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Abstract: Problem statement: The analysis and control of delayed systems are becoming more and 
more research topics in progress. This is mainly due to the fact that the delay is frequently encountered 
in technological systems. This can affect their significantly operations. Most control command laws 
are based on current digital computers and delays are intrinsic to the process or in the control loop 
caused by the transmission time control sequences, or computing time. The delay may affect one or 
more states of the considered system. It may also affect the establishment of the command. Several 
studies have investigated the stability of delay systems under the assumption that the delay is a variable 
phenomenon; such variation is considered to be bounded or limited to facilitate analysis of the system. 
In this study we propose a modelling of delayed system by using the multimodels and switched system 
theory. The analysis of stability is based on the use of second Lyapunov method. The issued stability 
conditions are expressed as Bilinear Matrix Inequalities impossible to resolve. That’s why we propose 
the same original relaxations to come over this difficulty, an example of induction machine is given to 
illustrate over approach. Approach: We propose to use the control theory developed for switched 
systems to synthesis a control laws for the stabilisation of delays system. Results: We  stabilize the 
induction machine around many operating points despite the non linearities. Conclusion: The 
developed method is less conservative and less pessimistic than the used classical methods. 
 
Key words: Delay systems, lyapunov method, switching system, Linear Matrix Inequalities (LMI), 

Bilinear Matrix Inequalities (BMI) 
 

INTRODUCTION 
 
 Research in the field of systems controlled via 
computer networks is growing because of the expansion 
of computer networks and the development of more 
robust engines. The economic gains of remote control 
are more interesting and attract many manufactories.  
 The analysis and synthesis of delay systems are 
becoming more and more research topics in progress. 
This is mainly due to the fact that the delay is 
frequently encountered in technological systems and 
can affect their operations significantly. Most are based 
on current digital computers and delays may occur 
intrinsically to the process or in the control loop caused 
by the transmission time control sequences, or 
computing time. The delay may affect one or more 
states of the considered system. It may also affect the 
establishment of the output. 

 Several studies have modeled the linear systems 
with delays by differential equations covering both the 
present and the past states of the system, assuming that 
the derivative of the vector of states can be explained at 
every time t. 
 Other studies consider delay systems as nonlinear 
and no stationary (Fridman and Shaked, 2002) 
(Cloosterman et al., 2007) with parameters varying 
with time or depending on the state of the system. The 
representation of such variation may be continuous or 
piecewise continuous (Ariba and Gouaisbaut, 2007). 
 Approaches have emerged for the analysis of delay 
systems based on the nature of the delay itself. We can 
mention: (Zhu and Hu, 2009)which assumes that the 
delay is constant over time. The advantage of such an 
approach is the reduction of the order of the models 
obtained and the relative ease to design controllers the 
whole time the assumption of constant delay is 
physically questionable. 
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 Several studies have investigated the stability of 
delay systems under the assumption that the delay is a 
variable phenomenon (Gouaisbaut and Peaucelle, 2009; 
Benchohra et al., 2007) such a change is seen as 
bounded or limited to facilitate system analysis (Hetel 
et al., 2007). 
 The research is carried out to ensure the stability of 
delay systems are usually around an equilibrium point 
of the system using, the method of Lyapunov, (Hu et 
al., 1998) is a temporal method which allows it 
studying mathematically complex large system 
dimensions (Migloire, 2004; Labit et al., 2007). 
 Many studies have aimed at reducing the wide 
variety of problems of synthesis or analysis in convex 
optimization problems involving LMI, (Henrion et al., 
1999; Teixeira et al., 2003). The problems of control 
and observation are expressed as Bilinear Matrix 
Inequalities (BMI) where the resolution of such 
constraints can have several local solutions, but there 
are algorithms for local and global optimizations 
where BMI may lead to a LMI by changing or 
elimination of well-defined variables (Apkarian and 
Tuan, 2000). 
 In Part I of this article, we present an approach for 
the synthesis of a controller for delayed discrete 
systems. The delay is considered type variable in time 
and multiple of the sampling period of the system. In 
Part II, relaxations are introduced to the transformation 
of BMI in LMI reaccredit worthy by the current 
numerical solvers (Matlab© or Scilab ©). An 
illustrative example is given in part II and consists of 
stabilization of asynchronous machine driven by speed 
variator via computers network. This example assumes 
that the delay is due the network. The first part is 
devoted to the modeling of delay systems. The second 
part presents the study of the stability of this type of 
system, which is based on the Lyapunov second method 
and consequently the relaxation techniques of linear 
matrix inequalities. The third part is devoted to 
modeling the induction motor and the study of the 
stability of the model affected by delays in the order 
(Kechiche et al., 2011). 
 

