American Journal of Applied Sciences 9 (10): 16904, 2012
ISSN 1546-9239
© 2012 Science Publication

Hybridization of Genetic Algorithm with Parallel
Implementation of Simulated Annealing for Job Shop Scheduling

Thamilselvan Rakkiannan and Balasubramanie Palagisa
Faculty of Computer Science and Engineering,
Kongu Engineering College, Perundurai, Erode 638 0amilnadu, India

Abstract: Problem statement: The Job Shop Scheduling Problem (JSSP) is obsavaxhe of the
most difficult NP-hard, combinatorial problem. Tpblem consists of determining the most efficient
schedule for jobs that are processed on severdlimescApproach: In this study Genetic Algorithm
(GA) is integrated with the parallel version of Silated Annealing Algorithm (SA) is applied to
the job shop scheduling problem. The proposed &hlyaris implemented in a distributed
environment using Remote Method Invocation conc&pe new genetic operator and a parallel
simulated annealing algorithm are developed fowisgl job shop schedulingResults: The
implementation is done successfully to examine twomvergence and effectiveness of the
proposed hybrid algorithm. The JSS problems tesii¢ll very well-known benchmark problems,
which are considered to measure the quality of psed systemConclusion/Recommendations:
The empirical results show that the proposed geratorithm with simulated annealing is quite
successful to achieve better solution than theviddal genetic or simulated annealing algorithm.
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INTRODUCTION Genetic Algorithms (GAs) and Simulated Annealing
(SA) methods. Roughly, our hybrid algorithm rune th
Meta-heuristics is used to solve with the GA as the main algorithm and calls SA procedure to
computationally hard optimization problems. Meta-improve individuals of the population.
heuristics consist of a high level algorithm thatdgs The rest of the paper is organized as follows. The
the search using other particular methods. Metadescription of JSSP problem is followed by the
heuristics can be used as a standalone approach fimtroduction. Followed by there is a discussionabo
solving hard combinatorial optimization problemsitB the literature review. In the fourth part, GA and S
now the standalone approach is drastically chaaged methodologies are given for job shop scheduling.
attention of researchers has shifted to considethan  Finally the implementation of the HGAPSA to the
type of high level algorithms, namely hybrid JSSP is given with the algorithm using the proposed
algorithms. There are at least two issues has to bmethod with the experimental results and a
considered while combining more than one metadiscussion of the proposed method and a conclusion
heuristics: (a) how to choose the meta-heuristicand future enhancement is also given.
methods and (b) how to combine the chosen heuristic
methods into new hybrid approaches. UnfortunatelyJob Shop scheduling problem: The rxm Job Shop
there are no theoretical foundations for thesesissbior ~ Scheduling problem labeled by the symbol n, m,,JGO
the former, different classes of search algoritearsbe  and G, It can be described by the finite set of n jobs J
considered for the purposes of hybridization, sash = {jo, j1, J2 Jai-+.-Jn, jns1} (the operation O and n+1 has
exact methods, simple heuristic methods and meteduration and represents the initial an final operes),
heuristics. Moreover, meta-heuristics themselves areach job consist of a chain of operations O =
classified into local search based methods, populat {01,0,,0s,....0n}, Each operation has processing time
based methods and other classes of nature inspirddiy, £, £a;.... &im}, finite set of m machines M = {m
meta-heuristics. Therefore, in principle, one couldm,, m....m,}, G is the matrix that represents the
combine any methods from the same class or methogsocessing order of job in different machines anpg,C
from different classes. Our hybrid approach combineis the makespan that represents the completion dime
Corresponding Author: Thamilselvan, R., Department of Computer SciemzkEngineering, Kongu Engineering College,
Perundurai, Erode 638 052, Tamilnadu, India
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the last operation in job shop. On O define A, maby The distinctive graph of the above bench mark job
relation representing precedence between operafibns scheduling problem is shown in Fig. 1, in which
(v, UJA then u has to be performed before v. Avertices represents the operation. Precedence atheng
schedule is a function S:-ONCH{O} that for each gperation of the same job is represented by
operation u defines a start time S(u). A schedule S copjunctive arc, which are doted directed lines.

feasible if Eq. 1-3: Precedence among the operation of different job is

Oudo:S(u) C (1) represented by Disjunctive arc, which areundirected
solid lines. Two additional vertices S and E
Ou, vO O, (u,v)d A:S(upA (U S(v 2) represents the start and end of the schedule.

