
American Journal of Applied Sciences 9 (3): 283-288, 2012
ISSN 1546-9239
© 2012 Science Publications

Corresponding Author: Ammar Ahmed E. Elhadi, Information Assurance and Security Research Group,
 Faculty of Computer Science and Information Systems, University Technology, 81310, Malaysia

283

 Malware Detection Based on Hybrid Signature

Behaviour Application Programming Interface Call Graph

Ammar Ahmed E. Elhadi, Mohd Aizaini Maarof and Ahmed Hamza Osman
Information Assurance and Security Research Group,

Faculty of Computer Science and Information Systems,
University Technology, Malaysia

Abstract: Problem statement: A malware is a program that has malicious intent. Nowadays, malware
authors apply several sophisticated techniques such as packing and obfuscation to avoid malware
detection. That makes zero-day attacks and false positives the most challenging problems in the
malware detection field. Approach: In this study, the static and dynamic analysis techniques that are
used in malware detection are surveyed. Static analysis techniques, dynamic analysis techniques and
their combination including Signature-Based and Behaviour-Based techniques are discussed. Results:
In addition, a new malware detection framework is proposed. Conclusion: The proposed framework
combines Signature-Based with Behaviour-Based using API graph system. The goal of the proposed
framework is to improve accuracy and scan process time for malware detection.

Key words: Malware detection, API call graph, framework

INTRODUCTION

 Malware stands for malicious software. It is the
type of software that is designed with a harmful intent in
mind. It comes in many forms such as Viruses, Worms,
Trojan horses, Backdoors, Spyware, Rootkits, botnet in
addition to other types of software with unwanted
behavior (Wang, 2006).
 The following are breif descriptions for each of the
above mentioned malware types (Wang, 2006):

• Viruses are programs that self-replicate within a

host by attaching themselves to programs and/or
documents that become carriers of the malicious
code

• Worms are programs that self-replicate across a
network

• Trojan horses masquerade as useful programs, but
contain malicious code to attack the system or leak
data

• Back doors open the system to external entities by
subverting the local security policies to allow
remote access and control over a network

• Spyware is a useful software package that also
transmits private user data to an external entity

• Rootkits is a collection of tools often used by an
attacker after gaining administrative privileges on a
host

• Botnet is remotely controlled software that
comprises a collection of autonomous software
tools

• Malware detector is a system that attempts to
identify malware using signatures and other
heuristics techniques; Antivirus scanner is an
example of a malware detector (Wang, 2006); the
malware writer (hacker) on the other hand applies
sophisticated techniques to evade detection by
modifying or morphing malware using packing
techniques and/or program obfuscation. Two
common obfuscation techniques are Polymorphism
and Metamorphism (You and Yim, 2010)

 The malware detector attempts to help protect the
system by detecting malicious behavior. The malware
detector may or may not reside on the same system it is
trying to protect. Malware detectors take two inputs:

• Knowledge of the malware signature or behavior

(learning)
• The program under inspection

 Once the malware detector has the knowledge of
what is considered malware behavior (abnormal
behavior) and the program under inspection, it can
employ its detection technique to decide if the program
is malware or benign.

Am. J. Applied Sci., 9 (3): 283-288, 2012

284

MATERIALS AND METHODS

 Malware analysis can be categorized into two main
categories:

• Analysis of the infected file without executing it,

which is known as static analysis. In this approach,
we extract low-level information such as Control
Flow Graphs (CFGs), Data-Flow Graphs (DFGs)
and System call analysis. This information can be
gathered by disassembling or decompiling the
infected file using tools like IDA Pro (Riesen and
Bunke, 2009). Sometimes analyzing the infected
file in a different environment to avoid auto
execution of the malware is better. Using static
analysis we get fast, safe and low false positives
and we trace all paths, which helps in terms of
getting a lot of information to analyze. On the other
hand static analysis may fail in analyzing unknown
malware that uses code obfuscation techniques
(Egele et al., 2011)

• Analysis of the infected file during its execution,
which is known as dynamic analysis. Dynamic
analysis executes the infected file on simulated
environment (a debugger or a virtual machine or an
emulator) to analyze its malicious functions. The
analysis environment must be invisible to the
malware because the malware writer use tools like
anti-virtual machine and Anti-emulation to hide
their malware functions if they detect they are under
analysis. Dynamic analysis fails to detect activities
of interest if the target changes its behavior
depending on trigger conditions such as existence
of a specific file or specific day as only a single
execution path may be examined for each attempt
(Egele et al., 2011)