MATERIALS AND METHODS 
 
Delay systems: 
Definition: Delay systems are systems characterized 
by equations with delays that are introduced to model 
phenomena in which there is a lag between the action 
on the system and the system's response to this 
action. The delay may affect several elements. The 
delay  in  the  state is written in the form given by 
Eq. 1: 

x(t) ax(t ) bu(t)= − τ +
 

(1) 
 
 The delay in the order, written in the form Eq. 2: 
 
x(t) ax(t) bu(t )= + − τ

 
(2) 

 
 The delay in the output is written as Eq. 3: 
 
y(t ) cx(t) du(t)− τ = +   (3) 
 
 Several models have been associated with delay 
systems and it appears that several types of systems 
depending on the nature of the delay. 
 
Stability of delay systems: The stability of linear 
systems with time-invariant delays is usually studied 
using the Lyapunov Krasovskii method; this method is 
very conservative because it generates a lotof LMI 
conditions difficult to satisfy all. Another approach 
similar to the approach of Lyapunov Krasovskii has 
distinguished itself in recent years this is the approach 
of switched systems (Gouaisbaut and Peaucelle, 2006; 
Gouaisbaut, 2005). 
 
Delay system to a switching system: The switched 
system can be described as follows Eq. 4: 
 

N N

i i i i
i 1 i 1

x(k 1) (k)A (k)x(k) (k)B (k)u(k)
= =

+ = µ + µ∑ ∑
 

(4) 

 
where, the parameters µi (k) replace the switching law 
such as Σ µi = 1. 
 The return status is written as Eq. 5: 
 

N

i i
i 1

u(k) (k)K (k)x(k)
=

= µ∑  (5) 

 
 The closed loop system is given by the following 
Eq. 6: 
 

N

i i i i
i 1

x(k 1) (k)(A B k )x(k)
=

+ = µ +∑
 

(6) 

 
 The formulation of the system with the presence of 
delays in the control u (k) = Ki x (k-τ) is described by 
switched systems approach that requires an augmented 
state vector Eq. 7: 
 

T
1z(k)) [x(k).....x(k )]= − τ  (7) 

 
 The formulation of (4) as a switching system is as 
follows: 
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(k)z(k 1) A z(k)ϕ+ =
 

 

where, the matrix i 1A (k) A for i I {1,..... }ϕ = ∈ = τ  and: 

 

d d

I

A 0 0 B K 0 .. 0

I 0 . . . . 0

A 0 I 0 . . . 0

. 0 .. . . . .

0 . . . . I 0

 −
 
 
 =
 
 
 
 

 

 
Ad block is on the (i +1)éme th column of Ai. 
 After this transformation, system stability is proved 
using Lyapunov functions, poly quadratic Eq. 8 
(Daafouz and Bernussou, 2001): 
 

Tv(k) z P (k)z(k)ϕ=
 

(8) 
 

where, the matrixes 1 2 1P ,P ...Pτ  are positive definite 
matrices. The system is asymptotically stable if the 

matrixes i 1P , i 1.....∀ = τ check the satisfies following 

linear matrix inequality Eq. 9: 
 

T
i i j

j i j

P P P
0, (i, j) I * I

P P P

 
  > ∀ ∈
 
   

(9) 

 
 The previous system (8) is stable if there exists a 
state feedback gain K such that the closed loop system 
for any bounded delay is stable. We use the equivalent 
condition to the condition of Lyapunov Eq. 10: 
 

t t t
i i i i

i i

G G S G A
0

A G S

 + −
> 

 
 (10) 

 
 For a delay τ = i, let us apply the method of 
switched system, the state equation becomes Eq. 11: 
 
x(k 1) Ax(k) BKx(k i)+ = + −  (11) 
 
 Equation 12 can be rewritten as follows: 
 

d d

x(k 1)
x(k)A . . B K .

x(k)
x(k 1)I 0 . . 0

.
.0 I 0 . .