The Gantt Chart of the above bench mark job

Ou, vO O, u# v, M(v)= M(v):S(ux+ scheduling problem is shown in Fig. 2. Gantt Chgrt

A(U) < S(V)orS(vFA (Vi S(u) (3) the simple graphical representation technique &dr j
_ scheduling. It simply represents a graphical chiart
The length of a schedule S is Eq. 4: display schedule; evaluate makespan, idle timetinggi
len (S) = mayo(S(U)A(u)) 4) time and machine utilization.

The goal is to find an optimal schedule, a feasibl Literature review: Many researchers are working in
schedule of minimum length, min (len(S)). job shop scheduling problem. Garetyal. (1976) were

An instance of the JSS problem can be representgfle first who introduced job shop scheduling proisde
by means of a disjunctive graph G = (O, A, E). HOre - g, 0 researchers like Brandimart (1993) and Paulli
is the vertex WhICh. represents the.operatlons and ,5995) have used dispatching rules for solvingilikex
represents the conjunctive arc which represents th . ) .
priority between the operations and the edge in{fi= job shop scheduling problems. Attention to sizevptb
Vv)|u, VDO, utv, M (u) = M(v)} represent the machine that job shop scheduling problems are NP-Hard (fare
capacity constraints. Each vertex u has a weightale et al., 1976) and with added flexibility increase
to the processing time(u). Let us consider the bench complexity more than job shop. Ranal. (1996) have
mark problem of the JSSP with four jobs, each hagpplied a parallel simulated annealing for job shop
three different operations and there are threeemdifft scheduling, but the same temperature is maintaimed

machines. Operation sequence, machine assignmegﬁ the machines. Bozejket al. (2009) have proposed

and processing time are given in Table 1. . ) :
Based on the above bench mark problem, wdhe parallel simulated annealing for the job shop

create a matrix G, in which rows represent theScheduling. But the same sequential algorithm is
processing order of operation and the columnimplemented more than one machine in a paralledrord

represents the processing order of jobs. Also wdramkumaret al. (2012) proposed real time fuzzy logic

create a matrix P, in which row i represents thefor job shop scheduling problem.

processing time of; for different operations:
Table 1: Processing time and sequence *& groblem instance

M, M, M, 2 3 4 Operation number and Machine Processing
Job processing sequence  assigned time
G= M; M, M, P= 441 Start operation 0 - 0
M, M, M, 2 21 (Dummy)
M, M, M, 331 J1 Qu M 2
O12 M, 3
. . . . . .. Ou3 Ms 4
The processing time of operation i on machine j is;» O M 4
represented by OLet £; be the processing time of;@ Oz M. 4
the relation Q- O;. G represents the completion of Oz M, !
. . J3 Q1 M, 2
the operation @ So tha.t the. value jC= Gy + & Os Ms 2
represents the completion time of;.OThe main Oss M, 3
objective is to minimize of G, It can be calculated as J4 Q My 3
Eg. 5: Os2 M; 3
Ous M, 1
End operation 0 -- 0
Crax = Max,, Q0 O(G ) (5) (Dummy)
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Fig. 1: llustration of disjunctive graph