Techniques: There are mainly two techniques for
malware detection: Signature-Based and Behavior-
Based techniques (Table 1-2).
 In signature-based techniques a sequence of
instructions unique to a malware is used to generate a
malware signature, which is captured by researchers in a
laboratory environment (Goertzel, 2009). A signature
should be able to identify any malware exhibiting the
malicious behavior specified by the signature. Most of
antivirus scanners are signature based.
 Behavior-based detection techniques focus on
analyzing the behavior of known and suspected
malicious code. Such behaviors include factors such as
the source and destination addresses of the malware, the
attachment types in which they are embedded and
statistical anomalies in malware infected systems
(Goertzel, 2009). One example of a behavior-based

detection approach is the histogram-based malicious
code detection technology patented by Symantec.
 To overcome the limitations of signature-based
detection some malware researchers apply graph
(Control Flow Graph (Bonfante et al., 2007), Call graph
(Lee et al., 2010), machine learning techniques (Rieck,
et al., 2011) and data mining techniques (Kephart and
Arnold, 1994; Schultz et al., 2001) (Objective-Oriented
Association (OOA) (Ye et al., 2008)).
 Other researchers apply techniques like finite
automaton, HMM, data mining (Schultz et al., 2001;
Siddiqui et al., 2008) (Naïve Bayes, Support Vector
Machine (SVM) and Decision tree) and neural network
(Tesauro et al., 1996) to improve Behavior-Based
detection.

Related work: Malware Detection is divided into two
methods: Signature-Based and Behavior-Based
techniques and each technique can be applied using
static analysis or dynamic analysis or hybrid analysis
(Idika and Mathur, 2007), Fig. 1-3 shows the
organization of malware detection.
 Implementing signature based detection without
executing the suspected file (Static analysis) was the
first try to detect malware. Researchers applied different
techniques to improve detection rate. Some of them
applied Objective-Oriented Association (OOA) mining
based classification (Ye et al., 2008). Their model
consisted of three major modules: PE parser, OOA rule
generator and rule based classifier. After a while they
developed their work using postprocessing techniques
associative classification method based on the analysis
of Application Programming Interface (API) execution
calls (Ye et al., 2010). Other researchers combined
signature-based technique and genetic algorithm
technique, but their study focused on three types of
malware which are virus, worms and Trojan horse
(Zolkipli and Jantan, 2010).

Fig. 1: Organization of malware detection

Am. J. Applied Sci., 9 (3): 283-288, 2012

285

Fig. 2: New organization of malware detection

Table 1: Summary of the advantages and disadvantage of static and

dynamic analysis
 Advantage Disadvantage
Static analysis Fast and safe. Difficulty analyzing
 Low level of unknown malware.
 false positives.
 Good in analyzing
 multipath malware.
Dynamic analysis Good in detecting Neither fast nor safe.
 unknown malware. Difficulty analyzing
 multipath malware.

Table 2: Summary of the advantages and disadvantages of signature-

based and behavior-based techniques
 Advantage Disadvantage
Signature-based Less scanning time. Unknown malware can
 easily evade detection.
 Few false positives. Cannot deal with
 simple obfuscation.
Behavior-based Best results in detecting Not able to detect a lot of
 of polymorphic malware. polymorphic viruses
 present (Packers).

 Signature based detection was also applied during
suspected file execution (dynamic analysis) in which
the researchers trace API calls and then build their
suspected file signature (Nair et al., 2010), this
researcher generated signature for an entire malware
class instead of for individual malware samples. Once a
base signature for a particular metamorphic generator is
generated, all the metamorphic viruses created from
that tool are easily detected.
 Most of the existing works relies on using behavior
based detection where some researchers apply static
analysis while others apply dynamic analysis. Some of
the works focus on kernel memory mapping to develop
a malware behavior monitor that uses a temporal view
of kernel objects in the analysis of kernel execution
traces (Rhee et al., 2010). Other focus on avoiding false
positives by tracing malware behavior usually not do
but installers and uninstallers do (Fukushimayz et al.,
2010; (Park et al., 2010) propose a new malware
classification method based on maximal common
subgraph detection.