.
.0 . I 0 .

.
x(k i). . . I .

x(k (i 1)

+ 
    
     −    
   = 
    
    
     −  − −    

(12) 

 The block Bd k is in column i, the switching system 
adequate representation is as follows given by Eq. 13: 
 

i

d d

i

z(k 1) A z(k)

A . . B K .

I 0 . . 0

with A 0 I 0 . .

0 . I 0 .

. . . I .

+ =

 
 
 
 =
 
 
 
   

(13) 

 
 The LMI condition for τ = i is Eq. 14: 
 

t t t
i i i i

i i

G G S G A
0

A G S

 + −
> 

 
  (14) 

 

Whether 

1 2 i 1

i

i 1

g g . . g

. .
G

. .

g . .

+

+

 
 
 =
 
 
  

 LMI condition  

 
becomes Eq. 15: 
 

t t t
i i i i

i i

G G S G A
0

A G S

 + −
> 

   

(15) 

 
With: 
 

i i

d 1 d 3 d 4 d i 1 d i 1

1 2 i

1

A G

A g A g B Kg . . A g B Kg

g g . . g 1

.

.

g 1 . . . .

+ +

=

 − −
 + 
 
 
 
 + 

 

 
 The condition (15) is a BMI unsolvable by current 
solvers it is essential to introduce relaxations to move to 
LMI conditions easy to solve it Eq. 16 and 17: 
 

[ ]ig 0 i 1,i= ∀ ∈
 

(16) 
 
K i=Ri+1*g i+1  Ri+1=K*g i+1       (17) 
 
Illustrative example: 
Consider the following discrete system Eq. 18: 
 

[ ]

0.99964 2.998e 005
x

7.495e 005 0.999

0.0002
u

7.497e 0090

y 0 1 x

 = − − 
+ − 


 
  − 
 =  

(18) 
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 The matrices of the system state switched to a 
delay τ = 3 are written as follows Eq. 19:  
 

3

d d

3

z(k 1) A z(k)

A 0 0 B K

I 0 0 0
with A

0 I 0 0

0 0 I 0

+ =

 −
 
 =
 
 
    

(19) 

 
 Provider adequate Lyapunov condition is Eq. 20: 
 

t t t
3 3 3 3

3 3

G G S G A
0

A G S

 + −
> 

   

(20) 

 

We set  

1 2 3 4

4 6 7 8
3

9 10 11 12

13 14 15 16

g g g g

g g g g
G

g g g g

g g g g

 
 
 =
 
 
  

 the BMI condition for  

 
τ is Eq. 21: 
 

t t
3 3G G S (*)

0
(*) S

 + −
> 

   

(21) 

 
With: 
 

d 1 d 2 d 3 d 4

d 13 d 14 d 15 d 16

1 2 3 4

5 6 7 8

9 10 11 12

(*)

A g A g A g A g

B Kg B Kg B Kg B Kg

g g g g

g g g g

g g g g

=

 − − − −
 
 
 
 
 
 
 

 

 
Relaxations are Eq. 22: 
 
R13= Kg13, R14= Kg14, R15= Kg15, 
R16= Kg16 et R13= R14= R15=0 (22) 
 
 The introduction of these relaxations can transform 
BMI (22) in LMI. We find that the system is stable for 
a gain of state feedback Eq. 23: 
 

3k 1.0e 004*

0.1453 0.0871 0.0510 0.0512 0.0511

0 0 0 0 0

0 0 0 0 0

= −
− − − − 
 
 
  

 (23) 

 
 For a delay ∈ [i, j] the system is poly-quadratically 
stable if the following LMI conditions are satisfied Eq. 24: 

 Condition for τ = i 
 

t t t
i i i i i

i i i

G G S G A
0

A G S

 + −
> 

   

(24) 

 
 For a switching from subsystem i to subsystem j 
Eq. 25: 
 

t t t
i i i i i

i i j

G G S G A
0

A G S

 + −
> 

    
(25) 

 
 Condition for τ = j Eq. 26: 
 

t t t
j j j j j

j j j

G G S G A
0

A G S

 + −
> 

    

(26) 

 
 For a switching from subsystem j to subsystem I 
Eq. 27: 
 

t t t
i i j i i

i i i

G G S G A
0

A G S

 + −
> 

   

(27) 

 
 If the delay τ = i <= j, we have 

d d

i

A . . B K 0.

