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Abstract: Problem statement: The analysis and control of delayed systems acerbimg more and
more research topics in progress. This is mainky tduthe fact that the delay is frequently encoaate

in technological systems. This can affect theindigantly operations. Most control command laws
are based on current digital computers and delegsndrinsic to the process or in the control loop
caused by the transmission time control sequer@espmputing time. The delay may affect one or
more states of the considered system. It may dfsatahe establishment of the command. Several
studies have investigated the stability of delastesys under the assumption that the delay is ablari
phenomenon; such variation is considered to be dehior limited to facilitate analysis of the system
In this study we propose a modelling of delayedesysby using the multimodels and switched system
theory. The analysis of stability is based on tee af second Lyapunov method. The issued stability
conditions are expressed as Bilinear Matrix Ineitjealimpossible to resolve. That's why we propose
the same original relaxations to come over thifatifty, an example of induction machine is given t
illustrate over approactApproach: We propose to use the control theory developedstatched
systems to synthesis a control laws for the stiibn of delays systerResults. We stabilize the
induction machine around many operating points itkesfhe non linearitiesConclusion: The
developed method is less conservative and lesgmieis than the used classical methods.

Key words. Delay systems, lyapunov method, switching systemedr Matrix Inequalities (LMI),
Bilinear Matrix Inequalities (BMI)

INTRODUCTION Several studies have modeled the linear systems
with delays by differential equations covering bl
Research in the field of systems controlled viapresent and the past states of the system, asstinaing
computer networks is growing because of the expansi the derivative of the vector of states can be enpthat
of computer networks and the development of moreéVvery imet. . )
robust engines. The economic gains of remote cbntro  Other studies consider delay systems as nonlinear
are more interesting and attract many manufactories and no stationary (Fridman and Shaked, 2002)
The analysis and synthesis of delay systems artCloostermanet al., 2007) with parameters varying

; o ith time or depending on the state of the sysféhe
be‘?om'”g more and more research topics in progresﬁpresentation of such variation may be continumus
This is mainly due to the fact that the delay is

: ) 8iecewise continuous (Ariba and Gouaisbaut, 2007).
frequently en_countere_d N Fec_h_nologmal systems an Approaches have emerged for the analysis of delay
can affect their operations significantly. Most aesed systems based on the nature of the delay itselfciive
on current digital computers and delays may ocCUfention: (Zhu and Hu, 2009)which assumes that the
intrinsically to the process or in the control locgused delay is constant over time. The advantage of suth
by the transmission time control sequences, Ompproach is the reduction of the order of the m®del
computing time. The delay may affect one or moreobtained and the relative ease to design contsotles
states of the considered system. It may also affext whole time the assumption of constant delay is
establishment of the output. physically questionable.
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Several studies have investigated the stability ofx(t) =ax(t—1)+ bu(t) (1)
delay systems under the assumption that the dslay i
variable phenomenon (Gouaisbaut and Peaucelle; 2009  The delay in the order, written in the form Eq. 2:
Benchohraet al., 2007) such a change is seen as

bounded or limited to facilitate system analysi®t@l (1) = ax(t)+ bu(t-1) 2)
etal., 2007).

The research is carried out to ensure the stalbifit The delay in the output is written as Eq. 3:
delay systems are usually around an equilibriunmtpoi
of the system using, the method of Lyapunov, @tu y(t=1) = cx(t) + du(t) @)

al., 1998) is a temporal method which allows it
studying mathematically complex large system
dimensions (Migloire, 2004; Labét al., 2007).

Many studies have aimed at reducmg the wide
variety of problems of synthesis or analysis inven
optimization problems involving LMI, (Henrioet al.,
1999; Teixeiraet al., 2003). The problems of control
and observation are expressed as Bilinear MatrixX
Inequalities (BMI) where the resolution of such
constraints can have several local solutions, betet
are algorithms for local and global optimizations
where BMI may lead to a LMI by changing or
elimination of well-defined variables (Apkarian and
Tuan, 2000).

