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Abstract: Problem statement: A malware is a program that has malicious intent. Nowadays, malware 
authors apply several sophisticated techniques such as packing and obfuscation to avoid malware 
detection. That makes zero-day attacks and false positives the most challenging problems in the 
malware detection field. Approach: In this study, the static and dynamic analysis techniques that are 
used in malware detection are surveyed. Static analysis techniques, dynamic analysis techniques and 
their combination including Signature-Based and Behaviour-Based techniques are discussed. Results: 
In addition, a new malware detection framework is proposed. Conclusion: The proposed framework 
combines Signature-Based with Behaviour-Based using API graph system. The goal of the proposed 
framework is to improve accuracy and scan process time for malware detection. 
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INTRODUCTION 

 
 Malware stands for malicious software. It is the 
type of software that is designed with a harmful intent in 
mind. It comes in many forms such as Viruses, Worms, 
Trojan horses, Backdoors, Spyware, Rootkits, botnet in 
addition to other types of software with unwanted 
behavior (Wang, 2006). 
 The following are breif descriptions for each of the 
above mentioned malware types (Wang, 2006): 
 
• Viruses are programs that self-replicate within a 

host by attaching themselves to programs and/or 
documents that become carriers of the malicious 
code 

• Worms are programs that self-replicate across a 
network 

• Trojan horses masquerade as useful programs, but 
contain malicious code to attack the system or leak 
data 

• Back doors open the system to external entities by 
subverting the local security policies to allow 
remote access and control over a network 

• Spyware is a useful software package that also 
transmits private user data to an external entity 

• Rootkits is a collection of tools often used by an 
attacker after gaining administrative privileges on a 
host 

• Botnet is remotely controlled software that 
comprises a collection of autonomous software 
tools 

• Malware detector is a system that attempts to 
identify malware using signatures and other 
heuristics techniques; Antivirus scanner is an 
example of a malware detector (Wang, 2006); the 
malware writer (hacker) on the other hand applies 
sophisticated techniques to evade detection by 
modifying or morphing malware using packing 
techniques and/or program obfuscation. Two 
common obfuscation techniques are Polymorphism 
and Metamorphism (You and Yim, 2010) 

 
 The malware detector attempts to help protect the 
system by detecting malicious behavior. The malware 
detector may or may not reside on the same system it is 
trying to protect. Malware detectors take two inputs: 
 
• Knowledge of the malware signature or behavior 

(learning) 
• The program under inspection 
 
 Once the malware detector has the knowledge of 
what is considered malware behavior (abnormal 
behavior) and the program under inspection, it can 
employ its detection technique to decide if the program 
is malware or benign. 
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MATERIALS AND METHODS 
 
 Malware analysis can be categorized into two main 
categories: 
 
• Analysis of the infected file without executing it, 

which is known as static analysis. In this approach, 
we extract low-level information such as Control 
Flow Graphs (CFGs), Data-Flow Graphs (DFGs) 
and System call analysis. This information can be 
gathered by disassembling or decompiling the 
infected file using tools like IDA Pro (Riesen and 
Bunke, 2009). Sometimes analyzing the infected 
file in a different environment to avoid auto 
execution of the malware is better. Using static 
analysis we get fast, safe and low false positives 
and we trace all paths, which helps in terms of 
getting a lot of information to analyze. On the other 
hand static analysis may fail in analyzing unknown 
malware that uses code obfuscation techniques 
(Egele et al., 2011) 

• Analysis of the infected file during its execution, 
which is known as dynamic analysis. Dynamic 
analysis executes the infected file on simulated 
environment (a debugger or a virtual machine or an 
emulator) to analyze its malicious functions. The 
analysis environment must be invisible to the 
malware because the malware writer use tools like 
anti-virtual machine and Anti-emulation to hide 
their malware functions if they detect they are under 
analysis. Dynamic analysis fails to detect activities 
of interest if the target changes its behavior 
depending on trigger conditions such as existence 
of a specific file or specific day as only a single 
execution path may be examined for each attempt 
(Egele et al., 2011)  