I 0 . . 0

A 0 I 0 . .

0 . I 0 .

. . . I .

 −
 
 
 =
 
 
 
 

 Bd k block is in the column 

i. 
 We increase the order of the matrix or elements 
zero columns’ until we reach the same order as Aj (j 
+1)* (j +1): 
 

d d

j

A . . B K 0

I 0 . . 0

A 0 I 0 . .

0 . I 0 .

. . . I .

 −
 
 
 =
 
 
 
 

 

 
 Bd k block is in the jth column of a dimension (j+1 
* j +1) whether: 
 

11 12 i 1

i

i 1

g g . . g

. .
G

. .

g . .

+

+

 
 
 =
 
 
    
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21 22 j 1

j

j 1

g g . . g

. .
G

. .

g . .

+

+

 
 
 =
 
 
  

 

 
 BMI conditions become Eq. 28-31: 
 

t t
i iG At

i i i

d 13 d i 1
d 11

d 14 d i 1

i11 12 i 1

i 1

G G S

A g A g
A g . .

B Kg B Kg
S 0g g . . g

.
.

.

g . . . .

+

+

+

+

 + −
 
  
  

− −  
   >
  
  
  
  
       

(28) 

 
t t
i iG At

i i i

d 13 d i 1
d 11

d 14 d i 1

j11 12 i 1

i 1

G G S

A g A g
A g . .

B Kg B Kg
S 0g g . . g

.
.

.

g . . . .

+

+

+

+

 + −
 
  
  

− −  
   >
  
  
  
  
       

(29) 

 
t t
j jG At

j j j

d i 1d 23
d 21

d j 1d 14

j21 22 j 1

j 1

G G S

A gA g
A g . .

B KgB Kg
S 0g g . . g

.
.

.

g . . . .

+

+

+

+

 + −
 
  
  

− − 
   >  
  
  
  
  
     

 (30) 

 
t t
j jG At

j j j

d i 1d 23
d 21

d j 1d 14

i21 22 j 1

j 1

G G S

A gA g
A g . .

B KgB Kg
S 0g g . . g

.
.

.

g . . . .

+

+

+

+

 + −
 
  
  

− − 
   >  
  
  
  
  
     

(31) 

 
 The analysis of these conditions has become 
difficult as they are of BMI, we introduce the following 
relaxations Eq. 32-34: 

Bd Kgi = 0∀ I ∈[1, i-1] (32) 
 
Bd Kgj = 0∀ j ∈[1, i-1] (33) 
 
K i=Ri+1*g i+1

-1 Ri+1=K*g i+1 (34) 
 
 Other relaxations can be introduced as Si = Sj, this 
optimization is local. The advantage of this hypothesis is 
the reduction of the number of LMI constraints Eq. 35: 
 

t(*)t
1 1 1

d 11 d 21 d 31

d 41 d 51 d 61
1

11 21 31

41 51 61

G G S

A g A g A g

B Kg B Kg B Kg
S 0

g g g .

g g g

 + −
 
  
  

− − −   >  
  
  
  
      

(35) 

 
 Illustrative example: Consider the same example 
above, the delay τ between switches 1 and 2. BMI 
conditions are Eq. 36-38: 
 

t(*)t
2 2 2

d 12 d 22 d 32

d 72 d 82 d 92
2

12 22 31

42 52 61

G G S

A g A g A g

B Kg B Kg B Kg
S 0

g g g .

g g g

 + −
 
  
  

− − −   >  
  
  
  
      

(36) 

 
t(*)t

1 1 1

d 11 d 21 d 31

d 41 d 51 d 61
2

11 21 31

41 51 61

G G S

A g A g A g

B Kg B Kg B Kg
S 0

g g g .

g g g

 + −
 
  
  

− − −   >  
  
  
  
      

(37) 

 
t(*)t

2 2 2

d 12 d 22 d 31

d 72 d 51 d 61
1

12 22 32

42 52 61

G G S

A g A g A g

B Kg B Kg B Kg
S 0

g g g .