In Part | of this article, we present an approfich
the synthesis of a controller for delayed discret
systems. The delay is considered type variablénie t
and multiple of the sampling period of the systém.
Part Il, relaxations are introduced to the transfation
of BMI in LMI reaccredit worthy by the current x(k+1)= Zpl (KA, (k)x(k)+2pI (K)B, (K)u(k) (4)
numerical solvers (Matlab© or Scilab ©). An
illustrative example is given in part Il and consisf
stabilization of asynchronous machine driven byespe Where, the parameters (k) replace the switching law
variator via computers network. This example assumesuch ag ui = 1. o
that the delay is due the network. The first part i The return status is written as Eq. 5:
devoted to the modeling of delay systems. The skcon
part presents the study of the stability of thipetyof
system, which is based on the Lyapunov second rdetho
and consequently the relaxation techniques of tinea
matrix inequa”ties. The third part is devoted to The closed |Oop System is given by the fo”owing
modeling the induction motor and the study of thegq. 6:
stability of the model affected by delays in theler
(Kechicheet al., 2011).

Several models have been associated with delay
systems and it appears that several types of sgstem
dependlng on the nature of the delay.

Stability of delay systems. The stability of linear
systems with time-invariant delays is usually stddi
usmg the Lyapunov Krasovskii method; this methed i
very conservative because it generates a lotof LMI
conditions difficult to satisfy all. Another appida
similar to the approach of Lyapunov Krasovskii has
distinguished itself in recent years this is th@rapch

of switched systems (Gouaisbaut and Peaucelle,;2006
Gouaisbaut, 2005).

eDelay system to a switching system: The switched
system can be described as follows Eq. 4:

u(k) = iui (K)K; (K)x(k) ®)

N
x(k+1)= Zui (K)(A + Bk )x(k) (6)

MATERIALSAND METHODS .

The formulation of the system with the presence of

Delay systems: delays in the control u (k) =k (k-t) is described by
Definition: Delay systems are systems characterizegwitched systems approach that requires an augthente
by equations with delays that are introduced to ehod State vector Eq. 7:
phenomena in which there is a lag between the mactio

on the system and the system's response to thi&K))=[XK)...x(k=1)I )
action. The delay may affect several elements. The

delay in the state is written in the form given The formulation of (4) as a switching system is as
Eqg. 1: follows:
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iy The block B k is in column i, the switching system
2(k+ D)= Ayoz(k) adequate representation is as follows given bylBg.
where, the matrixa,(k) =Aifori 00 ={1,.....1} and: z(k+1)= A z(k)
A, . . BK .
A, 00 -BK 0 .. 0 o . . 0 (13)
| o . ) 0 withA, =l 0 1 0 .
A=lo I 0 : 0 0 0
0 : '
0 0 The LMI condition fort =i is Eq. 14:
Ag block is on the (i +£™°th column of A G +G-S GA >0 (14)
After this transformation, system stability is ped AG, S
using Lyapunov functions, poly quadratic Eq. 8
(Daafouz and Bernussou, 2001): 9 9 . . G,
v(K) = 27 Py (K)2(K) ®) WhetherG, = . . LMI condition
. _ gi+1
where, the matrixesP.,R....R. are positive definite b _
matrices. The system is asymptotically stable & th ecomes Eq. 15:
matrixes P, Oi=1...1, check the satisfies following [G +G'-S GA 0 15
I 1 I >
linear matrix inequality Eq. 9: AG, S (15)
B P With:
Pi
{ RR}O,D(LDDI*I ©)
PR R AG, =
. . . . A9, Ag;-BKg, . . Ag,,-BKg;
The previous system (8) is stable if there exasts ; e 9 o 191 +1 '
state feedback gain K such that the closed loofesys ! 2 S
for any bounded delay is stable. We use the ecpuival
condition to the condition of Lyapunov Eq. 10: :
g, +1
G +G -S A
{ IA.Gl, GS'}O (10) The condition (15) is a BMI unsolvable by current

solvers it is essential to introduce relaxationstove to
LMI conditions easy to solve it Eq. 16 and 17:

For a delayt = i, let us apply the method of
switched system, the state equation becomes Eq. 11: g = ODHj[L i] (16)
x(k +1) = Ax(k) + BKx(k —i) (11) Ki=Ri1*Gis1 Rs1=K*Qine (17)
Equation 12 can be rewritten as follows: [llustrative example:

Consider the following discrete system Eq. 18:
[ x(k+1) ]