 
Techniques: There are mainly two techniques for 
malware detection: Signature-Based and Behavior-
Based techniques (Table 1-2). 
 In signature-based techniques a sequence of 
instructions unique to a malware is used to generate a 
malware signature, which is captured by researchers in a 
laboratory environment (Goertzel, 2009). A signature 
should be able to identify any malware exhibiting the 
malicious behavior specified by the signature. Most of 
antivirus scanners are signature based. 
 Behavior-based detection techniques focus on 
analyzing the behavior of known and suspected 
malicious code. Such behaviors include factors such as 
the source and destination addresses of the malware, the 
attachment types in which they are embedded and 
statistical anomalies in malware infected systems 
(Goertzel, 2009). One example of a behavior-based 

detection approach is the histogram-based malicious 
code detection technology patented by Symantec. 
 To overcome the limitations of signature-based 
detection some malware researchers apply graph 
(Control Flow Graph (Bonfante et al., 2007), Call graph 
(Lee et al., 2010), machine learning techniques (Rieck, 
et al., 2011) and data mining techniques (Kephart and 
Arnold, 1994; Schultz et al., 2001) (Objective-Oriented 
Association (OOA) (Ye et al., 2008)). 
 Other researchers apply techniques like finite 
automaton, HMM, data mining (Schultz et al., 2001; 
Siddiqui et al., 2008) (Naïve Bayes, Support Vector 
Machine (SVM) and Decision tree) and neural network 
(Tesauro et al., 1996) to improve Behavior-Based 
detection. 
 
Related work: Malware Detection is divided into two 
methods: Signature-Based and Behavior-Based 
techniques and each technique can be applied using 
static analysis or dynamic analysis or hybrid analysis 
(Idika and Mathur, 2007), Fig. 1-3 shows the 
organization of malware detection.  
 Implementing signature based detection without 
executing the suspected file (Static analysis) was the 
first try to detect malware. Researchers applied different 
techniques to improve detection rate. Some of them 
applied Objective-Oriented Association (OOA) mining 
based classification (Ye et al., 2008). Their model 
consisted of three major modules: PE parser, OOA rule 
generator and rule based classifier. After a while they 
developed their work using postprocessing techniques 
associative classification method based on the analysis 
of Application Programming Interface (API) execution 
calls (Ye et al., 2010). Other researchers combined 
signature-based technique and genetic algorithm 
technique, but their study focused on three types of 
malware which are virus, worms and Trojan horse 
(Zolkipli and Jantan, 2010). 
 

 
 
Fig. 1: Organization of malware detection 
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Fig. 2: New organization of malware detection 
 
Table 1: Summary of the advantages and disadvantage of static and 

dynamic analysis 
 Advantage Disadvantage 
Static analysis Fast and safe. Difficulty analyzing  
 Low level of unknown malware. 
 false positives. 
 Good in analyzing  
 multipath malware.  
Dynamic analysis Good in detecting Neither fast nor safe. 
 unknown malware. Difficulty analyzing  
  multipath malware. 

 
Table 2: Summary of the advantages and disadvantages of signature-

based and behavior-based techniques 
 Advantage Disadvantage 
Signature-based Less scanning time. Unknown malware can  
  easily evade detection. 
 Few false positives. Cannot deal with  
  simple obfuscation. 
Behavior-based Best results in detecting Not able to detect a lot of  
 of polymorphic malware. polymorphic viruses  
  present (Packers). 

 
 Signature based detection was also applied during 
suspected file execution (dynamic analysis) in which 
the researchers trace API calls and then build their 
suspected file signature (Nair et al., 2010), this 
researcher generated signature for an entire malware 
class instead of for individual malware samples. Once a 
base signature for a particular metamorphic generator is 
generated, all the metamorphic viruses created from 
that tool are easily detected. 
 Most of the existing works relies on using behavior 
based detection where some researchers apply static 
analysis while others apply dynamic analysis. Some of 
the works focus on kernel memory mapping to develop 
a malware behavior monitor that uses a temporal view 
of kernel objects in the analysis of kernel execution 
traces (Rhee et al., 2010). Other focus on avoiding false 
positives by tracing malware behavior usually not do 
but installers and uninstallers do (Fukushimayz et al., 
2010; (Park et al., 2010) propose a new malware 
classification method based on maximal common 
subgraph detection. 

  

 
 

