
American Journal of Applied Sciences 9 (8): 1307-1315, 2012
ISSN 1546-9239
© 2012 Science Publications

Corresponding Author: Kuppusamy, P. Department of Computer Science and Engineering,
 Vivekanandha College of Engineering for Women, Namakkal, India

1307

Cluster Based Data Consistency for

Cooperative Caching over Partitionable Mobile Adhoc Network

1Kuppusamy, P. and 2B. Kalaavathi
1Department of Computer Science and Engineering,

Vivekanandha College of Engineering for Women, Namakkal, India
2Department of Computer Science and Engineering,

K.S.R Institute for Engineering and Technology, Namakkal, India

Abstract: Problem statement: Data availability and consistency are foremost issues in Mobile Ad
hoc Networks due to the absence of permanent infrastructure. Cooperative caching addresses the data
availability issue through coordinating the mobile nodes and sharing the cache copies among them. In
the meantime, the mobile node must ensure the staleness of cache copies. The consistency
maintenance resolves the staleness of the data among the source and caching node. Due to addition of
more mobile nodes the network size is increased and it leads to increase the caching nodes. The
mobility and disconnections causes additional overhead, latency and reduces the data delivery success
ratio while updating the cache copy from the source. Approach: This study proposed Adaptive Push
and Pull Algorithm for Clusters (APPC) and Cluster Based Data Consistency (CBDC) approach to
address the consistency requirements and maintenance in mobile ad hoc network. Results: The CBDC
satisfy the consistency requirements in partitioned clusters. The source node transmits the updated data
through the cluster heads to the caching nodes. The APPC ensures the validity of cache copy by
threshold Time-to-Live (TTL). Thus it provides efficient valid data accessibility in mobile ad hoc
network. Conclusion: The simulation results shown that this proposed approach increases packet
success ratio and reduces the delay and overhead when compared with the existing approaches
Flexible Cache Consistency (FCPP) maintenance and Cluster Based Cooperative Caching Technique
(CBCCT) for increasing number of nodes and speed respectively.

Key words: Time-To-Live (TTL), invalidation, update delay, cooperative caching, cache copy,

Cluster Based Data Consistency (CBDC), Adaptive push and pull for clusters, MANET

INTRODUCTION

 Mobile Ad Hoc Networks (MANETs) consist self
governing Mobile Nodes (MNs) with dynamic
infrastructure and multi-hop wireless links. The
previous researches have primarily focused on routing
and MAC protocols in MANET. Although routing and
MAC protocols having important issue such as efficient
data access in MANET. Moreover, the MANET
contains some limitations like battery energy constraint,
limited bandwidth, unpredictable signal propagation,
mobility and unreliable wireless links. This causes
frequent disconnection in the network that makes issues
in data availability and accessibility. Cooperative
caching is an efficient way to tackle these issues and
improve the system performance in terms of energy,
query latency, data delivery and overhead. MNs are
cooperating with each other to share the data that

reduces remote server’s workload and communication
channel bandwidth. Due to rapid progress in wireless
network, MANETs are not only used in military
operations and also used in commercial and industrial
applications like news, traffic information, cricket score
updates and stock market. In cooperative caching, the
accessing shared data is widely cached in the caching
nodes. The shared cache copy is not a static, it is
modified and updated in the source during its lifetime.
The modified and/or updated data in the source must be
replicated to cache copy in the caching node. Since data
have cached in many caching nodes, it requires
consistency approaches to ensure that all cache copies
are consistent with source. Thus maintaining cache
consistency is a challenging issue in the mobile
environment. The novel consistency approach is
predominantly proposed to handle the consistency
among the cache copy in caching node and source.

Am. J. Applied Sci., 9 (8): 1307-1315, 2012

1308

Motivation: In fast development of the mobile
communication, the MN retrieves the required data
from the remote located source node. The MNs
frequently change its location during its data
transmission due to network dynamism and mobility.
MNs cannot retrieve the required data from the remote
source at all time in the huge network. Hence, MNs
caches the accessed data from remote source to share
with its neighbors. This cache copy improves data
availability in the network. But, the query latency and
overhead have decreased drastically in the huge
network due to numerous caching nodes and also
invalidation of data takes long time to update the cache
copies in caching nodes from the source. The source
also must ensure the consistency of cache copies in the
caching nodes. It motivates the researcher to make
exploration on maintain the consistency among source
and caching node over huge MANET.