A, . . BK .|| x(k) =0.99964 - 2.998e 00
x(k) k-1 x*
I o . . O0f|xk-1 7.495e- 005  0.999
=0 1o . . : (12) { 0.0002 ; (18)
o .1 0 . : u
_ . 7.497e- 009
| x(k-(i-D)] SR y=[01x
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The matrices of the system state switched to a
delayt = 3 are written as follows Eq. 19:

Am. J. Applied i, 9 (3): 405-416, 2012
Condition fort =i

G +G-5 GA

z(k+1)= A,z(K) { AG, s }0 (24)
A, 0 0 -BK
) I 00 O (19) For a switching from subsystem i to subsystem |
with A, = .
0 10 0 Eq. 25:
0 0 I 0 . [
G +G'-S GA
Provider adequate Lyapunov condition is Eq. 20: AG S
- \ Condition fort = j Eq. 26:
G,+G,-S GA -0 (20) ondition fort = j Eq
AG, S
t_ t
|:GJ' +GJ' 3 qAJ:|>O (26)
9 9 O 9 AiGi g
We set G, = 9% 9% 9 % the BMI condition for L i
9 G0 9u 9 For a switching from subsystem j to subsystem |
O3 G G5 Oss Eq' 21
tis Eq. 21: - ¢
G+6-5 GA] g @)
G + Gt _ S (*)t AiGi S
o5 )
If the delay t = i <= |, we have
With: A, . -B,K 0.
I 0 . 0
*) = A=l0o 1 0 . Bq k block is in the column
Ag:- A8, AP~ Ag,- 0 | 0
B.Kg;, B, BKY. BKY _ !
9, 9 % 9 .
We increase the order of the matrix or elements
% % & % zero columns’ until we reach the same order agj A
9 Y0 Ou O +1)* (j +1):
Relaxations are Eq. 22:
A, . -B,K 0
Riz= K013, Ris= Kgis, Ris= Kgss, L0 0
Rie= Kgiset Riz= Ri= Ris=0 22 )
16— KO16€1 Fa3™ Ris= Rus (22) A=lo 10 .
The introduction of these relaxations can tramafor 0 | o

BMI (22) in LMI. We find that the system is stalftar
a gain of state feedback Eq. 23:

k, =1.0e- 004*
~0.1453 0.0871- 0.0510- 00512 00§ o *
0 0 0 0 0
0 0 0 0 0

For a delay] [i, j] the system is poly-quadratically
stable if the following LMI conditions are satisfi&q. 24:
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BMI conditions become Eq. 28-31:

Adgll

gll

| Yia

Adgll

gll

| Yia

| Y

921

92

9ju

G +G-$%

A1 APy
-B,Kg,, -BKg.,
g]_z gi+1

G +G-$%

A1 APy
-B,Kg,, -BKg.,
O, Gi1

6,+G -3
Ao AGin
-B,Kg,, _Bngj+1
O g}+1
G +G -5
Ao AGin
-B.Kg,, _Bngj+1
J2 g}+1

relaxations Eq. 32-34:
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Oi1

GIA

GIA

tat
GjA|

tat
GjA|

>0

. [>0

. |>0

>0

(28)

(29)

(30)

(31)

By Kg=001 0O[1, i-1]
Bg ng = ODJ D[l, I-l]
Ki=Ris1*Qis1 " Rua=K*Qiu1

(32)
(33)
(34)

Other relaxations can be introduced as S, this
optimization is local. The advantage of this hygsik is
the reduction of the number of LMI constraints Bf.

G, +G-§

Ay Agy Ay
-B,Kg, -BKgs -BKgg
9 92 Oa1
941 951 gGl

(o)

S

>0 (35)

lllustrative example: Consider the same example
above, the delay between switches 1 and 2. BMI

conditions are Eq. 36-38:

G,+G,-S
Ag., Ag2 Ags
—BsKg,, -BKgg, -BKg,,
Y12 922 O
9s2 952 Y61
G, +G -§

AQu Agx Aga
—BsKg,, -BKgs -BKgg
9 2 91
(e 951 Ye1

G,+G\-S o
A9, AP, APy~
B:Kg,, BKgs BKg

912 92 93
9s2 Os, Y61

'

S |>0 (36)
R

S, |>0 (37)
S |>0 (38)

The relaxations are proposed to solve the problem
The analysis of these conditions has becomeq. 39-41:
difficult as they are of BMI, we introduce the fmiing