Fig. 3: Proposed framework 
 

 Current researchers combine static analysis with 
dynamic analysis to overcome the limitations of each 
method. Guo et al. (2010) proposed a framework that 
combined static and dynamic binary translation features 
to detect malware and prevent its execution. They apply 
behavior Control Flow Graph (CFG) and then critical 
API Graph based on CFG is generated to do sub-graph 
matching. Other researchers apply signature Control 
Flow Graph (CFG) and use edit distance matches 
between graphs. 
 As demonstrated in the previous paragraph the 
observation is that now some malware researchers 
focus on graph (control flow graph, call graph, code 
graph). They build their graph in different ways and 
analyze and compare graph using different methods. To 
build the graph most researchers present node graph as 
system call. For example (Lee et al., 2010) creates their 
graph by transforming PE file into call graph, the call 
graph nodes are system calls and the edges are system 
call sequence. Then the call graph minimize into code 
graph to speed up the analyze and compare graphs. 
Other researchers (Park et al., 2010) use the same way 
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by use 4-tuples node corresponds system call, edges the 
dependency of two system calls and label for nodes and 
edges. Some other researchers define node graph as 
kernel objects rather than system calls (Park and 
Reeves, 2011). On the other hand (Kostakis et al., 
2011) built the graph from the subroutines as nodes and 
their call references as edges, (Kim and Moon, 2010) 
they use a dependency graph whose vertex represents a 
line in the semantic code. The dependency between two 
lines is represented by a directed edge and (Bai et al., 
2009; Guo et al., 2010) extract a Critical API Graph 
(CAG) from a Control Flow Graph (CFG) for each 
malware to define the behavior. 
 

RESULTS AND DISCUSSION 
 
 The above works compare graph using different 
graph matching techniques some of them use maximal 
common subgraph (Kim and Moon, 2010; Park and 
Reeves, 2011) and some use Weighted Common 
Behavioral Graph Generation based on an Approximate 
Algorithm and others build formula using intersection 
and the union of the graphs (Lee et al., 2010) but all 
require time and space due to NP-completeness of the 
problem. 
 
Proposed framework: Since each technique has 
advantages and disadvantages, it is believed that by 
combining them in some manner we can improve the 
advantages and decrease the disadvantages. Using static 
techniques we can get fast and safe result and also by 
applying unpacking tools to solve packing problem and 
analysis of the file using both signature and behavior-
based methods we can get better results. In case static 
techniques fail, we can use dynamic techniques to do 
more analysis on the file. Furthermore, to get more 
efficient result about the infected file, we can analyze the 
file using both signature and behavior-based methods. 
 
Framework component: 
Execute the PE file and collect API calls: Execute the 
suspected file in safe (apply rootkit) and controlled 
environment and use kernel hooking to extract API call 
after unpacking if the file is packed. We will to trace 
different path in the file. 
 
Construct the hybrid call graph: We build our graph 
using API call collecting from the execution of the file; 
our graph differs from other researcher’s graphs in that 
we build it from the API calls and the operating system 
resources used by API call as graph nodes, the edges 
represent the reference between the nodes. Our nodes 
will have two attributes: API call and operating system 

resource, the graph label is the API calls its self or the 
operating system resource.  
 The construction of the API call graph for a 
program without API operating system recourses is 
very simple. In programs containing API operating 
system recourses, it is possible to have a reference to 
API operating system recourses which may represent 
invocations of several distinct other API calls. In order 
to address all possible questions which result from such 
a references in API call, we need to know all other API 
calls associated with that API operating system 
recourses (Ryder, 1979). 
 
Decrease the constructed graph: The generated graph 
from the previous step contains huge number of nodes 
and edges and needs to be minimized. This operation 
will be by removing unused instruction (junk code, 
computation) and focus on popular API call used by the 
majority of malware. 
 We can use the information on node (API call, 
operating system resources) to build our API call graph 
database. 
 
Finding matching graphs: Graph Edit Distance (GED) 
is the best algorithm for matching inexact graph type 
(Gao et al., 2010; Riesen et al., 2010) but its 
complexity makes it slow (Riesen and Bunke, 2009). 
To speed up GED we need to find an assignment 
between the nodes of the two compared graph. For 
assignment problem we need to build API call and 
operating system resource cost matrix from the two 
compared API graphs, after that we can apply an 
assignment algorithm (Munkres’ algorithm) (Munkres, 
1957; Riesen and Bunke, 2009) to assign node form one 
graph to other graph with minimal cost . One difficult 
in GED using an assignment algorithm (Munkres’ 
algorithm) its base on minimum cost matrix for API call 
and operating system resources node and edges, where it 
assumed the cost is fixed value between them (He and 
Singh, 2006), to minimize the cost matrix, more near 
nodes and edges are to matching (Hu et al., 2009). 
 Hu et al. (2009) they develop modified Hungarian 
algorithm based on neighbor matching. Our call graph 
based on structure and attribute graph, to minimize the 
cost of the cost matrix we will partition the data graph 
into sub-graphs based on structure connectivity and 
attribute connectivity (Zhu et al., 2011). 
 

CONCLUSION 
 
 In this study we have shown that signature based 
techniques and behavior based techniques can be 
combine to build a system that has better detection of 
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polymorphic malware and less time scan. We have 
proposed new framework using API call graph system 
to implement this combination and we have built the 
system using dynamic analysis method. 
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