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Abstract: Problem statement: The present study considers an elastic-plastic contact analysis of a 
rigid sphere with a deformable flat (Rigid Sphere-model) using finite element analysis. The effect of 
tangent modulus on the contact behavior of a no adhesive frictionless elastic-plastic contact was 
analyzed using commercial finite element software ANSYS. Approach: Different materials, in terms 
of the ratio of Young's modulus to yield strength, had been considered to study the effect of tangent 
modulus. The Finite Element (FE) contact analysis was carried out by incorporating the various 
tangent modulus values of different materials. Results: The result clearly shows that for different 
tangent modulus the material hold different stress values. When this modulus increases the strain 
hardness value of material was also increased. Conclusion: With increase in tangent modulus, strain 
hardening resistance to deformation of a material is increased and the material becomes capable of 
carrying higher amount of load in a smaller contact area. 
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INTRODUCTION 

 
 The theory of contact mechanics concerned with 
the stresses and deformation which arise when the 
surfaces of two solid bodies are brought into contact. 
The two surfaces fit exactly or closely together without 
deformation (conforming contacts) and the surfaces, or 
one of the two surfaces, deforms when there is a contact 
area in between them (non-conforming contact). When 
two rough solids are brought to contact under a normal 
preload, contact junctions are formed at their contacting 
asperity tips, which may deform elastically, elastic 
plastic or plastic. The Stress and deflections arising 
from the contact between two solids have practical 
application in hardness testing, wear and impact 
damage of engineering ceramics, the design of dental 
prostheses, gear teeth and ball and roller bearings. In a 
non-conforming bodies, a contact area in between them 
is generally small when compared with the dimensions 
of the bodies themselves. The stresses are highly 

concentrated in the region close to the contact zone and 
they are not considerably influenced by the shape of the 
bodies at a distance from the contact area. The existing 
contact analysis is carryout based on the stress and 
strain in the contact bodies under loading and unloading 
conditions. The present study is to determine how the 
contact parameters are influenced in the load carrying 
capacity of the deformed body under loading condition 
an understanding tribological phenomenon such as 
contact fatigue, wear and damage. 
 
Theoretical background: The metals hand book ASM 
Metals Hand Book defines hardness as “Resistance of 
metal to plastic deformation, usually by indentation. 
However, the term may also refer to stiffness or temper 
or to resistance to scratching, abrasion, or cutting. It is 
the property of a metal, which gives it ability to resist 
being permanently deformed when a load is applied. 
Another definition is that hardness measures the 
resistance to dislocation movement in the material, in 
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which case it is directly related to the yield strength. A 
common definition that has gained status in the field is 
that hardness equals the average indentation pressure 
that occurs during fully plastic yielding of the contact 
area. Greater the hardness of the metal, higher is its 
resistantce to deformation. Here the hardness is defined 
"greater in the hardness of the metal, the greater 
resistant it has to deformation". The contact of a sphere 
and a deformable flat is a fundamental problem in 
contact mechanics with important scientific and 
technological aspects. The subject of normally 
loaded spherical contact stems from the classical 
study of Hertz in 1881 that derived an analytical 
solution for the frictionless (i.e., perfect slip) contact 
of two elastic spheres (Johnson, 1987). It is 
important to analyse either a single asperity contact 
or contacting rough surfaces consisting of multiple 
asperity contacts. 
 Two fundamental approaches have been studied for 
modeling a single asperity contact either considering a 
deformable hemisphere in contact with a rigid flat 
(Chang et al., 1987) (flatting approach) or by solving 
the contact mechanics problem of a rigid spherical 
indenter penetrating a deformable half space (Lin and 
Lin, 2006) (indentation approach). While in the elastic 
deformation regime, these two approaches are based on 
the Hertzian solution (Jackson and Green, 2005) and 
hence produce identical results. Whenever beyond the 
elastic deformation, these two approaches yield 
different contact mechanics response. 
 