R41= Kg3z1, Rs1= KQs1, Re1i= KQe1
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Ras= Kgz2, R7o= Kg7s, Reo= Kggo (40) Consequently, referring to previous models we can
L present a model of the induction machine voltage
Ru1= Re= Rro= Re= 0 (41) controlled we impose on the machine to follow a
K =R g% K.=R o reference speed. The state variables chosen are the
17 Rsls Bo7Rellar stator currents, The rotor flux and the mechanical
[16.7204 17.5336 — 42 2947— 41.2243  5.99: angular pulsation:g}, lsq @r, Prq, Wthe system state is
K,=| © 0 0 0 0 Eq. 43:
) 0 0 0 0 -
[157.8944 2.8791 20.9317 3.3627 5.79 Isd
K,=| 0 0 0 0 0 Isq
0 0 0 0 0 ardl=
Application to the induction machine: We propose to  |grq
apply this approach to a real industrial system, an
induction motor (5.5kW nominal output power, rated | W |
voltage (Y) 400V, rated current (Y): 11.20A, ra_ted [ (RsLF + RMs?) RS -
speed supported: 1445 rpm) controlled by a variable mls&wslsqmm rd
speed drive via a computer network. Delays prethent ( ) ( )
establishment of command sequences: 4 Msrw Org
g o ” ] (LsLr — Msr?)
Induction machine PARK mode: The state
representation according to the PARK model of the _mlsd_(Rer2+RrMsf )Isq—w Msr =0 rd
induction machine fed with an inverter is defingdtbe Lr(LsLr —Msr") (LsLr —Msr)
equation of state as follows: (Castillo-Toledey al., RrMsr Org
2004; Boucetta, 2008). Lr(LsLr —Msr?)
In this model:
R:_Msr Isd—?l] rd+ s-w)l rq
x O R® vector state; i R" control vector with ! '
RrMers - (ws—-w)] rd—BrD T
Rs = Stator resistance. Lr q Lr q
R, = Rotor rgsistance. P Msr B Msr p f
L = Stator inductance. = Ordisg- g DrdlSCr3 Cf—*Jw
L, = rotor inductance. - N
Mg = Mutual inductance. V2rLrE ~J2LrE ~J2LrE
os = electrical synchronism pulsation. V3(LsLr—Msr’) /6(LsLr— Ms) +/ 6(LsLi— Msf )
G = Vector inverter switching command Eq. 42: 0 LrE -LrE
J6(LsLr—Msr?) 6(LsLr—Msr?)
Isd 0 0 0 (43)
Isq |_ 0 0 0
Ord
0 0 0
[Ord L J
—(RsLr? + _Cl
RrMsr?) RrMsr Msw (42)
Lr(LsLr — Msr?) ©s Lr(LsLr — Msr?) (LsLr - Msr?) C,
—(RsLr? C
s +RrMsr?) o Msr RrMsr -
Lr(LsLr — Msr?) (LsLr—Msr?)  Lr(LsLr - Msr?)
Brder 0 = ws-o The output vector, selected, is Eq 44:
o RrMsr ~(@s-®) -Rr
Lr Lr Isd
V2rLrE -\2LrE -\2LrE
sd N3(LsLr—Msr’) /6(LsLr- MsP) ~/6(LsLr— MsF) Ord 0 01 0 0 Isq
LrE -LrE 3
sl 0 NP NPT F} y(t)=|0Orq|={0 0 0 1 0| Ord (44)
g -Msr?) -Msr?) Cs W 0 0 0 O 1|0rqg
- 0 0 0
0 0 0 W
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The system is nonlinear because there arenodel around the nominal operating point.The system
couplings between the pulsatien and the flux®, of linear state machine is Eq. 45:
betweernn and the fluxd,y, between the currenijland
®,4 and another betweeg knd flux®q. .
)‘Z = A)? +BG (45)
Linearization of the state model of the induction ¥ =CX
machine: Linearization of the state model of the
machine comes from the Jacobian matrix. We
determine the operating points and the linear stat¥ith:

A =
[ -(RsLr® + RrMsP?) s RrMsr Mst MsE rq |
Lr(LsLr —Msr?) Lr(LsLr - Msr?) (LsLr—Msr?)  (LsLr- Msr?)
-(RsLr* + RrMsr?) — Msr RrMsr Msfl rq
-Ws -
Lr(LsLr —Msr?) (LsLr—Msr?) Lr(LsLr-Msr?) (LsLr- Msr?)
RrMsr 0 -Rr 0S— @ _m
Lr Lr
0 RrMsr —(ws—a) -Rr Trd
Lr Lr
-P2Msr -P°Msr—; - P Msr— - P Mst—, - f
_ Ord Isq —— Isd —
Lrd Lrd Lrd Lrd j |
V2*LIE -2LrE -J2LrE
J3(LsLr- Msr?) +/6(LsLr- MsP) +/6(LsLr— MsP)
0 LrE -LrE
B = J6(LsLr- Msr?) ~/6(LsLr— Msr?)
0 0 0
0 0 0
I 0 0 0 ]
[0 0 1 0 O
cC=(0 0 0 1 O
0 0 0 0 1
Isq,IsdJ rq) rdw The nominal operating values of the [x(k+1)=Ax(k) +Bu(k-1) 48)
induction machine. y(k) =Cyx(k) + Dyu(k—T1)
Control of the induction machine through a data or u(k-1)= —Kx(k-1) (49)

transmission network : The objective is to study the
stability of the system despite the occurrenceeddys.

The sampling period is defined in relation with the x(k +1)=Ax(k) - BKx(k — 1) (50)
smallest constant time which is; ¥ L / R. and the
switching period of the inverter given by Eq. 46: By applying the method of switching system to
find the control matrix K, Such the closed loopteys
Te= 1/, (46)  for determining a delay is stable although, we tnse
The system in discrete time is Eq. 47: (relgluT:\ézlre(r]ltl)condltlon to the condition of Lyapunov
{x(k+1): Ax(K) +Bu(K) ) For a delayx = 1 Eqg. 51 and 52:
y(k) = Cyx(k) + Dyu(k) x(k +1) = A x(k) - B Kx(k -1) (51)

The delay is attributed to the network so it is {x(k+1)} {A B KM x(K) }
=" ¢ (52)

introduced into the control u ®- The system (47)
becomes Eq. 48-50: x(k) I 0 Jx(k-1)
411
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The matrices of system status switching written Eq

53:
Z (k+1) = A Z (K) (53)
With Alz{A" ‘Bﬂ

| 0

We setGl= {gl gz} LMI condition fort (k) = 1 is

9: G,

Eq. 54:

G,+G,-S GA
AG, S
G, +G-S Qi (54)
|:Adgl_Bng3 Ag,-BKg 4} S >0
9 )

We set g = 0 and B = Kg; LMI condition
becomes Eg. 55:

G, +G,-S GA
|:Adgl Ag,-BKg 4:| s >0 (55)
0 9

The system is stable gain state feedback R g
for a delayr = 2 Eq. 56-57:

x(k +1) = A x(k) = B Kx(k =2) (56)
x(k +1) A, 0 -BK|[ x(k)
x(kK) |=[ 1 0 0 | x(k-12 (57)
x(k -1) 0 I 0 | xtk-2)

The switched system is written Eq. 58:

Z (k+1) = A, Z (K) (58)
A, 0 -BK

With A,=[ 1 0 0
01 0

The Lyapunov condition for = 2 is Eq. 59:

Gz+Gt2_S G2+Gz >0 (59)
A,+G, S

412

ng gZZ 932
We G,=|g,, 0, U/ the condition for =2 are
972 Y2 Y2
Eq. 60:
G,+G,-S ()]

Adglz Ac922 A (g 32

-BsKg;, -BKgg -BKgg, >0 (60)

The previous conditions inequalities are BMI,
difficult to resolve. We propose the following
conditions to come over this difficulty:

O72 =082 = 0, R= Ko
The system is stable for a gaig;, =R g5

For a delay O [0, 2], LMI conditions are Eq. 61-
69:

G,+G;-S )|
Ad1, Ag, Ags
-B,Kg,, -BKgg -BKgy, >0 (61)
Y12 92 O3, S,
Ys2 Os2 Y61
I G,+G,-S, *)']
Ad1, Ag, Ags
-B,Kg,, -BKgg -BKgy, >0 (62)
Y12 92 O3, S
(PP Os2 Y61
I G,+G,-S, *)']
AQ:, Ago Agas
-BsKg;, -BKgg -BKgg, >0 (63)
95, 92 O3, S
Ya2 Os2 61