Fig. 3: Proposed framework

 Current researchers combine static analysis with
dynamic analysis to overcome the limitations of each
method. Guo et al. (2010) proposed a framework that
combined static and dynamic binary translation features
to detect malware and prevent its execution. They apply
behavior Control Flow Graph (CFG) and then critical
API Graph based on CFG is generated to do sub-graph
matching. Other researchers apply signature Control
Flow Graph (CFG) and use edit distance matches
between graphs.
 As demonstrated in the previous paragraph the
observation is that now some malware researchers
focus on graph (control flow graph, call graph, code
graph). They build their graph in different ways and
analyze and compare graph using different methods. To
build the graph most researchers present node graph as
system call. For example (Lee et al., 2010) creates their
graph by transforming PE file into call graph, the call
graph nodes are system calls and the edges are system
call sequence. Then the call graph minimize into code
graph to speed up the analyze and compare graphs.
Other researchers (Park et al., 2010) use the same way

Am. J. Applied Sci., 9 (3): 283-288, 2012

286

by use 4-tuples node corresponds system call, edges the
dependency of two system calls and label for nodes and
edges. Some other researchers define node graph as
kernel objects rather than system calls (Park and
Reeves, 2011). On the other hand (Kostakis et al.,
2011) built the graph from the subroutines as nodes and
their call references as edges, (Kim and Moon, 2010)
they use a dependency graph whose vertex represents a
line in the semantic code. The dependency between two
lines is represented by a directed edge and (Bai et al.,
2009; Guo et al., 2010) extract a Critical API Graph
(CAG) from a Control Flow Graph (CFG) for each
malware to define the behavior.

RESULTS AND DISCUSSION

 The above works compare graph using different
graph matching techniques some of them use maximal
common subgraph (Kim and Moon, 2010; Park and
Reeves, 2011) and some use Weighted Common
Behavioral Graph Generation based on an Approximate
Algorithm and others build formula using intersection
and the union of the graphs (Lee et al., 2010) but all
require time and space due to NP-completeness of the
problem.

Proposed framework: Since each technique has
advantages and disadvantages, it is believed that by
combining them in some manner we can improve the
advantages and decrease the disadvantages. Using static
techniques we can get fast and safe result and also by
applying unpacking tools to solve packing problem and
analysis of the file using both signature and behavior-
based methods we can get better results. In case static
techniques fail, we can use dynamic techniques to do
more analysis on the file. Furthermore, to get more
efficient result about the infected file, we can analyze the
file using both signature and behavior-based methods.

Framework component:
Execute the PE file and collect API calls: Execute the
suspected file in safe (apply rootkit) and controlled
environment and use kernel hooking to extract API call
after unpacking if the file is packed. We will to trace
different path in the file.

Construct the hybrid call graph: We build our graph
using API call collecting from the execution of the file;
our graph differs from other researcher’s graphs in that
we build it from the API calls and the operating system
resources used by API call as graph nodes, the edges
represent the reference between the nodes. Our nodes
will have two attributes: API call and operating system

resource, the graph label is the API calls its self or the
operating system resource.
 The construction of the API call graph for a
program without API operating system recourses is
very simple. In programs containing API operating
system recourses, it is possible to have a reference to
API operating system recourses which may represent
invocations of several distinct other API calls. In order
to address all possible questions which result from such
a references in API call, we need to know all other API
calls associated with that API operating system
recourses (Ryder, 1979).

Decrease the constructed graph: The generated graph
from the previous step contains huge number of nodes
and edges and needs to be minimized. This operation
will be by removing unused instruction (junk code,
computation) and focus on popular API call used by the
majority of malware.
 We can use the information on node (API call,
operating system resources) to build our API call graph
database.

Finding matching graphs: Graph Edit Distance (GED)
is the best algorithm for matching inexact graph type
(Gao et al., 2010; Riesen et al., 2010) but its
complexity makes it slow (Riesen and Bunke, 2009).
To speed up GED we need to find an assignment
between the nodes of the two compared graph. For
assignment problem we need to build API call and
operating system resource cost matrix from the two
compared API graphs, after that we can apply an
assignment algorithm (Munkres’ algorithm) (Munkres,
1957; Riesen and Bunke, 2009) to assign node form one
graph to other graph with minimal cost . One difficult
in GED using an assignment algorithm (Munkres’
algorithm) its base on minimum cost matrix for API call
and operating system resources node and edges, where it
assumed the cost is fixed value between them (He and
Singh, 2006), to minimize the cost matrix, more near
nodes and edges are to matching (Hu et al., 2009).
 Hu et al. (2009) they develop modified Hungarian
algorithm based on neighbor matching. Our call graph
based on structure and attribute graph, to minimize the
cost of the cost matrix we will partition the data graph
into sub-graphs based on structure connectivity and
attribute connectivity (Zhu et al., 2011).