Literature review: Contact analysis can be traced back 
to 1882, in which Hertz studied the elastic contact 
between two glass lenses. Hertz theory is restricted to 
the normal frictionless contact between elastic half-
space with small deformation. Abbott and Firestone 
(AF Model) (Abbott and Firestone, 1995) introduced 
the basic plastic contact model, known as the surface 
micro-geometry model. In this model, the deformation 
of a rough surface against a smooth rigid flat is 
assumed equivalent to the truncation of the undeformed 
rough surface at its intersection with the flat. 
Greenwood and Williamson (1966) used the Hertz 
theory and proposed an asperity based elastic model 
where asperity heights follow a Gaussian distribution. 
In order to bridge the two extreme models of GW 
(elastic model) and AF (plastic model), CEB model 
(Chang et al., 1987) developed an elastic-plastic contact 
model based on volume conservation of the plastically 
deformed asperities. Chang et al. (1988) introduced the 
hardness coefficient is related to the Poisson's ratio of 
the sphere. Kogut and Etison (2002) (KE model) used 
Finite element method solution for the elastic-plastic 

contact of a deformable sphere and a rigid flat by using 
constitutive laws appropriate to any mode of 
deformation, be it elastic or plastic. It also offers a 
general dimensionless solution not restricted to a 
specific material or geometry. Jackson and Green  
(2005) (JG model) incorporated variation of material 
property on deformed geometry and presented some 
empirical relations of contact area and contact load. 
Malayalamurthi and Marappan (2009) introduced a 
more accurate investigation of Finite Element (FE) 
analysis on the nature of material dependency of 
elastic-plastic contact behavior of deformable sphere 
and a rigid flat. Analysis is carried out between elastic 
limit till the inception of plasticity for various materials 
with different radii. The ratio of Young's modulus to 
yield strength (E/Y) value less than 300 show strikingly 
different contact phenomena. Shankar and Mayuram 
(2008) analyzed an axis-symmetrical hemispherical 
asperity in contact with a rigid flat is modeled for an 
elastic perfectly plastic material. This analysis shows 
the critical values in the dimensionless interference 
ratios ω/ωc for the evolution of the elastic core and the 
plastic region within the asperity for different Y/E 
ratios. The FE Analysis of single asperity model with 
the elastic perfectly plastic assumption depends on the 
Y/E ratio of the material. Tabor (2000) proposed that 
hardness is not a unique material property. According 
to the literature review contact analysis of deformable 
sphere with a rigid flat using FE Analysis has done by 
several researchers and some of these studies consider 
the effect of material properties. The tangent modulus 
had been roughly considered as 10% of Young’s 
modulus. Figure 1 shows that the RS-model (like as 
indentation approach). In the Brunel test a hard ball of 
diameter ‘D’ is pressed under a load ‘W’ into the plane 
surface under test.  

 After removal of the load, the choral diameter‘d’ 
of the resulting indentation is measured and the 
Brunel hardness HB is defined as the load W divided 
by the surface area of the spherical cap formed by 
the indentation Eq. 1: 
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 The Meyer hardness HM, is determined by ball 
indentation in exactly the same way, but it is defined as 
the ratio between load applied and the projected area of 
the indentation, so that Eq. 2: 
 

M 2

4W
H

d
=

π
 (2) 



Am. J. Applied Sci., 9 (2): 240-245, 2012 
 

242 

 
 
Fig. 1: Brinell hardness method 
 

MATERIALS AND METHODS 
 

 The present study aims to study the effect of 
contact parameters such as contact area, tangent 
modulus and hardness for single asperity contact for 
different materials under loading condition of Rigid 
Sphere (RS) model. The Finite Element contact model 
of a rigid sphere against a deformable flat is shown in 
Fig. 2. The advantage of simulation, of axis-symmetric 
problems is that the spherical ball is considered as a 
quarter circles (Nakasone et al., 2006) For the RS-
model contact analysis the contact pair is created 
between sphere and flat. The contact pair conformation 
is also shown in Fig. 2. 
 The meshed model is shown in Fig. 3. For this 
investigation ANSYS element type plane 82, conta172 
and target 169 are used. The nodes lying on the axis of 
symmetry of the hemisphere are restricted to move in 
the radial direction. Also the nodes in the bottom of the 
hemisphere are restricted in the axial direction due to 
symmetry. The sphere size used for this analyses is R = 
0.05 mt. Here frictionless rigid deformable contact 
analysis is performed for different materials. The 
material properties are given in Table 1. 
 
