3,1) 0.22 state of complete ignorance employed by Fujikawa
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(2009), we shall here employ a state of “incompletebehavioral tendencies in decisions from experieRoe.
ignorance” in which the Decision Makers (DMs) canthis aim, let us present a state of incomplete rignoe
obtain posterior estimates calculated by the Bayesi that is concerned with the situation, where the DMs
framework. A state of incomplete ignorance is defin have incomplete information on the payoff structure
as one, where the DMs are disclosed possible pagbff Let us consider the following Problem Y:

available options, but not disclosed likelihood of

payoffs. Making possible payoffs available to thil$d * Problem Y. Choose between

(participants in laboratory experiments) could wllo *  Ay:y points with probability of Ry; 0 otherwise
them to update data through the Bayesian framework. «  By: 8 points with probability of Ry; 0 otherwise

MATERIALSAND METHODS We lety, 8 > 0, P Py , Pgy E [0,1]. The DM
) ] makes a choice between, /and B, at each period t
A state of complete ignorance: We now define a state (t=1, 2, ..., T). She is informed of possible payasfs

of complete ignorance as the state, where the DM,k option, but not informed of corresponding
prior probab|llty distribution (i.e., the d|s_tr|bun att= probabilities. That is, she knows that one selectib
0) is uniform. A state of complete ignorance wasAY (B,) vields y (6) points with an unknown

experimentally manipulated in previous studies on 4 . . L
degisions froym exprérience intrgduced above. Th robability. Th_us, _the density function of her dopir
grmulated beliefs is:

authors used pairwise choice problems, such as t
following Problem X:
fx) = {0.5 ifx = yorx =0
* Problem X. Choose between 0 ptherwise
* Ay ypoints with probability of P; 0 otherwise
By 6 points with probability of Ry; 0 otherwise A goal of Bayesian DMs is to compute a posteriori
probabilities from a priori probabilities. SinceetidM
We lety, 8 > 0, Pax , Pax E [0,1], PPsy > ,Pax. does not possess the available objective prior
The DM is usually not provided with any prior information on Py, she is to compute a posteriori
information on the payoff structure and she isprobabilities of Pay from a priori probabilities of Ry
repeatedly asked to make decisions, relying on th@nd her experienced probabilit,f Below, we shall
unknown to the DM that one selection 0P (Pex)  same argument holds for the case ofyP For
yields y (8) points with probability of R (P'ex) and computing the a posteriori probabilities, we coasid
zero point with 1- Ry (1- Pex). Itis, however, known o ~ca of n events: We define an eventk= 1, 2
to her that one selection of each option yieldtaier n) as an event that & falls within region k (’ (k’—
payoffs with unknown probabilities. Suppose that th 1)/n< P,y < k/n) at period t. Eachfas a probability

DM is asked to choose eitherfr Byt (0<t<T) _ : e
times in Problem X. Given that each of the mutuaIIyP‘(Rk) - S(k)/n _that defines the likelihood OfkRE‘_"‘Ch
event is exclusive to the all of the other eventaus:

exclusive and exhaustive outcomes x is equallylyflike

the pri bability distributi fAis:
e prior probability distribution of Ais X020y L20n%

1)
R =0.
for0< x< x, P (RXNR,)
f(x) =9qx, +1
0 forx<Oorxz x Note that:
i TR =Y _ XS ®
In case of a state of complete ignorancemay P, @ R)=Yn (R =&kt = g 2
k=1 n

largely vary among the DMs, as they do not have any
prior information on possible outcomes and prolitadsl . )
For example, some participants in Fujikawa (2008)ew As Pay belongs to one of the regions. For
likely to have high x while others low. Thus, it seems that €xample, if n=2, there are two possible events &hat
a prior probability distribution on Awould largely vary Ri (0P ay<0.5) and R (0.55p avy<1) and their
among the participants. probabilities are fR;) = S(1)/2 and RRy) = S(2)/2.
The Py belongs to either of the region, so the sum of
A state of incomplete ignorance: We here aim at the probabilities is §R;) + P(Rz)= R(R, U R;) = 1. By
introducing the Bayesian framework to examinedefinition, we can calculate the probability of teent
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P..1(Wy1) at period t+1, where Y\ is an event that the

k
highest payoffy, being realised at the period t+1. To lim im PG im s )