Problem identification and proposed solution: The
most of the previous research works on cache
consistency did not mention any specific approach to
handle the consistency among data source and caching
nodes with mobility and disconnection in huge MANET.
Hence there is a necessity to design an effective
consistency approach to maintain the consistency to
handle disconnections in huge network.
 In this study, we propose to develop an Adaptive
Push and Pull Algorithm for Clusters (APPC) and
Cluster Based Data Consistency (CBDC) approach to
address the consistency maintenance in partitionable
MANET. The proposed algorithms can alleviate the
consistency issues with mobility and disconnection in
huge MANET.

Literature review: There are many researches on the
caching and consistency maintenance algorithms for
distributed environments such as Web, P2P systems,
database and mobile wireless network. However, these
approaches cannot be directly applied in MANET due to
dynamic topology, limited bandwidth, mobility, energy
constraint (Cao et al., 2005). Traditional consistency
control approaches are push and pull schemes. The Push-
based schemes are suitable for stable network which
guarantees for nodes which are online and reachable from
the source at all time. However, these schemes have low
query latency and cannot solve the disconnection problem.
The caching nodes cannot receive the invalidation
messages due to disconnections that results sharing of the
stale data upon reconnection. Pull-based schemes are more
suitable for dynamic networks which cause high
communication overhead in message flooding and caching
nodes consume much battery energy. The conventional
cache status maintenance approaches are Stateful (SF) and

Stateless (SL). In SF (Cao, 2002), data source avoids
redundant broadcast flooding in the network. The data
source aware about all cache copies in the caching nodes.
Hence, it requires a large and complicated database. In SL
(Imielinski and Barbara, 1994), data source not aware
of cache copies status and simple to handle and
implement. However it causes more overhead due to
floods more redundant messages.
 The most important consistency level approaches
are Strong Consistency (SC) and Weak Consistency
(WC). In SC, the cache copies in the caching nodes are
up-to-date at all time. In WC, consistency of cache
copies is maintained among source and caching node,
but not provide assurance on the deviation between
them. The Delta Consistency (DC) satisfies the
maximum acceptable deviation between the source and
the cache copy. CBDC proposed to provide the
consistency requirements between SC and WC. Each
cache copy associates with Time-to-Live (TTL) value.
It provides acceptable deviation among the source
and cache copies through cluster head. Many
consistency algorithms have been proposed for
consistency maintenance.
 Cao et al. (2004) have presented simple weak
consistency model in which cache copy associate with
Time-To-Refresh value. In this model, the request
forwards to the data source if TTR is expired in caching
node. It causes long query delay. Duvvuri et al. (2003)
presents a new lease approach to provide SC in that the
source data is not modified without prior notification as
long as the lease is valid. Huang et al. (2010a) have
proposed predictive consistency control initiation
scheme to provide WC in that source node proactively
propagates updates to the caching nodes. But the source
node does not know whether the caching nodes require
data updates and it also induces round trip cost. Cao et
al. (2007) have proposed relay peer-based cache
consistency to provide DC based on TTR value. The
relay peers selected by data source from stable, high
energy nodes and push updates to these relay peers
periodically. Other caching nodes receive the updated
data from relay peers in a pull scheme. This scheme
increases the load on the relay peer and pull request
broadcasting consumes bandwidth and energy. Feeney
(2001) has presented energy consumption of MANET
routing protocols. Xie et al. (2007) have proposed
dynamic tree based consistency in which data updated
through a binary tree. However, this model makes
additional overhead during updating the tree due to
node’s mobility. Jing et al. (1997) have presented a Bit-
Sequence (BS) approach that uses a hierarchical
structure of binary bit sequences to represent
invalidations for long disconnections. But, data update
rate is not high. Li et al. (2007) have presented cache