Fig. 2:A Schedule of Gantt Chart fox8 problem Instance

Objective of JSP problem is to find the optimal populations evolve according to the principles of
schedule with minimum makespan, but this resuftos  natural selection of genes, i.e., survival of titeedt,
cleary shown by author. Thamilselvan andfirst clearly stated by Charles Darwin in The Onigif
Balasubramanie (2011; 2012) have used the variouSpecies. There is a initial solution as a Populatibostart
crossover strategies for genetic algorithm for J&86& the process and it filled with different order of
integration of Genetic algorithm with Tabu Searon f chromosome. The chromosome consists of collection
the JSSP. The above two methods were efficienthfor genes. Job is represented by each gene in
small size JSP problems. Mohamed (2011) proposed éhromosome and the job sequence in a schedule
genetic algorithm for JSSP, but this algorithmffcient  based on the position of the gene. GA uses Crossove
only for less number of jobs. The ratio schedulingand Mutation operation to generate a new population
algorithm to solve the allocation of jobs in theogsh By crossover operation, GA (generates the
floor was proposed by Hemamalieti al. (2010). This neighborhood to explore new feasible solution.
algorithm is more efficient when the result for the A typical genetic algorithm is illustrated in Fig.
bench mark instances when the due date is less thdin first creates an initial solution as a populatio

half of the total processing time. consisting of randomly generated collection of gene
After applying genetic operations like crossover,
MATERIALSAND METHODS mutation and selection, the new solutions are

generated.After generating the new solutions, etalu
Genetic  algorithm:  Genetic  algorithms  are each individual in the population. The optimal sins
probabilistic meta-heuristic technique, which mag b are used to carry the next generation. The abayes st
used to solve computationally hard optimizationare repeated until the termination condition iss§iat.
problems. They are based on the genetic process &f GA is terminated after a certain number of itenas
chromosome. Over many generations, naturabr if a certain level of fithess value has beerched.
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Fig. 3: A standard genetic algorithm

The structure of a genetic algorithm for the schiadu to control the annealing process. The above equatio
problem can be divided into four parts: the chodde implies that a small increase in fun are more Yikelbe
representation of individual in the population; theaccepted than large increases in the fun and bk t
determination of the fitness function; the desigh o when T is high, most of the newly generated neighbo
genetic operators; the determination of probabgiti are accepted. However, most of the cost increasing
controlling the genetic operators. Yamada and Naka transactions are rejected if T approaches zertallgi
(1997) was implemented the GA for the job shopthe temperature of the SA algorithm is kept as tEgh
scheduling problems. that the algorithm proceeds by generating a certain
number of neighbors at each temperature, while the
Sequential Simulated Annealing (SSA): SSA temperature parameter is gradually dropped. This
belongs to the type of local search algorithms €&gl algorithm leads to an optimal solution. The typical
1990). SA algorithm is inspired metal cooling preze procedure for SSA algorithm is shown in Fig. 4.
In this process, the temperature is gradually reduo For SSA the initial schedule is generated from a
reach the optimal solutions. SA algorithm searcheslisjunctive graph G for solving job shop scheduling
current solution neighborhoods for a better soluaad  problem. The Giffer and Thompson (1960) algoritism i
uses it for many complementary problems. Somesed to find the initial schedule. This algorithistains
researchers like Fattatli al. (2007; 2009) and Zandieh the schedule with all the operations (n) and ad th
et al. (2008) used SA algorithm in flexible job shop machines (m) with the criteria employed being the
environment. SA algorlthm.genera}tes.an initial Bolu o 5yiest starting time and the processing timeasfhe
randomly. A neighbor of this solution is then geated ¢ the gperations. The operation not yet included i

]E)y at' su|_table| rr}etch(?nllfsmdand the _ch?hnge mtéhe Cofle partial schedule at each stage, if the minimum
i:ngbl?arl}r:cha&L:ea:ur.ren? sgl(fjrtei}(?r?eism reelgg:d gn h time is chosen. If all the operations are includied
' P ¥ M ihe schedule, then the partial schedule becomes a

generated neighbor. If the cost function foh the
neighbor is greater, the newly generated neighbo?omplete schedule. The generated complete schedule

replaces the current solution with an acceptancgan bﬁ repre|§ented Idn ahdlalgraph. . f h
probability function given in Eq. 6: The earliest and the latest start time of eac

operations in a diagraph are calculated after nkita
diagraph with all the operations. The critical pash

