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Abstract Problem statement: The number of spanning trees τ(G) in graphs (networks) was an 
important invariant. Approach: Using the properties of the Chebyshev polynomials of the second kind 
and the linear algebra techniques to evaluate the associated determinants. Results: The complexity, 
number of spanning trees, of the cocktail party graph on 2n vertices, given in detail in the text was 
proved. Also the complexity of the crown graph on 2n vertices was shown to had the value nn-2 (n-1) 
(n-2)n-1. Conclusion: The number of spanning trees τ(G) in graphs (networks) is an important 
invariant. The evaluation of this number and analyzing its behavior is not only interesting from a 
mathematical (computational) perspective, but also, it is an important measure of reliability of a 
network and designing electrical circuits. Some computationally hard problems such as the travelling 
salesman problem can be solved approximately by using spanning trees. Due to the high dependence 
of the network design and reliability on the graph theory we introduced the above important theorems 
and lemmas and their proofs. 
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INTRODUCTION 
 
 In this introduction we give some basic 
definitions and lemmas. We deal with simple and 
finite undirected graphs G = (V, E), where V is the 
vertex set and E is the edge set. For a graph G, a 
spanning tree in G is a tree which has the same vertex 
set as G. The number of spanning trees in G, also 
called, the complexity of the graph, denoted by τ(G), 
is a well-studied quantity (for long time). A classical 
result of  Kirchhoff (1847) can be used to determine 
the number of spanning trees for G = (V, E). Let V = 
{v 1, v2,…,vn}, then the Kirchhoff matrix H defined as 
n×n characteristic matrix H = D-A, where D is the 
diagonal matrix of the degrees of G and A is the 
adjacency matrix of G, H = [aij ] defined as follows: (i) 
aij  = -1 when vi and vj are adjacent and i ≠ j, (ii) aij 
equals the degree of vertex vi if i = j and (iii) aij  = 0 
otherwise. All of co-factors of H are equal to τ(G). 
There are other methods for calculating τ(G). Let 
µ1≥µ1≥…≥µp denote the eignvalues of H matrix of a p 
point graph. Then it is easily shown that µp = 0. 
Furthermore, Kelmans and Chelnokov (1974) shown 

that,

 

p 1

k
k 1

1
(G)

p

−

=

τ = µ∏ . The formula for the number of 

spanning trees in a d-regular graph G can be expressed 

as 
p 1

k
k 1

1
(G) (d )

p

−

=

τ = − µ∏  where λ0 = λ1, λ2,…..,λp-1 are the 

eigenvalues of the corresponding adjacency matrix of 
the graph. However, for a few special families of 
graphs there exist simple formulas that make it much 
easier to calculate and determine the number of 
corresponding spanning trees especially when these 
numbers are very large. One of the first such result is 
due to Cayley (1889) who showed that complete graph 
on n vertices, Kn has nn-2 spanning trees that he showed 
τ(Kn)= nn-2, n≥2. Another result, q 1 p 1

p,q(K ) p q ,p,q 1− −τ = ≥ , 

where Kp,q is the complete bipartite graph with bipartite 
sets containing P and q vertices, respectively. It is well 
known, as in e.g.,  
(Clark, 2003; Qiao and Chen, 2009). Another result is 
due to Guy (1970) who derived a formula for the wheel 
on n+1 vertices, Wn+1, which is formed from a cycle Cn 
on n vertices by adding a vertex adjacent to every 
vertex of Cn. In particular, he showed that 

n n
n 1

3 5 3 5
(W ) ( ) ( ) 2

2 2+
+ −τ = + − , for n≥3. Sedlacek 

(1970) also later derived a formula for the number of 
spanning trees in a Mobius ladder. The Mobius ladder 
Mn is formed from cycle C2n on 2n vertices labeled v1, 
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v2,…,v2n by adding edge vivi+n for every vertex vi where 
i≤n. The number of spanning trees in Mn is given by 

n n
n

n
(M ) [(2 3) (2 3) 2]

2
τ = + + − +  for n≥2. Another 

class of graphs for which an explicit formula has been 
derived is based on a prism (Boesch and Bogdanowicz, 
1987; Boesch and Prodinger, 1986). Let the vertices of 
two disjoint and length cycles be labeled v1, v2,…vn in 
one cycle and w1, w2,…wn in the other. The prism Rn is 
defined as the graph obtained by adding to these two 
cycles all edges of the form vi,wi. The number of 
spanning trees in Rn is given by the following 

formula n nn
[(2 3) (2 3) 2]

2
+ + − − . 