4 ; n dx = = 7
calculate the probability {R(W.1), we separate it to n - wj%lp‘ (dx n-c n Nn-ow n )
Pu1(We1 | R) when an event Roccurs. From Eg. 1 and
2, we can calculate /(W) as follows Eq. 3: k
lim J-E o (0dx= lim o P (H) B
n oo J KA - 004 -
Pea(Wey) = Py (Woo|O R "o == N (8)
! lim Z S, (k)
=2 P (Wea [ROP (R (©) N- e N
k=11
2 S (k) where, k=1,2, ..., n and x is the imaginary pos$isjbof
- ;ptﬂ.(wﬁl Rk) n the FsAY-
Thus, Eq. 6 is Eq. 9:
Now we estimate and calculatg:PVy, | R). We
approximate this as follows Eq. 4: %pt (%)
2k-1 nj (i)
F)1+1 (VVH]. Rk )? (4) k i Zj:l n pl [ nj?‘]
m
pt+1(7) = _ k (9)
Having observed the result of period t + 1 n n=o im @ ﬁm én)
sequence, the DM updates the possibilifk)s of an Zn (1_i) (l)l
event R by using the Bayesian framework. Thus e R nn
ifW,,jsrealised
(2k=-Ds (k)
2?21(21‘1)51 0 From Eq. 8, we have:
S (K) _ ifw,,jsrealised ) xp, (X)
n (2n- 2k+ 1§ (k) [yp, ()dy
Zjn=1(2n_ 2i+ s () ifw, ,isrealised
ifW . isrealised Paa () (10)
o (A-x)p, (x)
1
1- d
Equation 5 is discrete and we apply it to contirsio IOX( _ y)()./) Y
representations. By so doing, we get Eq. 6: ifW isrealised
fim P(R,?s sht(;lw?én Elql. 8,+X) is a probability density of
, so that Eq. 11:
(2k-DS (k) e
n s oo ) 1 L
s @IDs O] [ P (dx=1 (12)
= . .
_ itW,.jsrealiesed Without losing much generality and accuracy, it
=1 (K)= can be said that the s are updating the prolpabili
S (K)=11lim (6) be said that the DM pdating the probgabil
(2n-2k+ s (k) density g(x) from experienced results. Simply put, we
e — . 1 define Eq. 12:
D L(@n-2j+ 13 U
ifW,,jsrealised f,(x) = fu(x) =x if\/\iﬁj?reali_sed (12)
f,(x) =1 ufw,isrealisec
o Equation 10 is transformed as Eq. 13:
By using infinity, we assume,%k)/n to be a
continuous probability distribution. Then, we defithe f
! ’ : . . __f00p(x) N
continuous probability density function(x) with the  Puw(X)= (13)

1
following properties Eq. 7 and 8: foft (Y)p, (y)dy
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IEW, realizad

I 7 reclized

Fig. 1: The process of probability dencity changease of realised W and W,,,. We label the axes: R on x-
axis and gx) on y-axis

Equation 13 holds true at any time period t, thus: X(t A
Pexp)d= X) (1= Pup)
P (X) = = = (15)
XY (P, ) (- Py, )dy
ot
pt+1(x)= 1pl(X)H‘k=1fk(X)d (13)
jopl(y)Hk:lk(y) y Thus, p4(x) only depends on [ (i.e., the

proportion of the highest payoff realised) at pericand
Letting r be a total number of times of the highes initial probability density of gx). If we assume the
payoff realised, we have Eq. 14: initial probability density function has the constaalue
as p(x)=1 then Eqg. 15 only depends onfas Eq. 16:

ﬁfk(x) =1, (), (0 5 =xX(tp o )L -X)'AL-poy)  (14)
= X(tpexp)(l_ x)(1- pexp)

; (16)
[ XY (tPe) (A= ¥) (1 P, )dly

Pra (X) =

Finally, we obtain:
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RESULTS

Figure 1 shows a process of the earlier stage:

DISCUSSION

It Figure 2 shows the earlier stage of the population

shows how the probability density changes as altresupjstogram for the case of & = 0.5. In this case, the

of an alternative case in each trial. At period 1=
there is no prior information on the probability thie
highest payoff, so that its density is constanp.s) =
1. After the decision is made att = 1, the DM Vdlte
either of the two events in choosing an option att
(1) an event that the highest payoff is realiseel,(ian

population of the DMs are divided into two
symmetrical situations: (1) a situation, where lilneky
DMs face an event W and (2) a situation, where the
unlucky DMs face an eventw . Stochastically and
approximately, the population is gathered to thetere

of the histogram, predicting the probability dewsit

event W); (2) an event that the lowest payoff is function as similar to Gaussian.

realised (i.e.,W, ). If the highest payoff is realised,
the probability density function is updated a$xp =

On the other hand, Fig. 3 shows the earlier stdige
the population histogram for the case ofyP= 0.1. In

2x by the result. If, on the other hand, the lowestthis case, the population of the DMs are dividetd the

payoff is realised, the probability density functics
updated as p(x) = 2-2¢ by the result. At t = 3, the
following three cases are possible: firsi{p>® = 3x, if
events W and W are realised.

Second, gx) = 6x(1-x) if either of the two
conditions is met: (i) a condition that, and W; are
realised; (i) a condition that Wand W, are
realised. Third, gx) = 3(1-x) if W, and W, are
realised.

0.6 0.6
05 0.5

asymmetrical situation. Stochastically and
approximately, the population is gathered {g,P 0.1,
predicting the probability density function withsit
maximum value at x = 0.1. From these aspects, by
using the Bayesian framework, we can prediGty P
intuitively by the mathematical background withauty
previous information and its coefficient of confide
stochastically depends on its trial number which
increases the value of it.
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Fig. 2: The temporal development of populationriistion in the case of R = 0.5
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Fig. 3: The temporal development of populationriistion in the case of R = 0.1
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CONCLUSION Erev, I. and G. Barron, 2005. On adaptation,
maximization and reinforcement learning among
An attention is to be given to future laboratory cognitive strategies. Psychol. Rev., 112: 912-931.
experiments to show robustness of the Bayesian DOI: 10.1037/0033-295X.112.4.912
decision-theoretical framework developed in thiseno Fujikawa, T., 2007. Perfect Bayesian Vs. imperfect
which could provide an alternative account for Bayesian in small decision making problems.
behavioural tendencies in decisions from experience  Behaviormetrika, 34: 27-44.
For example, Fujikawa (2009) presented experiment&ujikawa, T., 2009. On the relative importance o t
on decisions from experience and discussed the hot stove effect and the tendency to rely on small

existence of the hot stove effect, the predictiofs samples. Judgment Decis. Mak., 4: 429-435.
which are different from predictions implied by the Hertwig, R., G. Barron, E. Weber and |. Erev, 2004.
Bayesian framework. Future experimental work will Decisions from experience and the effect of rare

help us document whether people often make choices events in risky choice. Psychol. Sci., 15: 534-539.
predicted by well-known behavioural effects (e.g., DOI: 10.1111/j.0956-7976.2004.00715.x
the hot stove effect and the effect of curiositg), Weber, E.U., S. Shafir and A.R. Blais, 2004. Prexualic

choices predicted by the Bayesian framework. risk sensitivity in humans and lower animals: Risk
as variance or coefficient of variation. Psychol.
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