Pd,T)= eXD(‘%] (6) used to find the earliest and latest start timee Th
earliest start time or the latest start time of thst
Where: operation is known as the makespan. This is theafos
the schedule (Krishnet al., 1995).
d = Cs[j]- Cs][i] The critical path in a diagraph is obtained after

evaluate the cost of the schedule. The criticah gain
Cq;p and Gy are the cost function generated statebe defined as a set of edges from the first vedethe
and the present state respectively. T is the temtyper  last vertex which satisfy the following properties.
1697



Am. J. Applied Sci., 9 (10): 1694-1705, 2012

Generate an initial Generate a new Accept the Replace the current
solution solution based on new solution with the
current solution solution new solution

Reach max tries
based on the
current temp?

Decrease the temp
by a specified rate

Lower Temp
bound
reached?

Fig. 4: A standard simulated annealing algorithm

AS neighborhood exchange a pair of consecutive operations
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block
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Fig. 5: Permutation of operations on a criticaldilo

* The earliest start time and latest start of eactexe 1994) that SA using the CB neighborhood is more

on the edge must be the same powerful than SA using the AS neighborhood. Thus,
+  For the same edge-w, the operation time and the the CB neighborhood may as well be investigatetthén

sum of the start time of u must be equal to the sta GA context. Figure 5 illustrates how the two tréiosi

time of v operators work.

Parallel Simulated Annealing: For solving the job
Neighborhood of a schedule S can be defined asaf se shop scheduling problem, there are two approaches
schedules that can be obtained by applying thedapted in the SA algorithm. The first approachois
transition operator on the given schedule S (LigNeéh  assign the operations to machines in a sequemtial.o
al., 2009). The transition operator permutes the oofler In the second approach, the operations are assigned
operations in a critical block by moving an opeyatto  machines and processed in two levels to reduce the
the beginning or end of the critical block, thusmiing ~ complexity of the problem. In the first level, the
the CB neighborhood. In this neighborhood, theoperations are assigned to machines and in thendeco
distance between S and any element in N(S) can vatgvel, the operations are scheduled in machines. Th
depending on the position of the moving operatibn. second approach is known as the parallel
has been experimentally shown in (Yamaetaal., implementation of job shop scheduling.
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The main objective function of the proposedorder for each job. This server machine then sdéinels
algorithm is to minimize the makespan. We use thenitial schedule and different range of temperature
second approach for solving job shop schedulingyarameters to each of the client machines on the
problem. The procedure SA_Parallel() generate apenyork. Each client machine has its maximum
initial schedule S[i] and then the algorithm is alielly temperature Jand minimum temperature..TT he client

running on different machines. Let N be the total ; . . )
number of iterations in each SA algorithm tempeatu machines execute the above algorithm with different

S[j] is the neighbourhood of S[i], Bis best known fange of temperatur_e f':md send the_ solution toehﬂas
solution cost, Bis the best known schedule of JSSP. Asmachine. After receiving the solutions from theenti
mentioned earlier, the given scheduling algoritton t machines, the server machine selects the besti@olut
schedule operations on machines. The generatedsS[j] with the minimal makespan.

the input to the scheduling algorithm and then the

algorithm compute the cost of S[j] agCThe cost of Hybrid Genetic Algorithm with Parallel Simulated
the new schedule is compared with the cost ofriltiei ~ Annealing (HGAPSA): Parallel implementation of