g g g

 + −
 
  − − −
  
   >  
  
  
  
      

(38) 

 
 The relaxations are proposed to solve the problem 
Eq. 39-41: 
 
R41= Kg31, R51= Kg51, R61= Kg61 (39) 
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R32= Kg32, R72= Kg72, R82= Kg82 (40) 
 
R41= R61= R72= R82= 0 (41) 
 

1 1
1 51 51 2 92 91K R g K R g− −= =  

 

1

16.7204 17.5336 42.2947 41.2243 5.9932

K 0 0 0 0 0

0 0 0 0 0

− − − 
 =  
  

 

2

157.8944 2.8791 20.9317 3.3627 5.7936

K 0 0 0 0 0

0 0 0 0 0

 
 =  
    

 
Application to the induction machine: We propose  to 
apply this approach to a real industrial system, an 
induction motor (5.5kW nominal output power, rated 
voltage (Y) 400V, rated current (Y): 11.20A, rated 
speed supported: 1445 rpm) controlled by a variable 
speed drive via a computer network. Delays prevent the 
establishment of command sequences: 
 
Induction machine PARK model: The state 
representation according to the PARK model of the 
induction machine fed with an inverter is defined by the 
equation of state as follows: (Castillo-Toledoy et al., 
2004; Boucetta, 2008). 
 In this model: 
 
x ∈ Rp vector state; u ∈ Rn control vector with 
 
Rs = Stator resistance. 
Rr = Rotor resistance. 
Ls = Stator inductance. 
Lr = rotor inductance. 
Msr = Mutual inductance. 
ωs  = electrical synchronism pulsation. 
Ci = Vector inverter switching command Eq. 42: 
 

.

.

.

.
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2

2 2 2

2

2

2 2 2

I s d

I s q

r d

r d

(RsLr

RrMsr ) RrMsr Msr
s

Lr(LsLr Msr ) Lr(LsLr Msr ) (LsLr Msr )

(RsLr

RrMsr ) Msr RrMsr
s

Lr(LsLr Msr ) (LsLr Msr ) Lr(LsLr Msr )

RrMsr Rr
0 s

Lr Lr
RrMsr Rr

0 ( s )
Lr Lr

 
 
 
  = 
 ∅
 
 ∅ 

− +

ωω
− − −

−
+−ω −ω

− − −
− ω − ω

−− ω − ω

2 2 2

1

2

2 2
3

2 *Lr E 2Lr E 2Lr E

3(LsLr Msr ) 6 (LsLr Msr ) 6 (LsLr Msr )
Isd

cLr E Lr E
0Isq

c6 (LsLr 6 (LsLr
rd

cMsr ) Msr )
rq

0 0 0

0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 − −
 

− − − 
     −       +     ∅      − −   ∅    

 
  

 (42) 

 Consequently, referring to previous models we can 
present a model of the induction machine voltage 
controlled we impose on the machine to follow a 
reference speed. The state variables chosen are the 
stator currents, The rotor flux and the mechanical 
angular pulsation: Isd, Isq, Φrd, Φrq, ωthe system state is 
Eq. 43:  
 

.

.

.

.

.

2 2

2 2

2

2 2

2 2

2

Isd

Isq

rd

rd

W

(RsLr RrMsr ) RrMsr
Isd sIsq rd

Lr(LsLr Msr ) Lr(LsLr Msr )

Msrw
rq

(LsLr Msr )

(RsLr RrMsr ) Msr
sIsd Isq rd

Lr(LsLr Msr ) (LsLr Msr )

RrMsr
rq

Lr(LsLr Msr )

RrMs

 
 
 
 
  =∅ 
 
 ∅
 
  

− + + ω ∅
− −

+ ∅
−

+−ω − − ω ∅
− −

+ ∅
−

2 2

2 2 2

2

r Rr
Isd rd ( s ) rq

Lr Lr
RrMsr Rr

Isq ( s ) rd rq
Lr Lr

P Msr P Msr P f
rdIsq rdIsq Cr

LrJ LrJ J J

2*Lr E 2Lr E 2Lr E

3(LsLr Msr ) 6(LsLr Msr ) 6(LsLr Msr )

Lr E
0

6(LsLr Msr )

 
 
 
 
 
 
 
 