Am. J. Applied Sci., 9 (8): 1307-1315, 2012

1309

invalidation strategies which reduce latency, but
bandwidth cost is high. Huang et al. (2006) have
proposed Predictive Caching Consistency algorithm
based on the online predictions of data updates and
queries. But, these schemes can offer only SC or WC.
Li et al. (2009) have offered probabilistic cache
consistency model to ensure the validity of cache copy
with neighbors cache copy instead of data source
forever. But it makes unnecessary invalidation when
neighbors copy is stale. Kuppusamy et al. (2012) have
proposed Cluster Based Cooperative Caching
Technique (CBCCT) based on mobility and
connectivity to improve the data availability over
MANET. The cluster member caches data in local
cache and updates with its corresponding CH’s global
cache to share with neighbor clusters. But, the
consistency maintained by updating source data
periodically to caching nodes. It leads to additional
overhead. Artail et al. (2008) have proposed
cooperation-based database caching system in which
MNs cache the submitted queries as indexes. It
provides better hit ratios and smaller delays but at the
cost of a bandwidth consumption is slightly higher.
Huang et al. (2010b) have proposed flexible cache
consistency algorithm to minimize consistency cost
and ensure the consistency based on probability of
data validity. It provides SC, WC and DC. However,
this scheme can not satisfy the consistency
requirements when source data widely cached in
unstable network connection.
 However none of previous research algorithms
provides to handle the consistency issues with mobility
and disconnections in huge MANET. This study aims
to provide an algorithm to partition the huge network
into clusters, share the data among neighbor clusters
through Cluster Head (CH) and maintain the
consistency between the data source and caching nodes.

Cluster based data consistency: In this model, the
MNs cache the data while accessing the data from the
source. This caching MN can directly serve the data to
its neighbors queries by Cluster based Data
Consistency. Whenever the cache copy is accessed by
its neighbor MNs within the cluster or neighbor clusters
cache copy access rate is computed. When cache copy
access rate is greater than the access rate threshold it
considered as frequently required data.
 When data is updated in source, it sends the
invalidation report to the caching nodes CH. The CH
replies acknowledgement to the data source
immediately and also intimate to its caching nodes
about data being updated. Thus the SC is maintained
and requesting neighbor need not be waited for long
time. The CH maintains the caching nodes information
with cache copy’s TTL. When TTL of the cache copy is
decreasing lower than threshold, the CH initiating the

RENEW message before TTL expires. Thus the WC
consistency is maintained by pull approach. Assume
that the CH, caching nodes and the data source have
synchronized clocks.
 Let Vt represent the version number of data Di at
the source node and Ct

k represent the cache copy at
node k at time t. The initial version number Vt is zero at
the data creation time. It is incremented for each
consecutive update in the source. This updated version
of Di, send to all caching nodes through their CH.
Hence, CH aware of its member’s cache copy
information with TTL and it informs to their neighbor
CHs. When cache copy Di in the caching node is not
stale more than acceptable deviation (δ) time with
source, it ensures DC. Maximum acceptable stale time is:

Ct
k = Vt-τ k ; t, k, ,0∀ ∀ ∃τ ≤ τ ≤ δ

 The difference in the values among source and
cache copy versions is bound by acceptable deviation:

t t
k kt, C V −τδ∀ − < δ

Overview of cluster based caching:
Clustering pattern: The cluster is configured based on
the spatio-temporal stability of MNs (Kuppusamy et al.,
2012). The MNs send Hello messages to the neighbors
with ID, energy level. The MN with greater energy
selected as a CH by neighbors which assigned as a
cluster members. Then data are stored in the source MN.
MNs send the beacon massage to its CH. The beacon
message consists Cluster ID (CID), Data (D) id with
TTL, Received Signal Strength (RSS). Then CH
replicates its content to other CHs and also collects other
CHs contents. If the CH energy level is decreased than
cluster member energy, then cluster member is assigned
as CH and give up all information to the new CH.

Mobility and disconnections: The movement
sequences of MNs can observe from the RSS at regular
intervals. These observations estimate the mobility
locations of MNs and strength of the connectivity
among connections. Thus mobility and connectivity is
computed through RSS. The MN may disconnect from
the network due to energy. The CH does not receive
reply from the MN during that period. Hence, CH
receives the updates from the source and keeps in its
cache for a short time. The MN sends the cache check
invalidation request to its CH upon reconnection. Then
CH transmits the updated data. When MN does not
reconnect for long time, CH deletes the data. Thus CH
resolves the disconnection issue in clusters.

