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Abstract Problem statement: The number of spanning tree$G) in graphs (networks) was an
important invariantApproach: Using theproperties of the Chebyshev polynomials of the sddond

and the linear algebra techniques to evaluate skectated determinantResults: The complexity,
number of spanning trees, of the cocktail partypgran 2nvertices, given in detail in the text was
proved. Also the complexity of the crown graph envrtices was shown to had the vallié (n-1)
(n-2)". Conclusion: The number of spanning trea$G) in graphs (networks) is an important
invariant. The evaluation of this number and analyzts behavior is not only interesting from a
mathematical (computational) perspective, but alsds an important measure of reliability of a
network and designing electrical circuits. Some potationally hard problems such as the travelling
salesman problem can be solved approximately yguspanning trees. Due to the high dependence
of the network design and reliability on the grapeory we introduced the above important theorems
and lemmas and their proofs.
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INTRODUCTION spanning trees in a d-regular graph G can be esgaes

In this introduction we give some basic
definitions and lemmas. We deal with simple andeigenvalues of the corresponding adjacency matfix o
finite undirected graphs G = (V, E), where V is thethe graph. However, for a few special families of
vertex set and E is the edge set. For a graph G, gaphs there exist simple formulas that make it muc
spanning tree in G is a tree which has the samiewer easier to calculate and determine the number of
set as G. The number of spanning trees in G, alsgorresponding spanning trees especially when these
called, the complexity of the graph, denoted®),  numbers are very large. One of the first such tdsul
is a well-studied quantity (for long time). A class  due to Cayley (1889) who showed that complete graph
result of Kirchhoff (1847) can be used to detemnin on n vertices, Khas i spanning trees that he showed
the number of spanning trees for G = (V, E). LetV (K= N2, n=2. Another resulti(K , ) =p™g" L p,g2 1,

{V1, Vo,...,Vs}, then the Kirchhoff matrix H defined as where K, is the com . . o .
o . - N . q plete bipartite graph with bipartite
nxn character!snc matrix H = D-A, where D IS the sets containing P and q vertices, respectivelig Well
diagonal matrix of the degrees of G and A is theknown asin e.g
adjacency matrix of G, H = i[}a_defined as f.O.HO\.I.VS: 0 (Clark,, 2003; Qiéo and Chen, 2009). Another rewsult
3 = -1 when yand y are a‘?'la.cf’r!t anadd |, (||)_a”- due to Guy (1970) who derived a formula for the &he
equals_the degree of vertexivi =j and (i) 8 =0 5y vertices, W;, which is formed from a cycle,C
otherwise. All of co-factors of H are equal 9G).  on n vertices by adding a vertex adjacent to every
There are other methods for calculatingG). Let yertex of G. In particular, he showed that
Mi=p2... 21, denote the eignvalues of H matrix of a p 3+45 3-/E
point graph. Then it is easily shown thpg = 0. (W) =( 2 )"+ ( > 5)”-2, for n=3. Sedlacek
Furthermore, Kelmans and Chelnokov (1974) Showp{lQ?O) also later derived a formula for the numbgr

that, T(G):Eﬁuk‘ The formula for the number of Spanning trees in a Mobius ladder. The Mobius ladde
P k= M, is formed from cycle & on 2n vertices labeled;,v
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Vs,...,Vo, by adding edge;v., for every vertex ywwhere  where all other elements are zeros.
i<n. The number of spanning trees in, M given by Further we recall that the Chebyshev polynomials

M) :g[(z +3)Y +(2-43y +2] for r=2. Another of the first kind are defined by Eq. 1:

class of graphs for which an explicit formula haet T, (x) = cos(narccosx 1)
derived is based on a prism (Boesch and Bogdanpwicz

1987; Boesch and Prodinger, 1986). Let the vertides - :

two disjoint and length cycles be labeled w,...v, in deﬁthdebihégy;hev polynomials of the second kind are
one cycle and y W,,...w, in the other. The prismRs T

defined as the graph obtained by adding to thege tw )

cycles all edges of the form,w. The number of y () =1£Tn(x) :M )
spanning trees in [Ris given by the following n dx sin(arccosx)

formulal[(2 +3)" + (2-/3) - 2].
2[( J y-2 It is easily verified that Eq. 3:

Lemma 1.1: Temperley (1964): U, (x)-2xU,_,(x)+ U, ,(x)=0 ©)

1
T(G)= 7 det(H+ ) It can then be shown from this recursion that by
expanding det A(x) one gets Eq. 4:

where, Js the pxp matrix, where all elements are unity.