schedule to process the algorithm. SA (generates a Dbetter solution with faster
convergence. Initially, n number of client machines
Procedure: SA_Parallel() processes the SA algorithm with different initial
Input: schedule. After the fixed number of iterations, the
temperature T, Starting tempera‘[ure TS, ending:“ent maChi.neS are eXChange the results with the
temperature Te, number of iteration N. server machine to get the best schedule.
Begin In genetic algorithm, an initial population
generate initial schedule SJi]. consisting of a set of schedule is selected and the
compute the costdg of initial schedule S[i]. schedules are evaluated. Relatively more effective
n=1, T=Ts. schedule are selected to have more off springsrevhe
while T<Te are in some way, related to the original solutiofise
while n<N performance of the genetic algorithm depends on the
select neighbourhood SJj] of S[i]. crossover operation. If it is properly selected; fimal
compute the costg; of the new schedule S[j]. population will produce the better solution. Simath
compte = G-C - annealing algorithm aims to produce such a solution
if <0 then For the parallel SA implementation, we need good
S[il=SIi]- initial solutions for the fast convergence of SAA Gill
Csi=Caspp. produce a good number of initial solutions. The
else . operator used for generating off springs in jobpsho
generate a random variablelR, 1). scheduling is related to the processing order b$ jon
if exp (AT)>R different machines of the two parent solutions.
S[i]=SIj]. We introduce new cross over strategy named as
o Gep=Csy. Unordered Subsequence Exchange Crossover (USXX)
endif that children inherit subsequences on each maasne
end if far as possible from parents. Unordered Subsequence
n=n+l. exchange crossover creates a new children’s even th
end while subsequence of parentl is not in the same order in
T=T*0.995. parent 2. The algorithm for USXX is as follows:
end while
éf E:é[‘fBC Step 1: Generate two random parent individual
BC;SE[]I]I namely P1 and P2 with a sequence of all
S UL operations.
end if Step 2: Generate two child individual namely C1 and
End co.
Step 3: Select random subset of operations (genes)
The implementation of the above algorithm is done from P1 and copy it into C1.
by a server machine and a set of client machinke. T Step 4: Starting from the first crossover poinnirg1,
server node generates the initial schedule S[ig th look for elements in P2 that have been copied
processing times of all the operations and the imach as in the same order.
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Step 5: The remaining operations of P2 that aremot Figure 6 shows average makespan value generated
the subset can be filled in C1 so as to maintairby GA, SSA, PSA and HGAPSA for different problem
their relative ordering. instances of Lawrence (1984). It also shows thah SS

produce the worst result compare to other two dlgos

Procedure: HGAPSA_Server () and the HGAPSA algorithm is better than the otler t

Input: Initialize number of iterationy;. algorithms. Figure 7 shows the comparison of Averag

Begin Relative Error for all the three methods. It clgasthows

iter = 1. that the Average Relative Error for HGAPSA is 0.13

while iter< = N Table 3 shows comparison of makespan value produced

server machine generates a n initial solutions ,S[1]Jfrom different algorithms for problem instances

S[2],...S[n] using GA. SWV11-SWV20 (Storeret al., 1992) Column 1

fori=1ton specifies the problem instances, Column 2 spedifies

assign S[i] to Cwhere Gis the 1" client machine. number of jobs, Column 3 shows the number of
each Grun SA_Parallel() algorithm using SJi]. machines, Column 4 specify the optimal value farhea
after getting the best solution, client machinedsiéno  problem. Column 5, 6, 7 and 8 specify results fi®f)
server machine. SSA, PSA and HGAPSA respectively. It shows that the
end for proposed hybrid algorithm has succeeded in gettiag
iter=iter+1. optimal solutions for all the problems.

end while Figure 8 shows average makespan value generated

End by GA, SSA, PSA and HGAPSA for different problem

instances of Storeat al. (1992). It also shows that SSA

The above GA and PSA algorithms are Produce the worst result compare to other two éfyos
implemented in a network of one server and five@nd the HGAPSA algorithm is better than the otier t

gorithms. Figure 9 shows the comparison of Averag

workstations. The server node use GA to generates .
9 elative Error for all the three methods. It clgasthows

tnutmhber of 'nk')t'al sfct:_edt:le an:_ assigns tho.f.ih;f;edu that the Average Relative Error for HGAPSA is 0.17.
0 the n number of client machin€s as an init ' Typical runs of problem instances LA30