 
Lemma 1.1: Temperley (1964): 
 

2

1
(G ) det(H J)

p
τ = +  

 
where, J is the p×p matrix, where all elements are unity. 
 We can also deduce the following lemma. 
 

Lemma 1.2: 
2

1
(G) det(pI D A)

p
τ = − + where A , D  are 

the adjacency and degree matrices ofG , the 
complement of G, respectively and I is the p×p unit 
matrix. 
 The advantage of these formulas in lemma1.1, 
lemma 1.2 is to express τ(G) directly as a determinant 
rather than in terms of cofactors as in Kirchhoff 
theorem or eigenvalues as in Kelmans and Chelnokov 
formula. 
 

Proof lemma 1.2: Since
2

1
τ (G ) = det(H + J),H = D - A

p
 

thenD H A= + , since D + D = (p -1)I , then 

D (p 1)I D= − − . ThusH A (p 1)I D+ = − − , since 

J A I A− = + . By addition we get H J pI D A+ = − +  and 

therefore 2

1
(G ) det(pI D A)

p
τ = − + . 

 In our computations we need some lemmas on 
determinants and some relations concerning Chebyshev 
polynomials. We begin from their definitions, Zhang et 
al. (2005). 
Let An(x) be n×n matrix such that: 
 

n

2x 1 0

1 2x 1 0

A (x) 0

1

0 1 2x

− 
 − − 
 =
 

− 
 − 

⋱ ⋱ ⋱

⋱ ⋱ ⋱

 

where all other elements are zeros. 
 Further we recall that the Chebyshev polynomials 
of the first kind are defined by Eq. 1: 
 

nT (x) cos(n arccosx)=   (1) 

 
 The Chebyshev polynomials of the second kind are 
defined by Eq. 2: 
 

n 1 n

1 d sin(n arccosx)
U (x) T (x)

n dx sin(arccosx)− = =   (2) 

 
 It is easily verified that Eq. 3: 
 
 n n 1 n 2U (x) 2xU (x) U (x) 0− −− + =   (3) 

 
 It can then be shown from this recursion that by 
expanding det An (x) one gets Eq. 4: 
 

n nU (x) det(A (x)),n 1= ≥  (4) 

 
 Furthermore by using standard methods for solving 
the recursion (3), one obtains the explicit formula Eq. 5: 
 
 2 n 1 2 n 1

n 2

1
U (x) [(x x 1) (x x 1) ],n 1

2 x 1

+ += + − − − − ≥
−

  (5)  

    
where the identity is true for all complex x (except at 

1x = ± where the function can be taken as the limit). 
 
Lemma 1.3: Let Bn (x) be n×n matrix such that: 
 

n

x 1 0

1 1 x 1 0

0 1 1 x 1
B (x)

0

1 1 x 1

0 1 x

− 
 − + − 
 − + −

=  
 
 − + −
  − 

⋱

⋱ ⋱ ⋱ ⋱

⋱

 

 
 Then one can obtain: 
 

n n 1

1 x
det(B (x)) (x 1)U ( )

2−
+= −  

 
Proof: Straightforward induction using properties of 
determinants and above mentioned definition. 
 