 
 
 
 
 
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 
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 
 ∅ − ∅ − − ω  

− −
− − −

−
− 2

1

2

3

Lr E

6(LsLr Msr )

0 0 0

0 0 0

0 0 0

c

c

c

 
 
 
 
 

− 
 
 
 
 
 

 
 
 
 
 

(43) 

 
 The output vector, selected, is Eq 44:  
 

Isd

rd 0 0 1 0 0 Isq

y(t) rq 0 0 0 1 0 rd

W 0 0 0 0 1 rq

W

 
 ∅     

     = ∅ = ∅     
    ∅     

    

(44) 
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 The system is nonlinear because there are 
couplings between the pulsation ω and the flux Φrq, 
between ω and the flux Φrd, between the current Isq and 
Φrd and another between Isd and flux Φrq. 
 
Linearization of the state model of the induction 
machine: Linearization of the state model of the 
machine comes from the Jacobian matrix. We 
determine the operating points and the linear state 

model around the nominal operating point.The system 
of linear state machine is Eq. 45: 

 

ɶ ɶ ɶ

ɶ ɶ

x Ax Bu

y Cx


 = +

 =

i

 (45) 

 
With: 

 

2 2

2 2 2 2

2 2

2 2 2 2

A

(R sLr R rM sr ) R rM sr M sr M sr rq
s

Lr (LsLr M sr ) L r (LsLr M sr ) (LsLr M sr ) (LsLr M sr )

(R sLr R rM sr ) M sr R rM sr M sr rq
W s

Lr (LsLr M sr ) (LsLr M sr ) L r (LsLr M sr ) (LsLr M sr )

R rM sr R r
0 s rq

Lr Lr
R rM sr

0 ( s )
L r

=

− + ω ∅ω
− − − −

− + ∅− − ω
− − − −

− ω − ω −∅

− ω − ω

2 2 2 2

2 2 2

2 2

R r
rd

Lr
P M sr P M sr P M sr P M sr f

rd Isq Isd
LrJ LrJ LrJ LrJ j

2 *Lr E 2 Lr E 2Lr E

3 (LsLr M sr ) 6 (LsLr M sr ) 6 (LsLr M sr )

L r E Lr E
0

B 6 (LsLr M sr ) 6 (LsLr M sr )

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
 
 
 
 −
 ∅
 
 − − − − −
 ∅
  

 − −
 

− − − 
 −
 

= − − 




 

0 0 1 0 0

C 0 0 0 1 0

0 0 0 0 1






 
 =  
  

 

 

Isq, Isd, rq, rd, :∅ ∅ ω The nominal operating values of the 

induction machine. 
 
Control of the induction machine through a data 
transmission network : The objective is to study the 
stability of the system despite the occurrence of delays. 
The sampling period is defined in relation with the 
smallest constant time which is, Ts = Ls / Rs. and the 
switching period of the inverter given by Eq. 46: 
 
  Tc = 1/fc  (46) 
 
 The system in discrete time is Eq. 47: 
 

d d

d d

x(k 1) A x(k) B u(k)

y(k) C x(k) D u(k)

 + = +


= +
 (47) 

 
 The delay is attributed to the network so it is 
introduced into the control u (k-τ). The system (47) 
becomes Eq. 48-50:  

d d

d d

x(k 1) A x(k) B u(k )

y(k) C x(k) D u(k )

 + = + − τ


= + − τ
 (48) 

 
or u(k ) Kx(k )− τ = − − τ  (49) 

 

d dx(k 1) A x(k) B Kx(k )+ = − − τ  (50) 
 
 By applying the method of switching system to 
find the control matrix K, Such the closed loop system 
for determining a delay is stable although, we use the 
equivalent condition to the condition of Lyapunov 
number (11). 
 For a delay τ = 1 Eq. 51 and 52: 
 

d dx(k 1) A x(k) B Kx(k 1)+ = − −  (51) 

 

d dx(k 1) x(k)A B K

x(k) x(k 1)I 0

+  −   
=     −    

 (52) 
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 The matrices of system status switching written Eq. 
53: 
 
Z (k+1) = A1 Z (k) (53)  
 

With  d d
1

A B k
A

I 0

 −
=  
 

 

 