Data query processing: Whenever MN requires the
data D, it checks in Local Cache Table (LCT).

Am. J. Applied Sci., 9 (8): 1307-1315, 2012

1310

Otherwise, it sends request to its CH2 as in Fig. 1. CH2
checks in its LCT for the required data. If data is in
LCT, it sends reply to its home cluster caching node. If
data is not in LCT, CH2 checks in the GCT (Global
Cache Table) about neighbor clusters. If data is there, it
sends the query to corresponding cluster CH1’s caching
node. Then neighbor CH1 sends the reply to the MN
through its CH2. MN caches the data in its LCT, after
received from neighbor cluster.

Energy model: The energy of MNs have calculated after
establishment of the communication between the nodes
in the network. According to Kuppusamy et al. (2012)
energy consumption of MNs for transmitting, receiving
k-bits of data at distance d is given as in Eq. 1:

2
c ele ampE E . k . k.d= + ε (1)

δt is duration of time while node acts as CH. The total
energy consumption (Et) of CH computed in Eq. 2 as:

t cE E . t= δ (2)

 The residual energy ER of CH is computed in Eq. 3
from initial energy (Ei) and total energy consumption
(Et) as:

R i tE E E= − (3)

 The MN with maximum energy is nominated as a
CH. If the ER CH is decreased than any of its cluster
member, then cluster member is nominated as new CH.

Cache consistency requirements: The CBDC
approach must satisfy the consistency level, consistency
control and data update delay.

Fig. 1: Data query and retrieval in cluster

Consistency level: The cache must provide all kind of
consistency levels SC, WC to the clients with minimum
cost. The consistency maintenance cost is based on the
time. This issue addresses by CBDC model and
satisfies all consistency levels.

Consistency control: The most widely used
consistency control approach is the cache copy
associate with TTL value. The TTL values of cache
copies in the nodes to be renewed from the source node
while the TTL values have expired. Once the source
node updates the data, it needs to update its cache
copies in the caching nodes. Hence it initiates push
invalidation report to the caching nodes. The caching
nodes must reply the acknowledgement to source node
due to network dynamism. Both schemes have mutually
used in APPC.

Update delay: The previous schemes mostly focus on
how cache consistency should be maintained after the
source node has updated the source data. In such
schemes, the source can directly update the data without
considering consistency maintenance with caching
nodes. However, in many cases, the source node can wait
for certain time before updating the source data, as in
adaptive Lease protocol. The update delay can be utilized
to further decrease the consistency maintenance cost. The
source node waits for some predefined delay to update
the source data in small ad hoc network with stable
connection as in flexible cache maintenance. However, it
does not provide on how long the source node needs to
wait before updating the source data in large size
dynamic network. It does not also provide the update
delay when MNs in mobility in large network. The
APPC provides minimum update delay using by CH.

Adaptive Push and Pull algorithm for Clusters
(APPC):
Overview: The proposed APPC satisfies the
consistency maintenance cost in cluster based MANET.
Each cache copy is associated with TTL which is
computed based on acceptable time deviation δ among
the source and caching nodes. The caching nodes
satisfy their neighbor queries when TTL is not expired.
For data update, the source sends an Invalidation
Report (INV_REP) to the CHs in the network. The
CHs reply Invalidation Report Acknowledgement
(INVREP_ACK) to the source. In mean time, CHs
intimate about INV_REP to their caching nodes in
the cluster. Hence, caching node is not serve the data
to neighbors request during that period. The source
updates the data after received INVREP_ACK from all
CHs. Otherwise, the source waits up to tolerable
minimum update delay.

Algorithm.1 APPC on a Source:

Am. J. Applied Sci., 9 (8): 1307-1315, 2012

1311

while (source ready to update data)
{
 send an INV_REP to all CHs with time T
 CHs send INVREP_ACK upon receiving INV_REP.
if (T > 0) && (Data source node receives
INVREP_ACK from all CH) then
 update the source data
 push to caching nodes through CH
else if (TTL < tm) then
 wait for minimum update delay tm=0
 update the source data
 push to caching nodes through CH
end if
}
end while
while (TTL < TTLth)
{
 source receives RENEW request from CH
if (source data updated multiple times among past and
current renewal requests) then
 TTL = TTL x m
 send updated data to caching node with new TTL
else if (no data update) then
 TTL = TTL x (1 +f)
 end if
}
end while