Lemma 1.4: Let Cn(x)

 
be n×n matrix, n≥3, x>2 then: 
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n

x 0 1

0 x 1 0

1 0 x 1 0
C (x)

1

x 1 0

1 0 x

 
 + 
 +

=  
 
 +
  
 

⋱

⋱

⋱ ⋱ ⋱ ⋱

⋱ ⋱

 

 
Then: 
 

n n 1

x
det(C (x)) (n x 2)U ( )

2−= + −  

 

Proof: Straightforward induction using properties of 
determinants, we have:   
 

 n

x 1 1 0

1 x 1 0

0 1 x 1n x 2
det(C (x)) det

0x 2

x 1

0 1 x 1

− − 
 − − 
 − −+ −=  

−  
 −
  − − 

⋱

⋱ ⋱ ⋱ ⋱

⋱ ⋱

 

 
Using lemma1.3 yields: 
 

n n 1 n 1

n x 2 x x
det(C (x)) (x 2)U ( ) (n x 2)U ( )

x 2 2 2− −
+ −= − = + −

−
 

 

Lemma 1.5: If 
A I

B
I A

 
=  
 

. Then det (B) = det (A-I). 

det (A+I). 
 
Proof: Using the fact that:  
 

1

1

A B det(A).det(D CA B)
det

C D det(D).det(A BD C)

−

−

 −  =  
−  

, 

 
where, A, D are non singular, Marcus and Minc (1964). 
 
We have: 
 

1

2

A I
det det(A).det(A A )

I A

det(A I)

det(A I).det(A I).

− 
= − 

 

= −
= − +

 

 
 This formula gives some sort of symmetry in some 
matrices which facilitates our calculation of 
determinants. 

Complexity of cocktail party graphs: The cocktail 
party graph of order n, also called the hyper octahedral 
graph is the graph consisting of two rows of paired 
nodes in which all nodes but the paired ones are 
connected with a graph edge. It is the graph 
complement of the ladder rung graph Ln and the dual 
graph of the hypercube graph Qn. Biggs (1993). See 
Fig. 1. 
 

 
 
Fig. 1: Cocktail party graph with 2n-vertices 
 
Theorem 2.1: Let G be a cocktail party graph with 2n 
vertices, n≥3. Its complexity will be: 
 

2n 2 2

2 n 2 n

2 n 2 n

(n 1)
(G)

n2 (n 4) ((n 2) 4)

[(n n 4) (n n 4) ]

[((n 2) (n 2) 4) ((n 2) (n 2) 4) ]

−τ =
− + −

× + − − − −

× + + + − − + − + −

 

 
Proof: Applying lemmas1.2 ,1.3,1.4 and1.5,we have: 
 

2

2

1
(G) det(2n I D A)

(2n)

1
det

(2n)

n 1 0 1 1

0 n 2 0

1 0 1 I

n 2 0

1 1 0 n 1

n 1 0 1 1

n 2
0 0

I 1 0 1

n 2
0

1 1 0 n 1

τ = − +

=

+ 
 + 
 
 

+ 
 +
 

+ 
 + 
 
 
 
 +
 
 
 + 

⋯

⋱ ⋮

⋱ ⋱

⋮ ⋱ ⋱

⋯

⋯

⋱ ⋮

⋱

⋮ ⋱ ⋱

⋯

 

2

n 0 1 1

0 n 1 0
1

det 1 0 1
(2n)

n 1 0

1 1 0 n

 
 + 
 =
 

+ 
 
 

⋯

⋱ ⋮

⋱ ⋱

⋮ ⋱ ⋱

⋯
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n 2 0 1 1

0 n 3 0

det 1 0 1

n 3 0

1 1 0 n 2

+ 
 + 
 ×
 

+ 
 + 

⋯

⋱ ⋮

⋱ ⋱

⋮ ⋱ ⋱

⋯

 

2

n 1 1 0 0

1 n 1
1 2n 2

det 0 1 0
(2n) n 2

n 1

0 0 1 n 1

− − 
 − − −
 = −

−  
− 

 − − 

⋯

⋱ ⋮

⋱ ⋱

⋮ ⋱ ⋱

⋯

 

n 1 1 0 0

1 n 2 1

2det 0 1 0

n 2 1

0 0 1 n 1

+ − 
 − + − 
 × −
 

+ − 
 − + 

⋯

⋱ ⋮

⋱ ⋱

⋮ ⋱ ⋱

⋯

 

n 1 n 12

2 n 2

2 n 2 n

n 2 2

2 n 2 n

1 2n 2 n n 2
[(n 2)U ( )] [2nU ( )]

(2n) n 2 2 2

1 2(n 1) 1
           (n 2)