The genetic algorithm starts with an initial _scHechmd (Lawrence, 1984) are illustrated in Fig. 10 by @A,
then it perf_orms QSXX crossover operation to updateSSA, PSA and HGAPSA. The graph shows that the
the population. This process has to be repeated@um ,5n0sed HGAPSA reach the optimal solution faster
of times. The client machine US€ than other two methods. For LA30, GA, SSA and PSA
SA_Parallel()procedure to find the best schedule anpever produces the best known solution. But HGAPSA
then the best schedule is send to the server neachin  produced the optimal solution with 2000 iterationée
have tested with 5000 iterations, but other albomg
RESULTSAND DISCUSSION does not produce a optimal solution.
Typical runs of problem instances SWV15 (Storer

The performance of the proposed HGAPSAet al., 1992) are illustrated in Fig. 11 by the GA, SSA,
algorithm is compared with the Genetic Algorithm PSA and HGAPSA. The graph shows that the proposed
(GA), Sequential Simulated Annealing (SSA) HGAPSA reach the optimal solution faster than other
Algorithm and Parallel Simulated Annealing (PSA) two methods. For SWV15, GA, SSA and PSA never
for standard JSP test instances of Lawrence (1984)roduces the best known solution. But HGAPSA
instances from LA30 to LA40 and Storet al. produced the optimal solution with 2500 iterations.
(1992) instances SWV11-SWV20. We have tested with 6000 iterations, but other

Table 2 shows comparison of makespan valudlgorithms does not produce a optimal solution.
produced from different algorithms for problem Table 4 shows the computational time of all the
instances LA30-LA40 (Lawrence, 1984) Column 1above mentioned problems. It is given in the bréxke
specifies the problem instances, Column 2 spedifies Wwith the makespan. For all the problems, proposed
number of jobs, Column 3 shows the number ofalgorithm took a minimum time to reach the optimal
machines, Column 4 specify the optimal value farthea value. The average makespan and computational time
problem. Column 5, 6, 7 and 8 specify results fi®#y  for LA30-LA40 and SWV11-SWV20 are shown in
SSA, PSA and HGAPSA respectively. It shows that theTable 5. It clearly shows that the proposed alponit
proposed hybrid algorithm has succeeded in getling produce a minimum makespan with less computational
optimal solutions for all the problems. time. It is shown in the Fig. 12.
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Table 2: Results for instances by Lawrence (1984)

Problem size
Makespan ttime Rative error (%)
Problem Jobs Machines
Name (n) (m) Optimal  GA SSA PSA HGAPSA GA SSA PSA HGAPSA
LA30 20 10 1355.00 1398.00 1430.00 1360.00 1355.00 3.17 5.54 0.37 0.00
LA31 30 10 1784.00 1829.00 1950.00 1800.00 1790.002.52 9.30 0.90 0.34
LA32 30 10 1850.00 1877.00 2126.00 1875.00 1860.00 1.46 14.92 1.35 0.54
LA33 30 10 1719.00 1820.00 2006.00 1740.00 1719.005.88 16.70 1.22 0.00
LA34 30 10 1721.00 1810.00 1945.00 1742.00 1725.005.17 13.02 1.22 0.23
LA35 30 10 1888.00 1950.00 2105.00 1953.00 1895.003.28 11.49 3.44 0.37
LA36 15 15 1279.00 1279.00 1305.00 1285.00 1279.00 0.00 2.03 0.47 0.00
LA37 15 15 1408.00 1441.00 1453.00 1423.00 1408.002.34 3.20 1.07 0.00
LA38 15 15 1219.00 1220.00 1220.00 1219.00 1219.000.08 0.08 0.00 0.00
LA39 15 15 1246.00 1246.00 1255.00 1250.00 1246.00 0.00 0.72 0.32 0.00
LA40 15 15 1241.00 1241.00 1248.00 1245.00 1241.000.00 0.56 0.32 0.00
Average 1519.09 1555.55 1640.27 1535.64 1521.55 .17 2 7.05 0.97 0.13
Table 3: Results for instances by Staateal. (1992)
Problem size
————————————————————— Optimal Makespan time Reive error (%)
Problem Jobs  Machines
Name (n) (m) UB LB GA SSA PSA HGAPSA GA SSA PSA GHAPSA
SWV11 50 10 2991 2983.00 3200.00 3259.00 3012.00 48.80 6.99 8.96 0.70 1.91
SWv12 50 10 3003 2972.00 3250.00 3328.00 3120.00 12.80 8.23 10.82 3.90 0.30
SWV13 50 10 3104 3754.00 3762.00 3250.00 3108.0020.94 21.20 4.70 0.13
SWv14 50 10 2968 3487.00 3502.00 3212.00 2968.0017.49 17.99 8.22 0.00
SWV15 50 10 2904 2885.00 4235.00 4240.00 3225.00 04.29 45.83 46.01 11.05 0.00
SWV16 50 10 2924 3547.00 3605.00 3332.00 3025.0021.31 23.29 13.95 3.45
SWV17 50 10 2794 3269.00 3280.00 3002.00 2800.0017.00 17.39 7.44 0.21
SWV18 50 10 2852 3156.00 3193.00 2962.00 2875.0010.66 11.96 3.86 0.81
SWV19 50 10 2843 3169.00 3201.00 2930.00 2850.0011.47 12.59 3.06 0.25
SWv20 50 10 2823 3231.00 3235.00 2963.00 2823.0014.45 14.59 4.96 0.00
Average 2920.60 2946.67 3429.80 3460.50 3100.80 941.20 17.44 18.48 6.19 0.71
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Fig. 6: Average makespan values by different atlgors for LA30-LA40
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Table 4: Computational time for LA30-LA40 and SWV$WV20