CONCLUSION

 In this study we have shown that signature based
techniques and behavior based techniques can be
combine to build a system that has better detection of

Am. J. Applied Sci., 9 (3): 283-288, 2012

287

polymorphic malware and less time scan. We have
proposed new framework using API call graph system
to implement this combination and we have built the
system using dynamic analysis method.

ACKNOWLEDGMENT

 The researchers would like to thanks University
Technology Malaysia for the unlimited support. And
the significant role of Sudanese Research Community
in UTM is highly appreciated.

REFERENCES

Bai, L., J. Pang, Y. Zhang, W. Fu and J. Zhu, 2009.

Detecting malicious behavior using critical API-
calling graph matching. Proceedings of the 1st
International Conference on Information Science
and Engineering, Dec. 26-28, IEEE Xplore Press,
Nanjing, pp: 1716-1719. DOI:
10.1109/ICISE.2009.494

Bonfante, G., M. Kaczmarek and J.Y. Marion, 2007.
Control flow graphs as malware signatures. Nancy-
Universite-Loria. http://hal.archives-ouvertes.fr

Egele, M., T. Scholte, E. Kirda and C. Kruegel, 2011.
A survey on automated dynamic malware analysis
techniques and tools. ACM Comput. Surv., 5: 1-
49.

Fukushimayz, Y., A. Sakai, Y. Horiyz and K.
Sakuraiyz, 2010. A behavior based malware
detection scheme for avoiding false positive.
Proceedings of the 6th IEEE Workshop on Secure
Network Protocols, Oct 5-5, IEEE Xplore Press,
Kyoto, pp: 79-84. DOI:
10.1109/NPSEC.2010.5634444

Gao, X., B. Xiao, D. Tao and X. Li, 2010. A survey of
graph edit distance. Patt. Anal. Appli., 13: 113-129.
DOI: 10.1007/s10044-008-0141-y

Goertzel, K.M., 2009. Tools on Anti Malware.
Technical Information Center.

Guo, H., J. Pang, Y. Zhang, F. Yue and R. Zhao,
2010. HERO: A novel malware detection
framework based on binary translation.
Proceedings of the IEEE International Conference
on Intelligent Computing and Intelligent Systems,
Oct. 29-31, IEEE Xplore Press, Xiamen, pp: 411-
415. DOI: 10.1109/ICICISYS.2010.5658586

He, H. and A.K. Singh, 2006. Closure-tree: An index
structure for graph queries. Proceedings of the
22nd International Conference on Data
Engineering, Apr. 03-07, IEEE Xplore Press, pp:
38-38. DOI: 10.1109/ICDE.2006.37

Hu, X., T.C. Chiueh and K.G. Shin, 2009. Large-scale
malware indexing using function-call graphs.
Proceedings of the 16th ACM Conference on
Computer and Communications Security, Nov. 09-
13, ACM, USA., pp: 611-620. DOI:
10.1145/1653662.1653736

Idika, N. and A.P. Mathur, 2007. A survey of malware
detection techniques. Purdue University.
http://scholar.googleusercontent.com

Kephart, J.O. and W.C. Arnold, 1994. Automatic
extraction of computer virus signatures.
Proceedings of the 4th Virus Bulletin International
Conference, (VBIC’94), Virus Bulletin Ltd.,
Abingdon, England, pp: 178-184.

Kim, K. and B.R. Moon, 2010. Malware detection
based on dependency graph using hybrid genetic
algorithm. Proceedings of the 12th Annual
Conference on Genetic and Evolutionary
Computation, Jul. 07-11, ACM, USA., pp: 1211-
1218. DOI: 10.1145/1830483.1830703

Kostakis, O., J. Kinable, H. Mahmoudi and K.
Mustonen, 2011. Improved call graph comparison
using simulated annealing. Proceedings of the 2011
ACM Symposium on Applied Computing, Mar.
21-24, ACM, USA., pp: 1516-1523. DOI:
10.1145/1982185.1982509

Lee, J., K. Jeong and H. Lee, 2010. Detecting
metamorphic malwares using code graphs.
Proceedings of the 2010 ACM Symposium on
Applied Computing, Mar. 22-26, ACM, USA., pp:
1970-1977. DOI: 10.1145/1774088.1774505

Munkres, J., 1957. Algorithms for the assignment and
transportation problems. J. Soc. Indus. Applied
Math., 5: 32-38.