Hardening parameter: In this analysis, a bilinear 
material property, is shown in Fig. 4. For linear 
hardening law ‘H’ is a constant and depends on the 
material parameters E and ET: 
 

T

T

E
H

E E
=

−
 (3) 

 
Where: 
E = Young’s modulus value 
ET = Elastic Plastic tangent modulus, 
Y0 = Initial yield stress, 
H = Hardness of the material 

 
 
Fig. 2: Contact pair 
 

 
 
Fig. 3: Meshed model 
 

 
 
Fig. 4: Linear hardening law 
 
Table 1: Material properties 

E/Y E×103 N/mm2 Y×103 N/mm2 
552.63  210  380 
736.84  70  95 
769.23  100  130 
1739.13  120  69 

 
 The tangent modulus is taken in terms of 
percentage of Young’s modulus. It is found that the 
value of ‘H’ lies  between 0 and 9 when using Eq. 3. It 
is obviously to check whether the obtained ‘H’ values 
will lies in the above limit leads to the validity of the 
new method. If H = 0 that indicates elastic perfectly 
plastic material (ET = 0) behavior which is an idealized 
material behavior. The normalized general values of ET 
and H is shown in Table 2. 
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Table 2: ET and H values 
Tangent modulus ET Hardness H 
0  0.00 
0.1E  0.11 
0.2E  0.25 
0.3E  0.43 
0.4E  0.67 
0.5E  1.00 
0.6E  1.50 
0.7E  2.33 
0.8E  4.00 
0.9E  9.00 
 
Table 3: Tangent modulus and stresses 
 E/Y = 552.63  E/Y = 1739.13 
Tangent modulus Stress (N/mm2) Stress (N/mm2) 
0.1E  43.226  8.081 
0.2E  43.066  7.815 
0.3E  44.301  49.827 
0.4E  56.812  21.976 
0.5E  60.132  20.891 
0.6E  59.932  22.477 
0.7E  22.374  21.268 
0.8E  15.679  8.264 
0.9E  18.196  6.649 
 
Table 4: Tangent modulus and stresses 
 E/Y = 736.84  E/Y = 769.23 
Tangent modulus Stress (N/mm2) Stress (N/mm2) 
0.1E  7.282  9.496 
0.2E  2.990  11.712 
0.3E  6.956  9.665 
0.4E  16.563  15.347 
0.5E  21.661  25.548 
0.6E  6.664  24.102 
0.7E  5.960 23.411 
0.8E  5.992  20.902 
0.9E  5.774  7.392 
 
Table 5: Various contact parameters 
ET     ω     d   a/R  E*a/ YR 
0.1E  0.065  3.603  0.036  19.89 
0.2E  0.062  3.519  0.035  19.34 
0.3E  0.058  3.404  0.034  18.78 
0.4E  0.055  3.315  0.033  18.24 
0.5E  0.053  3.254  0.032  17.68 
 
Penetration depth and projected surface: In this study 
an attempt has been made to modify the indentation depth 
in the new form by incorporating the tangent modulus in 
terms of %E. The loading relationship for the penetration 
depth is given by the relation: 
 
ω = {9L2/8D}1/3[ 2{(1 – ν2) / E* + ET }] 2/3

      (4) 
 
 In Eq. 4, L is the applied load; D is the ball 
diameter and the paired material constants. ν, E* and ET 
are the Poisson’s ratio, Equivalent young’s modulus 
and tangent modulus. The E* is given by: 
 

2 2
* 1 2

1 2
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1 / E

E E

− υ − υ= +    (5) 

 

 

Fig. 5: Input view of design calculator 
 
 In Eq. 5, 1 and 2 denotes the ball and plate material 
properties respectively. 
 The projected surface diameter, d, of the residual 
impressed indentation was shown to fit the relationship: 
 

( ) 1/2d  2  D –   = ω ω     (6) 

 
 In Eq. 6, ω was taken as the total indentation depth 
under load and D is the ball diameter. 
 
FE analysis: The wide range of values of tangent 
modulus is taken to make a fair idea about the effect of 
it in different materials, hardening parameter and the 
area of contact. The FE analysis is carried out for 
different materials i.e., 500≤ E/Y ≥1750. The stress 
values with respective to tangent modulus of different 
materials are given in Table 3 and 4. 
 