Problem size
Makespan (CPltime)

Problem Jobs Machines

Name (n) (m) Optimal GA SSA PSA HGAPSA
LA30 20 10 1355 1398(2539) 1430(3152) 1360(1925) 55(8554)
LA31 30 10 1784 1829(2780) 1950(3750) 1800(2532) 9017106)
LA32 30 10 1850 1877(2850) 2126(4104) 1875(2585) 601(3151)
LA33 30 10 1719 1820(2829) 2006(4007) 1740(2581) 1917922)
LA34 30 10 1721 1810(2971) 1945(3945) 1742(2625) 2512051)
LA35 30 10 1888 1950(2920) 2105(4398) 1953(2453) 95(2264)
LA36 15 15 1279 1279(1978) 1305(2585) 1285(1615) 7912432)
LA37 15 15 1408 1441(2752) 1453(3485) 1423(2125) 0811659)
LA38 15 15 1219 1220(1885) 1220(2423) 1219(1598) 1912264)
LA39 15 15 1246 1246(1800) 1255(2540) 1250(1605) 4612351)
LA40 15 15 1241 1241(1752) 1248(2408) 1245(1620) 4112337)
SWV11 50 10 2991 3200(4438) 3259(5632) 3012(3625) 04883184)
SWV12 50 10 3003 3250(5235) 3328(6780) 3120(3882) 01283537)
SWV13 50 10 3104 3754(5498) 3762(7720) 3250(4250) 10883691)
SWv14 50 10 2968 3487(4531) 3502(5751) 3212(3632) 96813177)
SWV15 50 10 2904 4235(4427) 4240(5675) 3225(3421) 9043124)
SWV16 50 10 2924 3547(4513) 3605(5712) 3332(3438) 0258149)
SWvV17 50 10 2794 3269(3900) 3280(4520) 3002(3185) 8002870)
SWV18 50 10 2852 3156(4104) 3193(4732) 2962(3278) 875@3037)
SWV19 50 10 2843 3169(4098) 3201(4532) 2930(3185) 8502964)
SWV20 50 10 2823 3231(4075) 3235(4572) 2963(3004) 8232832)

Table 5: Average makespan and Computational timeA80-LA40 and SWV11-SWV20
Average makespan (Average CPU time)

No of
Problem Name problems GA SSA PSA HGAPSA
LA30- LA40 11 1555.55 (2459.64) 1640.27 (3345.18)  538.64 (2114.91) 1521.55 (1735.55)
SWV11- SWV20 10 3429.80 (4481.90) 3460.50 (5562.60)  3100.80 (3490.00) 2941.30 (3156.50)
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