(2n) n 2 2 n 4

[(n n 4) (n n 4) ]

1
           2n [((n 2)

2 (n 2) 4

(n 2) 4) ((n 2) (n 2) 4) ]

− −
− += − ×

−
−= × × −

− −

+ − − − −

× + +
+ +

− − − + − + −

 

2n 2 2

2 n 2 n

2 n 2 n

(n 1)
 

n2 (n 4)((n 2) 4)

  [(n n 4) (n n 4) ]

   [((n 2) (n 2) 4) ((n 2) (n 2) 4) ]

−=
− + −

× + − − − −

× + + − − − + − + −

 

 
Complexity of crown graph: A crown graph on 2n 
vertices is an undirected graph with two sets of vertices 
ui and vi and with an edge from ui to vj whenever i≠j. 
The crown graph can be viewed as a complete bipartite 
graph from which the edges of a perfect matching have 
been removed, Biggs (1993) Fig. 2. 

 

 
 
Fig. 2: Corwn graph with 2n-vertices 

 
Lemma 2.2:Let Dn (x) be n×n matrix such that: 

n

x 1 1 1

1 x 1

1 1
D (x)

1

x 1

1 1 1 x

 
 
 
 

=  
 
 
 
 
 

⋯ ⋯

⋱ ⋮

⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱

⋮ ⋱ ⋱

⋯ ⋯

 

 
 Then we obtain: 
 

n 1
ndet(D ) (x n 1)(x 1)−= + − −  

 
Proof: From the definition of the circulant 
determinants, we have: 
 

j

n

n
2 3 n 1

j j j j
j 1

n
2 3 n 1

j j j j
j 1, 1

1

n 1

x 1 1 1

1 x 1

1 1
det(D (x)) det

1

x 1

1 1 1 x

(x .......... )

(x 1 1 ....... 1)

(x .......... )

(x n 1) (x 1) .

−

=

−

= ω ≠
=−

−

 
 
 
 

=  
 
 
 
 
 

= +ω + ω + ω + + ω

= + + + + ×

+ ω + ω + ω + + ω

= + − × −

∏

∏

⋯ ⋯

⋱ ⋮

⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱

⋮ ⋱ ⋱

⋯ ⋯

�������������

 

 
Theorem 2.3: Let G be a crown graph with 2n vertices. 
Then the number of spanning trees of G is:  
 

n 2 n 1(G ) n (n 1)(n 2)− −τ = − −  

 
Proof: Applying lemmas1.2 and 1.5 we have: 
 

2

1
(G) det(2n I D A)

(2n)
τ = − +  

2

n 1 1

1 I

1

1 1 n1
(G )

n 1 1(2n)

1

I 1

1 1 n

 
 
 
 
 
 τ =  
 
 
 
 
 
 

⋯

⋱ ⋮

⋱

⋯

⋯

⋱ ⋮

⋮ ⋱

⋯

 

2

n 1 1 1 1

1 n 1 1
1

det 1 1 1
(2n)

n 1 1

1 1 1 n 1

+ 
 + 
 =
 

+ 
 + 

⋯

⋱ ⋮

⋱ ⋱

⋮ ⋱ ⋱

⋯
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n 1 1 1 1

1 n 1 1

det 1 1 1

n 1 1

1 1 1 n 1

− 
 − 
 ×
 

− 
 − 

⋯

⋱ ⋮

⋱ ⋱

⋮ ⋱ ⋱

⋯

 

 
 Applying lemma 2.2 with x = n+1 and n-1 
respectively, we have: 
 

n n 1
2

n 2 n 1

1
(G) 2n 2(n 1)(n 2)

(2n)

n (n 1)(n 2)

−

− −

τ = × × − −

= − −
 

 
Complexity of open cocktail party graphs: The 
open cocktail party graph of order n, is the graph 
consisting of cocktail party graph by deleting n-1 
 edges from one of their rows Fig. 3. 
 

 
 
Fig. 3: Open cocktail party graph with 2n-vertices 
 
Lemma 2.4: If A and B are symmetric matrices and 

A I
C

I B

 
=  
 

.  