 We set 1 2

3 4

g g
G1

g g

 
=  
 

 LMI  condition for τ (k) = 1 is 

Eq. 54: 
 

t t t
1 1 1 1

1 1

t t
1 1

d 1 d 3 d 3 d 4

1 1

G G S G A

A G S

G G S (*)

0A g B Kg A g B Kg
S

g g

 + −
 
 

 + −
 

> − − 
  
  

 (54) 

 
 We set g3 = 0 and R4 = Kg4 LMI condition 
becomes Eq. 55: 
 

t t t
1 1 1 1

d 1 d 3 d 4

1 1

G G S G A

0A g A g B Kg
S

g g

 + −
 

> − 
  
  

 (55) 

 
 The system is stable gain state feedback 1

1 4 4K R g−=  

for a delay τ = 2 Eq. 56-57: 
 

d dx(k 1) A x(k) B Kx(k 2)+ = − −  (56) 

 

d dx(k 1) A 0 B K x(k)

x(k) I 0 0 x(k 1)

x(k 1) 0 I 0 x(k 2)

 + −   
    = −    
    − −    

 (57) 

 
 The switched system is written Eq. 58: 
 
 Z (k+1) = A2 Z (k)  (58)   
  

With  
d d

2

A 0 B K

A I 0 0

0 I 0

 −
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 
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 The Lyapunov condition for τ = 2 is Eq. 59: 
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 (59) 

 We 
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 the condition for τ = 2 are 

Eq. 60: 

 
t t

2 2 2
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 (60)    

 
 The previous conditions inequalities are BMI, 
difficult to resolve. We propose the following 
conditions to come over this difficulty:  

 
g72 =g82 = 0, R92= Kg92 

 
 The system is stable for a gain: 1

2 92 92K R g .−=  

 For a delay τ ∈ [0, 2], LMI conditions are Eq. 61-
69: 
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t t
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 (66) 
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 (67)   
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 We verify Eq. 70: 
 

12 22 32

2 42 52 62

72 82 92

11 21 31 10 20 30

1 41 51 61 0 40 50 60

71 81 91 70 80 90

g g g

G g g g ;
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 
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   
   = =   
   
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 (70)  

 
 The previous conditions inequalities are BMI, 
difficult to resolve. We propose the following 
conditions: 
 
R10= Kg10, R20= Kg20, R30= Kg30, R41= Kg41,  
R51= Kg51, R61= Kg6, R32= Kg32, R72= Kg72,  
R82= Kg82 

R10=R20= R41= R61= R72= R82= 0 
1 1 1

0 30 30 1 51 51 2 92 92K R g K R g K R g− − −= = =
 

 

RESULTS AND DISCUSSION 
 
Illustration: The study of the stability of model states 
of the induction machine with delays in the order, based 
on the use of the second Lyapunov method and the 
formulation of the problem of calculating the gain 
matrix inequality leads to not linear. Thus the approach 
of system for the model of states of the induction 
machine is used to calculate the feedback gain K for a 
delay that happens has five times the sampling period 
Te. Tc = 1/fc = 100 µs. (Fc = 10 KHz) To respect the 
Shannon theorem was, Te <2* Tc so we set Te = 100 µs. 
The system in discrete time is that Eq. 71: 
 

d d

d d

x(k 1) A x(k) B u(k)

y(k) C x(k) D u(k)

 + = +


= +
 (71) 

 
With: 
 

dA

0.9812 0.03091 0.0113 2.726 0.001175

0.03095 0.981 0.728 0.01308 0.0108

8.042e 05 1.512e 06 0.9994 0.001244 1.302e 05

1.123e 06 8.228e 05 000123 0.9994 0.0001195

0.002919 0.03137 0.3725 0.2837 0.9998

=

 
 − − 
 − − − −
 
− − − − −
 − − 

d

d d

1.842 0.9853 0.9453

0.02891 1.608 1.579

B 7.5e 05 3.666e 05 3.829e 05

6.496e 07 6.625e 05 6.55e 05

0.00287 0.02387 0.02674

C C,D D 0




− − 
 − − 
 = − − − − −
 
− − − − − 
 − − 

= = =
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 By applying the method of switching system to 
find the control matrix K such that the closed loop 
system for a delay is stable although determining and 
using Matlab for solving LMI inequality, we find the 
following results: 
 