We can also deduce the following lemma. U, (x) =det(A, (x)),n= 1 (4)
Lemma 1.2: T(G)=i2det(pl— D+ A)where A, D are Furthermore by using standard methods for solving
P the recursion (3), one obtains the explicit formitta 5:
the adjacency and degree matrices Gof the
complement of G, respectively andslthe pxp unit _ 1 P et 5
i Un(x)—z\/ﬂ[(xhlx )™ - (x—Vx-1)"* },n=1 )

The advantage of these formulas in lemmal.1,

lemma 1.2 is to expresfG) directly as a determinant \yhere the identity is true for all complex x (extep
rather than in terms of cofactors as in Kirchhoff y = +1where the function can be taken as the limit).
theorem or eigenvalues as in Kelmans and Chelnokov

formula. Lemma 1.3: Let B, (x) be nxn matrix such that:
Proof lemma 1.2: Sincer(G) :izdet(H +J),H=D-A X -1 0

. pf -1 1+x -1 O
thenD=H+A, since D+D=(p-1)I, then 0 -1 1+x -1
D=(p-1)I-D. ThusH+A =(p-1)I-D, since B,(x) = . . 0
J- A=1+A . By addition we getH+J=pl-D+ A and L _i 1+'X 1
thereforer(G)=p—12det(p|— D+ A). 0 -1 x

In our computations we need some lemmas on
determinants and some relations concerning Chelayshe
polynomials. We begin from their definitions, Zhagtg

al. (2005). = (x— +X
Let Ay(x) be nxn matrix such that: det(, ()= (x l)U”_l(lT)

Then one can obtain:

2x -1 0 : . . : :
_i ax -1 0 Proof: Straightforward induction using properties of
A()=| 0 . determinants and above mentioned definition.
Lo
0 -1 2x Lemma 1.4: Let G,(X) be nxn matrix, B3, x>2 then:

203



Am. J. Applied Sci., 9 (2): 202-207, 2012

X 0 1 Complexity of cocktail party graphs. The cocktail
0 x+1 0 - party graph of order n, also called the hyper catal
1 0 x+41 0 graph is the graph consisting of two rows of paired

C,(x)= nodes in which all nodes but the paired ones are

. 1 connected with a graph edge. It is the graph
wox+1 0 complement of the ladder rung graph dand the dual
1 0 x graph of the hypercube graph,.@iggs (1993). See
Fig. 1.
Then:
det(G; (9= (0t x- 24, §
Proof: _Straightforward. induction using properties of 1'14 us 0,
determinants, we have:
Fig. 1: Cocktall party graph with 2n-vertices
x-1 -1 0
-1 x -1 0 Theorem 2.1:_Let G be a cocktail party graph with 2n
- - -1 vertices, &3. Its complexity will be:
det(G, ()= X2 gy O TH ¥ 1o Py
X-2 oo .0 _q
oo o x -1 1(G) = 2(n )
0 -1 x-1 n2"/(n?- 4) ((n+ 2F- 4)

x[(n++n*=4)" = (n-v P - 4)']
Using lemmal.3 yields: x[((n+2)+(n+ 27 - 4} = (n+ 24/ (n+ 2§- 4)

det(G, (x))= n+x-2 (x- 2)U., %X = (m x- 2)y 1€\ Proof: Applying lemmas1.2 ,1.3,1.4 and1.5,we have:
X=2 B 2’
A 1(G)= (211)2 det(2n- D+ A)
Lemma 1.5: If B:(I Aj' Then det (B) = det (A-]). 1
= @nf det
det (A+l).
n+l 0 1 - 1
Proof: Using the fact that: 0 n+2 0 I
1 o .o 1
de{A B]: det(A).det(D- CA™' B) : “. . n+2 0
C D) |det(D).det(A- BD'C)’ 1 - 1 0 n+1
nt+l 0 1 1
where, A, D are non singular, Marcus and Minc (1964 o Mt 2
We have: I 1 0o . 1
n+2
[A | J ) 0
det = det(A).det(A- A™)
LA 1 1 0 n+1
=det(A’ - 1) noo0 1 . 1
=det(A- I).det(A+ 1). . 0 n+l 0
. . . =——det1 0 . . 1
This formula gives some sort of symmetry in some  (2ny ] 1o
n+

matrices which facilitates our calculation of
determinants. 1 - 1 0 n
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nt2 0 1 - 1
0 n+3 0 :
xdet| 1 o . 1
: E . n+3 0
1 1 0 n+ 2
n-1 -1 0 0
- n -1°
(211)2 2nn 22 o 10
. n -1
o - 0 -1 n-
n+t+l -1 O 0
-1 n+2 -1
x2det| O -1 . 0
: . . n+2 -1
0 - 0 -1 n+
= G 2~ InU, ()
1 X2(n—1)x