Nair, V.P., H. Jain, Y.K. Golecha, M.S. Gaur and V.
linkLaxmi, 2010. MEDUSA: MEtamorphic
malware dynamic analysis usingsignature from
API. Proceedings of the 3rd International
Conference on Security of Information and
Networks, Sep. 07-11, ACM, USA., pp: 263-269.
DOI: 10.1145/1854099.1854152

Park, Y., D. Reeves, V. Mulukutla and B. Sundaravel,
2010. Fast malware classification by automated
behavioral graph matching. Proceedings of the 6th
Annual Workshop on Cyber Security and
Information Intelligence Research, Apr. 21-23,
ACM, USA., DOI: 10.1145/1852666.1852716

Park, Y. and D. Reeves, 2011. Deriving common
malware behavior through graph clustering.
Proceedings of the 6th ACM Symposium on
Information, Computer and Communications
Security, Mar. 22-24, ACM, USA., pp: 497-502.
DOI: 10.1145/1966913.1966986

Am. J. Applied Sci., 9 (3): 283-288, 2012

288

Rhee, J., R. Riley, D. Xu and X. Jiang, 2010. Kernel
malware analysis with un-tampered and temporal
views of dynamic kernel memory. Recent Adv.
Intrusion Detect., 6307: 178-197. DOI:
10.1007/978-3-642-15512-3_10

Rieck, K., P. Trinius, C. Willems and T. Holz, 2011.
Automatic analysis of malware behavior using
machine learning. J. Comput. Security, 19: 639-668.

Riesen, K. and H. Bunke, 2009. Approximate graph
edit distance computation by means of bipartite
graph matching. Image Vision Comput., 27: 950-
959. DOI: 10.1016/j.imavis.2008.04.004

Riesen, K., X. Jiang and H. Bunke, 2010. Exact and
inexact graph matching: Methodology and
applications. Manag. Min. Graph Data, 40: 217-
247. DOI: 10.1007/978-1-4419-6045-0_7

Ryder, B.G., 1979. Constructing the call graph of a
program. IEEE Trans. Software Eng., 5: 216-226.
DOI: 10.1109/TSE.1979.234183

Schultz, M.G., E. Eskin, F. Zadok and S.J. Stolfo, 2001.
Data mining methods for detection of new
malicious executables. Proceedings of the IEEE
Symposium on Security and Privacy, May 14-16,
IEEE Xplore Press, Oakland, CA, USA., pp: 38-49.
10.1109/SECPRI.2001.924286

Siddiqui, M., M.C. Wang and J. Lee, 2008. A survey of
data mining techniques for malware detection
using file features. Proceedings of the 46th Annual
Southeast Regional Conference on XX, Mar. 28-
28, ACM, USA., pp: 509-510. DOI:
10.1145/1593105.1593239

Tesauro, G.J., J.O. Kephart and G.B. Sorkin et al.,
1996. Neural networks for computer virus
recognition. IEEE Expert, 11: 5-6. DOI:
10.1109/64.511768

Wang, C., 2006. Malware Detection. 1st Edn., Springer,
New York, ISBN: 0387327207, pp: 311.

Ye, Y., D. Wang, T. Li, D. Ye and Q. Jiang, 2008. An
intelligent PE-malware detection system based on
association mining. J. Comput. Virol., 4: 323-334.
DOI: 10.1007/s11416-008-0082-4

Ye, Y., T. Li, Q. Jiang and Y. Wang, 2010. CIMDS:
Adapting postprocessing techniques of associative
classification for malware detection. IEEE Trans.
Syst. Man Cybernetics Part C: Appli. Rev., 40:
298-307. DOI: 10.1109/TSMCC.2009.2037978

You, I. and K. Yim, 2010. Malware obfuscation
techniques: A brief survey. Proceedings of the
International Conference on Broadband, Wireless
Computing, Communication and Applications,
Nov. 4-6, IEEE Xplore Press, Fukuoka, pp: 297-
300. DOI: 10.1109/BWCCA.2010.85

Zhu, L., W.K. Ng and J. Cheng, 2011. Structure and
attribute index for approximate graph matching in
large graphs. Inform. Syst., 36: 958-972. DOI:
10.1016/j.is.2011.03.009

Zolkipli, M.F. and A. Jantan, 2010. A framework for
malware detection using combination technique
and signature generation. Proceedings of the 2nd
International Conference on Computer Research
and Development, May 7-10, IEEE Xplore Press,
Kuala Lumpur, pp: 196-199. DOI:
10.1109/ICCRD.2010.25