 For renew the data, CH maintains cache copy
information associated with their TTL, query access
rate. When TTL decreased out of threshold TTL
(TTLth), the CH renews the TTL of corresponding
cache copy in advance based on access rate. CH knows
about the access rate of renewal data based on the
neighbors’ request. Thus caching nodes need not to
wait up to TTL is expired to renew and also can serve
the data to neighbors continuously. Hence, the delay
reduced at TTL renewal. If the cache copy is not
accessed by neighbors for long time then its TTL is not
renewed by CH. Thus the overhead is reduced by
avoiding unnecessary TTL renewal.

Algorithm.2 APPC on Cluster Head:

while (CH receiving INV_REP from source node with
T)
{
 if (T>0)

send INVREP_ACK to the data source node
 send about INV_REP to the corresponding cache

node
 ready to receive updated the data
 if (data received with new TTL) then
 send the updated data with new TTL to caching node

 end if
 end if
}
end while
//Upon TTL of cache copy
if (TTL < TTL th) then
 send the RENEW message to source node for
proactive renewal

if (cache copy not updated) then
 update the new TTL for cache copy
 send new TTL to caching node
else if (cache copy has updated) then
 update cache copy with new TTL
 serve the cache query with out delay
end if
end if

 APPC is a generic scheme and satisfies the
existing consistency schemes as follows: The source
waits to update the data until receives INVREP_ACK
from all CHs or up to minimum update delay at every
time. Hence it satisfies the SC. When TTL decreased
lower than TTLth, CH utilizes the pull based scheme. If
TTL is large, the data source uses push based
INVREP_ACK scheme. The APPC addresses the issue
in consistency maintenance cost with respect to time. If
required data is available in neighbor clusters then user
need not to send the query to remote source. Thus cost
is decreased to access the required data. Thus it ensures
the consistency levels SC, WC and DC.

Algorithm.3 APPC on a Caching node:

while (cache node receiving a query from neighbor)
{
if (TTL> 0) then
 Serve the query with the cache copy
else if (TTL < 0)&&(TTL< TTLth) then
 Send a RENEW request to CH to renew the TTL from
the source node

end if
if (cache copy not updated) then
 update the new TTL for cache copy
else if (cache copy has updated) then
 update cache copy with new TTL
 serve the cache query with out delay
end if
}
end while

Analysis:
Push: The source maintains about its caching nodes
information with their respective CHs. Whenever
source wants to update the data D at time tu, it

Am. J. Applied Sci., 9 (8): 1307-1315, 2012

1312

broadcasts the INV_REP to all CHs through source
node’s home CH in the network. The neighbor CHs
replies the INVREP_ACK to the source in reverse
path without delay. Also neighbor CHs send the
intimation to caching nodes about INV_REP. Hence
caching nodes have not serve the cache copies to
neighbors in that period. After received
INVREP_ACK from all CHs, then source initiates to
update D and pushes to the home CH. Then home CH
transmits the updated data into neighbor caching
nodes via their respective CHs. If source does not
receive INVREP_ACK from any CH, then it waits up
to its tolerable minimum update delay. This approach
reduces the overhead, energy and bandwidth. When
MN moves from one cluster Ci to another cluster Cj it
informs to the new CHj and leave message to CHi.
Thus the source push the update with new TTL to
home and neighbor CHs instead of the entire caching
nodes in the network. Hence it reduces the latency.

Pull: The individual caching nodes uses pull algorithm
to ensure the validity of cache copy. Some of the
cache copies have most frequently accessed and
remaining less frequently accessed by neighbors.
Based on these constraints, the cache copies TTL is
renewed from the source by their home CH. The CH
maintains the TTLth for cache copies. When cache copy’s
TTL reduced to less than TTLth, CH sends the request to
the source to renew TTL with query access rate. TTL
value set by the source based on query access rate and
forwards to the CH. Then caching node renews TTL from
the CH. If Dquery_access_rate is the interval between successive
query of D and β (value is between 0 and 1 is weighting
factor for the recent and past queries), then the TTL value
is renewed as:

TTL = β × TTL + (1-β) × Dquery_access_rate

 The TTL is renewed based on their query access
rate. Hence, TTL is not updated for the less frequently
accessed data regularly. Thus it saves the overhead,
bandwidth. The caching node is serving the data to
neighbors query without interruption. Thus, data access
latency is reduced.