For a delay τ = 1: 
 

1
1 4 4K R g 1e 05*

0.1913 0.6358 0.0704 0.3410 0.3105

0.1822 0.6079 0.0660 0.3280 0.2963

0.1824 0.6067 0.0668 0.3259 0.2961

−= = −
− 

 − 
 −   

 
For a delay τ = 2: 
 

1
2 9 9K R g 1e 04*

0.0716 0.1180 0.1069 0.0077 0.0521

0.0684 0.1127 0.1020 0.0073 0.0497

0.0683 0.1125 0.1020 0.0073 0.0497

−= = −

 
 
 
  

 

 
For a delay τ = 3: 
 

1
2 16 16K R g 1e 05*

0.1840 0.1790 0.3989 0.0615 0.2385

0.1755 0.1708 0.3807 0.0586 0.2277

0.1755 0.1707 0.3805 0.0587 0.2275

−= = −
− − − 
 − − − 
 − − − 

 

 
For a delay τ = 4: 
 

1
4 25 25K R g 1e 04*

0.1101 0.1022 0.1772 0.1599 0.942

0.1052 0.0976 0.1692 0.1527 0.0899

0.1051 0.975 0.1690 0.1526 0.0898

−= = −
− − − − − 
 − − − − − 
 − − − − − 

 

 
For a delay τ = 5: 
 

1
5 36 36K R g 1.0e 08*

0.0475 0.1102 0.0358 0.0133 0.0564

0.0453 0.1052 0.0342 0.0127 0.0538

0.0453 0.1051 0.0342 0.0127 0.0537

−= = −
− 

 − 
 − 

 

 
For a delay: τ ∈∈∈∈ [0, 2]: 
 

1
0 30 30K R g 1.0e 004*

0.1365 0.0456 0.1375 0.6665 1.7229

0.1303 0.0436 0.1313 0.6364 1.6450

0.1302 0.0435 0.1312 0.6358 1.6435

−= = −
− 
 − 
 − 

 

 
 
Fig. 1: Switching gain K according to the delay 
 

 
 

 
 
Fig. 2: Nominal Rotor flux along the axis “d’’ and axis “q” 
 

1
1 51 51K R g 1.0e 003*

0.3695 1.1142 0.2694 0.0574 1.2551

0.3528 1.0640 0.2573 0.0574 1.1985

0.3525 1.0629 0.2570 0.0548 1.1973

−= = −
− − 
 − − 
 − − 
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Fig. 3: Rated electric pulsation 
 

1
2 92 92K R g

0.3945 0.4119 0.4171 0.3819 0.4143

0.3766 0.3933 0.3983 0.3646 0.3955

0.3763 0.3929 0.3979 0.3643 0.3952

−= =

 
 
 
  

 

 
Simulation and results: Matlab simulation of the 
system around the nominal operating point below for 
a delay τ ϵ [0, 2], (Fig. 1) gives the following 
signals:  
 

The nominal operating point:

 

n

n

n

n

n

Isd 10.97A

Isq 15.77A

rd 1.2Wb

rq 0.13Wb

W 302.6rd / s

 =
 = ∅ =
∅ =

 =  

 
 According to the curves of the outputs  Φrq, Φrd and 
ω  system we find that the system is stable for a delay τ 
= 2, (Fig. 2 and 3),  the state feedback gain K2 
calculated by the method of switching system stabilizes 
the closed loop system for a delay of less than two 
sampling periods. This calculation method therefore 
offers a large range of stability because it tolerates 
delays in transmission networks 0≤τ≤2. 

 
CONCLUSION 

 
 Remote control with stability problems is a new 
challenge for scientists. Indeed, despite the progress the 
case of nonlinear systems with remote-controlled 
continuous delays pose serious problems of stability 
and stabilization.  
 In this study, we proposed stabilization algorithms 
based on the use of hopping systems for the calculation 
of a gain stabilizing state feedback. The difficulty of 
this approach is to obtain non-linear matrix. Inequalities 

require the contribution of relaxation that can reduce 
the field of possible solutions. The proposed method 
was tested on an induction machine supplied by a 
variable speed drive, despite the random delays 
introduced the system remains stable and retains the 
nominal performance. 
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