G, +G,-S
Ady Agx Aga ]
-BKg,, -BKgs -BKgg
Ou 91 Oa
94 Os1 961
G, +G,-S
Ady Agx Aga
-BKg,, -BKgs -BKgg
Ou 91 Oa
94 951 961
G, +G-§
Afu Agax Agy
BiKg,, -BKgs, —BKgg
Ou 921 O
9a Os1 961
G,+G,-S
Ao A A8
—ByKgy,, —BKg, -BKgy
Q10 920 930
G40 950 9eo
Gy +Gy-§
AGo  Afxn A8y |
BiKgyy —BKg,, —B K
G0 920 O30
G40 950 Yoo
G,+G,-S
Ao A A8 |
BiKgyy —BKg, -BKg,
Q10 920 930
G40 950 Yeo

*']

*']

)

]
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>0

>0

>0

>0

>0

>0

(64)

(65)

(66)

(67)

(68)

(69)
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We verify Eq. 70:

ng gZZ g32_
GZ g42 gSZ 962 ;
972 Os 992: (70)
01 921 9 GO0 920 Yao
Gl g41 gSl gGl ; GO = g40 gSO gG
g71 gSl ggl g70 gBO gBO
The previous conditions inequalities are BMI,

difficult to resolve.

conditions:

We propose the following

Ri= K010, Roc= K20, Rso= KQz0, Rar= KQa,
Rs1= Kgs1, Re1i= KQs, Rao= Kgaz, Rro= Kgra,
Re= Kgg>

R10=R2= R41= Re:= Ry= Rg= 0

KO = RSOg;](.) K1: R 59_511 K 2: R 99_32

RESULTSAND DISCUSSION

Illustration: The study of the stability of model states
of the induction machine with delays in the ordersed

on the use of the second Lyapunov method and the
formulation of the problem of calculating the gain
matrix inequality leads to not linear. Thus the raagh

of system for the model of states of the induction
machine is used to calculate the feedback gainrkafo
delay that happens has five times the samplingogeri
Te To= 1/, = 100ps. (R = 10 KHz) To respect the
Shannon theorem was, ¥2* T, so we set J= 100us.
The system in discrete time is that Eq. 71:

{MK+D:A@qm+BJKM 1)
y(k) = C,x(k)+ Dyu(k)
With:
A, =
0.9812 0.03091 0.0113 2.726 0.00117F
-0.03095 0.981 - 0.728 0.01308 0.0108
8.042e- 05 1.512e 06 0.9994 0.001244 1.302e
-1.123e- 06 8.228e 05- 000123 0.9994- 0.0001
-0.002919 - 0.03137 0.3725 0.2837 0.999
1.842 -0.9853 - 0.9453
-0.02891 1.608 - 1579
B,=| 7.5e- 05 -3.666e 05- 3.829¢ 05

-6.496e- 07 6.625e 05 - 6.55e 05
-0.00287 - 0.02387 0.02674

C,=C,D,=D=0
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By applying the method of switching system to t)
find the control matrix K such that the closed loop
system for a delay is stable although determining a "
using Matlab for solving LMI inequality, we find éh K ’
following results: 2
For adelay T = 1: K, K,
1

K, =R,g; =1e- 05*

0.1913 0.6358 0.0704- 0.3410 0.31( . Ko

0.1822 0.6079 0.0660- 0.3280 0.29¢ L + b tis)

0.1824 0.6067 0.0668- 0.3259 0.29¢ _ o _ _
Fig. 1: Switching gain K according to the delay

For adelay T =2

1 :

K, =Ry =1e- 04*

0.0716 0.1180 0.1069 0.0077 0.05: ] !
0.0684 0.1127 0.1020 0.0073 0.04¢ 05 Hsssoasaaas .................. s
0.0683 0.1125 0.1020 0.0073 0.04¢ ’
£ X80 |
F Y:0.13:
For adelay T=3: s s :
] R e
K, =R1691§=19— 05*
—0.1840 -0.1790 0.3989 0.0615 0.23¢
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650 . ; require the contribution of relaxation that canues

T SRS E—— the field of possible solutions. The proposed metho

] e SR was tested on an induction machine supplied by a

T oo fosriisssnsssasssnsnsnarind variable speed drive, despite the random delays
g ' : introduced the system remains stable and retaias th
=3 nominal performance.
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