Maintaining consistency: The data consistency must
maintain between the source and caching nodes.

Case 1: When TTL of cache copy is decreased less than
TTLth, the CH send renew query to the source. At the
moment, the TTL to be renewed data is updated
between past and current renew requests. The data have
also updated multiple times among past and current
updates, but these intervals take more than δ time.
Hence, source reduces the new TTL value by

multiplicative factor m and also sends the updated data
to caching node:

TTL = TTL x m, 0< m <1

 Because, when TTL is minimum then caching node
renews frequently. Hence it reduces the staleness by
renew TTL. Thus it increases the data consistency and
reduces the latency.

Case 2: Sometimes the source data is not updated
between past and current TTL renewal. At the moment,
source only renews TTL based on linear model:

TTL = TTL x (1+ f), f is linear factor 0< f < 1

 The TTL for least frequently updated data is
increased by linear factor. Because, these cache copies
does not accessed frequently by neighbors. Thus it
reduces overhead, bandwidth and energy consumption.

Case 3: The source updates the data before cache
copy’s TTL expires. In this approach, source node
sends INV_REP to the CHs before push the updated
data. Hence, CHs reply the INVREP_ACK to the
source instead of all caching nodes in entire network. It
reduces the delay to receive INVREP_ACK. To avoid
the stale hits, updated data is send to the caching nodes.
Thus it increases the consistency among source and
cache copy.

Case 4: When the source does not receive
INVREP_ACK from all CHs, it waits for tm. But, in
proposed approach mostly CHs are not expired. The
new CH is selected before current CH expires and all
information gives up to new CH. This process takes
only minimum time. Hence source just waits for tm only
at CH reelection time. The new CH reelected rarely.
Therefore source is not waiting to update the data
forever. Thus it reduces the delay. The time
specifications are summarized in Table 1. In data push
propagation, when TTL is expired among data update
time tu and minimum update delay tm as in Fig. 2. Here,
the source sends updated data with new TTL after
received INVREP_ACK from all CHs.

Table 1: Time specification

Notation Description
t0 Initial time
tu Data update time
tm Minimum update time delay
tδ Acceptable time deviation among source and cache copy
tr TTL renewal request time

Am. J. Applied Sci., 9 (8): 1307-1315, 2012

1313

Fig. 2: TTL renew request tr among tu and tm

Fig. 3: TTL renew request tr among tm and tδ

Fig. 4: TTL renew request tr after tδ

Hence the stale hit is not occurs due to the range (tu, tm) is
tolerable minimum update delay:

tr < tu + tm

 When TTL expires among update delay tm and
acceptable deviation tδ as in Fig. 3, stale hits have not
occurred. Because, the range (tm, tδ) is acceptable
duration between the source and cache copy:

tr < tm + tδ

 The Fig. 4 shows that TTL expires after the
acceptable deviation. At this moment, CH requests the
source to renew the TTL once it decreases less than TTLth.
Hence, it renews the TTL priorly for its cache copy.
Thus a stale hit is not occurs:

tr > tu + tm + tδ

MATERIALS AND METHODS

 The simulation for the proposed approach was
carried out using Network Simulator Version-2 (NS2)
with channel capacity is 2 Mbps. The Distributed
Coordination Function (DCF) of IEEE 802.11 for
wireless LANs used as the MAC layer protocol. It has
the functionality to notify the network layer about link
disconnection.
 In this simulation, MNs make mobility in a
1000×1000 m area for 100 sec simulation time and
assume each MN moves independently. The
transmission range of MNs is 250 m. The network size
is varied as 20, 40, 60, 80, 100 and 120 nodes and the
speed of the mobile node is varied as 2, 5, 7, 10, 12
and 15 m sec−1. Assume that data query and update
process is based on Poisson process. The simulated
traffic is Constant Bit Rate (CBR).
 The simulation settings and parameters are
summarized in Table 2.