= (-2 =
2n¥ n-2 ’znﬂlnz_ 4
[(N+vn?=4)" = (n-~ P - 4)']
P S
2"J(n+ 2P + &
VJ(N=2F = 4) = ((n+ 2+ (m+ 2§~ 4} ]
(n-1)
“n2 (- A+ 2- 4)
x[(n+Vn? -4y - (n—+ rf - 4} ]

x 2

X[((n+2)+4/(n- 2§ - 4] - ((+ 2y (7 2)- 4)

Then we obtain:
det(D, )= (x+ n—- 1)(x- 1j*

Proof: From the definition of the circulant

determinants, we have:

det(D, (x))= de

n
:”(x+wj+o)f+wf+ .......... +@"h)

=(X+1+1+....s + 1)

(X+0 + 0 +w’+ + ')

=Lwj#1
j=Lw ey

=(x+n-1)x (x-1).

Theorem 2.3: Let G be a crown graph with 2n vertices.
Then the number of spanning trees of G is:

(G)=n"2(n-1(n- 2)*

Proof: Applying lemmas1.2 and 1.5 we have:

Complexity of crown graph: A crown graph on 2n
vertices is an undirected graph with two sets ofices

u; and v and with an edge from; to v, whenever #j.
The crown graph can be viewed as a complete biparti
graph from which the edges of a perfect matchingeha

been removed, Biggs (1993) Fig. 2.

Fig. 2: Corwn graph with 2n-vertices

Lemma 2.2:Let D, (xX) be nxn matrix such that:

1(G)=-——zdet(2nl- D+ A)
(2 )
n 1 1
1
1 - 1 n
'|_'(C;):i2
(2n) n 1 - 1
1 - :
| : o1
1 1 n
n+l 1 1 - 1
1 1 n+1 1 °-. :
=——detf 1 1 1
(2n) . . .
: . n+l 1
1 1 1 n+
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n-1 1 1 1 n 1 1 1
1 n-11 : 1on 1
xdef 1 1 . .1 it :
N | F . i ' i !
. n
1 11 n = any o nt1 0 1 1
Applying lemma 2.2 with x = n+l and n-1 | (1) ngz 0 1
respectively, we have: ] ) )
: .. n+2 O
1 1 0 n+
1(G)=——x2Mx 2(n- 1)(n- 2)* , Y
(n) "+ on-1 a2 3 2
— nn*Z(n_l)(n_ 2)1*1 2n_3)
on-1 ™ oni1 a2
Complexity of open cocktail party graphs: The 3n-4)
open cocktail party graph of order n, is the graph _ 1 ot 3172 21 21 3m 2
consisting of cocktail party graph by deleting n-1 T (2ny : g g 3n-2
edges from one of their rows Fig. 3. n2 +
( 2n-1
3n-4)
Vi -Vl v_;. ) v4_ jv_: ) 1 a2 a2 o 1 (n? +
Neae—
“ A‘éﬁ}%
I S~ 43 2n-1 3n-2 3 2
woouy U3 1y Us u, U n-1 n-1 n-1
2n-1 2n-1 3n- 2
n- ntd n-1 n-1
Fig. 3: Open cocktail party graph with 2n-vertices 3n-2 21 o 1 3m 2
. . -1y - - -
Lemma 2.4: If A and B are symmetric matrices and =(?2n)2) n-1 n-1 "1 ! 3n-2
c:[A I). . ‘ 2”‘1
I B n+4 nn_—ll
Then: 3n-2 3n-2 2n-1 n+3
n-1 n-1 n-

det(C)= det(AB- I)= det(BA- 1)

Proof: Applying the fact that used in lemma 1.5.

Straight forward induction by using properties of
determinants.

Theorem 2.5: Let G be an open cocktail party graph e obtain:

with 2n vertices, B3. Its complexity will be:

(n-12 n-2

1(G)= Un—l(z(n_ 1))
= n-1 x[(n? —2+/n* - 8rf + 8n} -
nx2'\/n - 8 + 8n

("*-=2-+n*-8r+ 8nJ ]
Proof: Applying lemmas (1.2), (1.4) and (2.4) we have:

1 — D+ 7
T(G)—(Zn)zdet(ZnI D+ A)
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