 
Then: 
 

det(C) det(AB I) det(BA I)= − = −  
 
Proof: Applying the fact that used in lemma 1.5. 
 
Theorem 2.5: Let G be an open cocktail party graph 
with 2n vertices, n≥3. Its complexity will be: 
 

n 2

n 1

2 4 2 n

n 4 2

2 4 2 n

(n 1) n 2
(G) U ( )

n 2(n 1)

n 1
[(n 2 n 8n 8n)

n 2 n 8n 8n

(n 2 n 8n 8n) ]

−
− −τ =

−
−= × − + − + −

× − +

− − − +

 

 
Proof: Applying lemmas (1.2), (1.4) and (2.4) we have: 
 

2

1
(G) det(2n I D A)

(2n)
τ = − +  

2

n 1 1 1

1 n 1

1 1 1 I

n 1

1 1 1 n1
det

n 1 0 1 1(2n)

0 n 2 0

I 1 0 1

n 2 0

1 1 0 n 1

 
 
 
 
 
 
 
 =

+ 
 + 
 
 

+ 
 + 

⋯

⋱ ⋮

⋱ ⋱

⋮ ⋱ ⋱

⋯

⋯

⋱ ⋮

⋱

⋮ ⋱ ⋱

⋯

 

2

2

2

2

2

n

2

(n
2n 1 3n 2 3n 2

2n 3)

(n
2n 1 2n 1 3n 2

3n 4)

3n 2 2n 1 2n 1 3n 21
det

3n 2(2n)

(n
2n 1

3n 4)

(n
3n 2 3n 2 2n 1

2n 3)

2n 1 3n 2 3n 2
n 3

n 1 n 1 n 1
2n

(n 1)
det

(2n)

 +
− − − 

− 
 +
 − − −
 −
 − − − − =
 −
 

+ 
− − 

 +
 − − − − 

− − −+
− − −

−=

⋯ ⋯

⋯ ⋮

⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱

⋮ ⋯ ⋱ ⋱

⋯ ⋯

⋯ ⋯

1 2n 1 3n 2
n 4

n 1 n 1 n 1
3n 2 2n 1 2n 1 3n 2

n 1 n 1 n 1 n 1
3n 2

n 1
2n 1

n 4
n 1

3n 2 3n 2 2n 1
n 3

n 1 n 1 n 1

 
 
 

− − − + − − −
 − − − − 
 − − − −
 − 

− 
 −+ 

− 
 − − − + 
 − − − 

⋯ ⋮

⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱

⋮ ⋯ ⋱ ⋱

⋯ ⋯  

 
 Straight forward induction by using properties of 
determinants.  
 
We obtain: 
 

n 1

2

2

2

2

2

(n 1)
(G) det

(2n 3)n

n 2
0 1 1

n 1
n 2

0 ( 1) 0 1
n 1

1 0 0 1

1

n 2
( 1) 0

n 1
n 2

1 1 0
n 1

+−τ = ×
−

 −
 − 
 − + − 
 
 
 
 − + 

− 
 −
 

− 

⋯ ⋯

⋯ ⋮

⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱

⋮ ⋯ ⋱ ⋱

⋯ ⋯
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n 1

2

2

2

2

2

n 1 2 2

n 12

n 2

n 1

(n 1) 2n 3
det

(2n 3)n n 2

n 2
( 1) 1 0 0

n 1
n 2

1 1 0
n 1

0 1 1 0

0

n 2
1

n 1
n 2

0 0 1 ( 1)
n 1

(n 1) n 2 n 2
( 2) U ( )

(n 2)n n 1 2(n 1)

(n 1) n 2
U (

n 2(n

+

+

−

−

− −= × ×
− −

 − − − − 
 −− − − 

− − 
 
 
 − − 

− 
 −− − 

− 

− − −= × − ×
− − −
− −= ×

⋯ ⋯

⋯ ⋮

⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱

⋮ ⋯ ⋱ ⋱

⋯ ⋯

2 4 2 n

n 4 2

2 4 2 n

)
1)

n 1
[(n 2 n 8n 8n)

n 2 n 8n 8n

(n 2 n 8n 8n) ]

−
−= − + − +

× − +

− − − − +
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