Table 2: Simulation settings

Parameters Values
No. of nodes 20,40,60,80,100,120
Area size 1000´1000
Radio range 250 m
Simulation time 100 sec
Cache size 1000 KB
Mobility model Random way point
Speed 2, 5, 7, 10, 12, 15 m/sec
Data size 500 bytes
Avg. update interval 20s
Bandwidth 2 Mbps
TTL range 10-18 sec
TTL threshold 4 sec
Avg. query interval 5 sec

Performance metrics: The proposed Cluster Based Data
Consistency (CBDC) associates with Adaptive Push and
Pull Algorithms for Clusters (APPC) approach is
compared with Flexible Cache Consistency (FCPP)
Maintenace (Huang et al., 2010a) and Cluster Based
Cooperative Caching Technique (CBCCT) in Mobile Ad
Hoc Networks (Kuppusamy et al., 2012) schemes.

Average query latency: The average latency is the
average latency between user sending the query to the
source and receiving the reply from source.

Success ratio: The ratio of total number of queries
sent to the source and total number of packets
received successfully.

Control overhead: The control overhead is defined as
the total number of control packets normalized by the
total number of received data packets.

RESULTS

Based on nodes: The first simulation scenario was
constructed by varying the number of nodes as 20, 40,
60, 80 100 and 120 with mobile speed as 5 m sec−1.
 When the nodes have increased in the network,
caching nodes also increased. Due to additional
caching nodes in clusters, the query latency and
overhead have increased slightly, overall packet
delivery success ratio is reduced.
 The Fig. 5 shows that the proposed approach,
APPC has less query latency than the existing
approaches. Because CHs shares cache copy and
maintain consistency of cache copy with source. In
addition Fig. 6 shows that proposed APPC achieves
more success ratio when compared with the existing
FCPP and CBCCT. The Fig. 7 shows that APPC
outperforms the existing approaches in terms of control
overhead. Since the query latency and overhead have
increased, the overall success ratio is decreased when the
number of caching nodes is increased.

Am. J. Applied Sci., 9 (8): 1307-1315, 2012

1314

Fig. 5: Nodes Vs latency

Fig. 6: Nodes Vs packet success ratio

Fig. 7: Nodes Vs overhead

Fig. 8: Speed Vs latency

Fig. 9: Speed Vs packet success ratio

Fig. 10: Speed Vs overhead

Based on speed: This second scenario was constructed
by varying the speed of the MNs as 2, 5, 7, 10, 12 and
15 m sec−1 with 50 nodes.
 The Fig. 8 shows that the proposed APPC protocol
has less query latency. Since MNs always have
communication with any one of CH. Hence CH
accomplishes the neighbor, home cluster MNs data
requirements. Figure 9 and 10 shown that proposed
APPC achieves more success ratio and less control
overhead than the existing FCPP and CBCCT schemes.

DISCUSSION

 The simulation shown that the proposed Cluster
Based Data Consistency associate with APPC approach
reduces latency 2.4%, 2% and overhead 3.5%, 3% and
increases packet success ratio 9.2%, 5.5% than FCPP
and CBCCT respectively with respect to increasing
number of nodes. Also APPC reduces latency 2.2%,
1.7% and overhead 2.3%, 1.5% and increases packet
delivery success ratio 9.3%, 3.6% than FCPP and
CBCCT respectively with respect to mobility speed.
The results proved that the proposed approach APPC
provides better performance than the existing
approaches FCPP, CBCCT.

Am. J. Applied Sci., 9 (8): 1307-1315, 2012

1315

CONCLUSION

 This study presents a consistency maintenance
scheme Cluster Based Data Consistency (CBDC) for
cooperative caching over MANET. CBDC improves the
data accessibility by reducing the latency, overhead. Also
it reduces the energy consumption of MNs by
partitioning the huge network into clusters. The CHs
shared their information with neighbors to improve the
performance. Thus the cooperative caching improves the
data availability in MANET. Also Adaptive Push and
Pull Algorithms for Cluster proposed to improve the data
consistency among the source and caching MNs. The
combination of push and pull algorithm for clusters
improves the data consistency among source and cache
copies by associate with TTL values. These proposed
algorithms have reduced the overhead and latency,
energy consumption by using the CHs in the clusters.

REFERENCES

Artail, H., H. Safa, K. Mershad, Z. Abou-Atme and N.