Analytical solution for contact parameters: The 
indentation pressure under elastic, elastic-plastic and 
fully plastic conditions may be correlated using a non-
dimensional form of pm/Y as a function (E* tan β/Y), 
where β is the angle of the indenter at the edge of the 
contact. With a spherical indenter tanβ ≈ sin β = a/R, 
which varies during indentation process. Where ‘a’ is 
width of the contact area (d/2) and ‘R’ is the radius of 
the ball (D/2). The material E/Y value of 552.63 is 
taken for observation of various parameters and it is 
related to the contact behavior of the sphere with flat 
(indentation approach) with the incorporation of the 
tangent modulus, Table 5 (Eq. 4-6). 
 
Design calculator: The design calculator is developed 
using Visual-Basic coding (VB). Figure 5 shows the 
input model (Screen) of new developed calculator. The 
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Young’s modulus of the material, radius of the sphere 
and load applied are the input data. 
 The VB coding is generated from the analytical 
elastic equations of the rigid sphere and a deformable 
flat, by considering the material properties. 
 

RESULTS  
 
 Figure 6 shows the stress and Tangent modulus 
relationship. With the increase in tangent modulus 
value, the stress in the material (E/Y<1000) increases 
up to 0.5E. After that, stress decreases with         
increase in the tangent modulus. If stress in the 
material (E/Y > 1000) increases up to 0.3E, after that 
stress decreases with increase in the tangent 
modulus. Here it is observed that higher stress is 
developed in the material E/Y < 1000 of hardness H = 1 
and H = 0.43 for the material having E/Y > 1000.  
 Figure 7 shows the diameter of projected surface of 
the residual impressed indentation. As the tangent 
modulus of the material increases this diameter(d) 
decreases.  
 

 
 
Fig. 6: Plot of stress Vs tangent modulus for different 

materials 
 

 
 
Fig. 7: Projected area diameter Vs ET 

 The plastic strains are, of course, not uniform but, 
whatever their quantitative value, the strain will be a 
function of d/D. Then made a very bold assumption, 
namely that there is a representative strain, εT in the 
specimen which is a power function of d/D. 
 Figure 8 shows the relationship between the 
ratios of non-dimensional strain to tangent modulus. 
As the tangent modulus increases, the d/D ratio 
decreases. This is due to the projected surface 
diameter (d) decrease. This implise that the tangent 
modulus increase. 
 Figure 9 shows the output model of new design 
calculator. The output parameters are radius of contact, 
contact pressure, area of contact. Maximum stress 
induced and depth of penetration. 
 The New design calculator is developed by computer 
coding for calculating the various contact parameters. It is 
very useful for basic learner and design engineer for the 
selection of material for designing a component. 
 

 
 
Fig. 8: d/D ratio Vs ET 

 

 
 
Fig. 9: Output view of design calculator 
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DISCUSSION 
 
 From the results obtained it is observed that the 
non-linear behavior in-between stress and tangent 
modulus. The tangent modulus increases the hardness 
of the material. The material behavior is dependent on 
the tangent modulus. The effect of tangent modulus has 
greater influence in contact parameter.  
 

CONCLUSION 
 
 The tangent modulus of the material is not 
considered in the study of rigid sphere and a 
deformable flat model so-far. The effect of the tangent 
modulus in the contact parameters is very important for 
contact phenomena. The detail study of the effect of 
tangent modulus and strain hardness is carried out by 
FE analysis and analytical solutions. The different 
materials were consider for the analysis. In the end it 
was found out that the stress hold in the material is 
depends upon the tangent modulus value of the 
material. It is observed that the higher stress is 
developed in the material E/Y < 1000 of hardness H = 1 
and H = 0.43 for the material having E/Y > 1000. It is 
established that when the tangent modulus is increased, 
the hardness of the material too increases. The increase 
in tangent modulus also reduces the projected area of 
the indentation. So the d/D ratio is decreased when the 
tangent modulus increases. The reduction in this ratio 
implies the increase of the straining action of the 
material. The material can cary large load in smaller 
contact area when the straining action (Strain hardening) 
is increased. VB coding was generated to develop a design 
calculator for calculating the various contact parameters. It 
is very useful for design engineers to select the suitable 
material based on the material properties for designing a 
component under loading contact condition.  
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