Sulieman, 2008. COACS: A Cooperative and
Adaptive Caching System for MANETs. IEEE
Trans. Mobile Comput., 7: 961-977. DOI:
10.1109/TMC.2008.18

Cao, G., 2002. On improving the performance of cache
invalidation in mobile environments. Mobile Netw.
Appli., 7: 291-303. DOI:
10.1023/A:1015463328335

Cao, G., L. Yin and C.R. Das, 2004. Cooperative
cache-based data access in ad hoc networks.
Computer, 37: 32-39. DOI:
10.1109/MC.2004.1266293

Cao, J., Y. Zhang G. Cao and L. Xie, 2007. Data
consistency for cooperative caching in mobile
environments. Computer, 40: 60-66. DOI:
10.1109/MC.2007.123

Cao, J., Y. Zhang, L. Xie and G. Cao, 2005.
Consistency of cooperative caching in mobile peer-
to-peer systems over MANET. Proceedings of the
25th International Conference Distributed
Computer System, Jun. 6-10, IEEE Xplore Press,
pp: 573-579. DOI: 10.1109/ICDCSW.2005.53

Duvvuri, V., P. Shenoy and R. Tewari, 2003. Adaptive
leases: A strong consistency mechanism for the
World Wide Web. IEEE Trans. Knowl. Data Eng.,
15: 1266-1276. DOI:
10.1109/TKDE.2003.1232277

Feeney, L.M., 2001. An energy consumption model for
performance analysis of routing protocols for
mobile ad hoc networks. J. Mobile Netw. Appli., 6:
239-249.

Huang, Y., J. Cao and B. Jin, 2006. A predictive
approach to achieving consistency in cooperative
caching in MANET. Proceedings of the 1st
International Conference on Scalable Information
Systems, (SIS’ 06), ACM Press, USA. DOI:
10.1145/1146847.1146898

Huang, Y., J. Cao, B. Jin, X. Tao and J. Lu et al.,
2010b. Flexible cache consistency maintenance
over wireless ad hoc networks. IEEE Trans. Parall.
Distributed Syst., 21: 1150-1161. DOI:
10.1109/TPDS.2009.168

Huang, Y., J. Cao, B. Jin, X. Tao and J. Lu, 2010a.
Cooperative cache consistency maintenance for
pervasive internet access. Wirel. Commun. Mobile
Comput., 10: 436-450. DOI: 10.1002/wcm.819

Imielinski, T. and D. Barbara, 1994. Sleepers and
workaholics: Caching strategies in mobile
environments. ACM Sigmod, 23: 1-12.

Jing, J., A. Elmagarmid, A. Helal and R. Alonso, 1997.
Bit-Sequences: An adaptive cache invalidation
method in mobile client/server environments.
Mobile Netw. Appli., 2: 115-127. DOI:
10.1023/A:1013616213333

Kuppusamy, P., K. Thirunavukkarasu and B.
Kalaavathi, 2012. Cluster based cooperative
caching technique in mobile ad hoc networks. Eur.
J. Sci. Res., 69: 337-349.

Li, W., E. Chan, D. Chen and S. Lu, 2009. Maintaining
probabilistic consistency for frequently offline
devices in mobile ad hoc networks. Proceedings of
the 29th IEEE International Conference on
Distributed Computing Systems, Jun. 22-26, IEEE
Xplore Press, Montreal, QC, pp: 215-222. DOI:
10.1109/ICDCS.2009.23

Li, W., E. Chan, D. Chen, Y. Wang and D. Chen, 2007.
Cache invalidation strategies for mobile ad hoc
networks. Proceeding of the International
Conference on Parallel, Sept. 10-14, IEEE Xplore
Press, Xi'an, pp: 57-57. DOI:
10.1109/ICPP.2007.22

Xie, G., Z. Li, J. Chen, Y. Wei and V. Issarny et al.,
2007. DTCS: A dynamic tree-based consistency
scheme of cooperative caching in mobile ad hoc
networks. Proceedings of the 3rd IEEE
International Conference on Wireless and Mobile
Computing, Networking and Communications,
Oct. 8-10, White Plains, New York, USA., pp: 48-
48. DOI: 10.1109/WIMOB.2007.28

