
American Journal of Applied Sciences 9 (7): 1101-1106, 2012
ISSN 1546-9239
© 2012 Science Publications

Corresponding Author: Ramesh, D., Department of CSE, Anna University of Technology, Tiruchirappalli, India
1101

An Optimal Load Sharing Technique For Grid Computing

1Ramesh, D. and 2A. Krishnan
1Department of CSE, Anna University of Technology, Tiruchirappalli, India

2K.S. Rangasamy College of Technology, Tiruchengode, India

Abstract: Problem statement: Grid and Cloud Computing is the fast growing industry, in which the
grid computing shares the resources in the organization in an effective manner. Resource sharing
requires more optimized algorithmic structure, otherwise the waiting time and response time are
increased and the resource utilization is reduced. Approach: In order to avoid such reduction in the
performances of the grid system, an optimal resource sharing algorithm is required. The traditional
Min-Min algorithm is a simple algorithm that produces a schedule that minimizes the makespan than
the other traditional algorithms in the literature. But it fails to produce a load balanced schedule. In our
earlier study, a Load Balanced Min-Min (LBMM) algorithm is proposed that reduces the makespan
and increases the resource utilization. This is further improved through Ant Colony Optimization
(ACO) based optimization methodology. Results: In recent days, ACO plays a vital role in the discrete
optimization problems. The ACO solves many engineering problems and provides optimal result
which includes Travelling Salesman Problem, Network Routing and Scheduling. Conclusion: This
study proposes an ACO based resource sharing algorithm for effective utilization of grid computing.

Key words: Grid computing, Ant Colony Optimization (ACO), resource sharing, Load Balanced Min-

Min (LBMM), First Come First Serve (FCFS), Ant Colony System (ACS)

INTRODUCTION

 As the scientific problem grows very complex in
the modern computing technology, it requires more
computing power and more storage space. Based on
these basic requirements, an organization requires
higher computational resource when dealing with
current technological methodology. The past
technologies such as distributed computing, parallel
computing are not suitable for recent advancement.
Because, the modern computer industry operating very
large amounts of data which utilize more processing
power and high storage volumes of data. Therefore, the
Grid computing is proposed as effective resource
management to the organization.
 In grid computing, the network status and the
resource status are to be managed effectively. If the
network status or resource status are not infeasible
level, then the total computation time will be increased
dramatically. In grid computing, the user will encounter
thousands of computers to utilize in effective and
efficient manner. The Grid architectures serving as a
middleware technology for various purposes likes
resource allocation management, job scheduling, data
management, security and authorization. Programming
in the grid computing involves more complexities

which is not only requires a single-machine
application. Some of the additional aspects of the grid
computing are (1) Dividing and combining data and
results, (2) Data security, (3) Application security, (4)
Testing and (5) Redundancy and capacity planning.
 The purpose of task scheduling in the grid
computing is to balance the load of the entire grid system
in such a way that completing all the assigned workload
as soon as possible and feasible than other system. It is
impossible for anyone to manually assign these loads in
the large computing resources of the grid system. As the
environmental status of grid architecture is changing
frequently, the traditional job scheduling algorithm such
as ‘‘First Come First Serve’’ (FCFS), ‘‘Shortest Job
First’’ (SJF), may not be suitable for the dynamic
environment in grids. Therefore, job scheduling in the
grid environment is a very important issue. This study
proposes an efficient job scheduling algorithm for
solving these problems in the grid environment.

Related work: As the Grid is growing in the modern
era, it attracts researcher. There are a variety of
research activities is identified in the grid
environment, in which the task scheduling and load
balancing are the major research issue even till date.
There are many scheduling algorithms for grid task is

Am. J. Applied Sci., 9 (7): 1101-1106, 2012

1102

proposed in the recent year; the scheduling is
classified in a variety of ways. The job scheduling
method is composed (Berrichi et al., 2010) of the
following major steps:

• The user submits a new job to the system
• Based on the predicted finishing time, the

resource broker selects the “best” computing
element in its execution and the storage element
(if the chosen computing element does not
provide enough disk space for the input files) the
input files must be replicated to

• Agents are sent to every source Storage Element
and one to every destination node

• The agents will run on the nodes in the
background as daemons (the environment for
this will be assured by the agent hosts) and copy
the files prior to the execution queue reaching
the job requiring them

 Only few of scheduling algorithms for grid task are
focusing the problems with a variety of QoS parameter.
(Mohan and Baskaran, 2010) proposed an ACO based
task scheduling which is termed as Ant Colony System
(ACS) for Grid computing, in which the authors
considers the scheduling of tasks in terms of more than
one Quality of Service (QoS) requirements using ACO,
which is challenging and also it is significantly
influences the performance of grids. The proposed
ACO is enabling the users to specify their QoS
preferences as well as define the minimum QoS
thresholds for a certain application and the ACS is
tested in ten task applications with at most 120 tasks.
The architecture of ACS task scheduling is shown in
the Fig. 1 and the system design of ACO is shown in
the Fig. 2. This ACO decreases the cost by 10-20%
compared with the existing deadline based approach.
 Chang et al. (2009) proposed a Balanced Ant
Colony Optimization (BACO) algorithm for job
scheduling in the Grid environment. The main
contributions of this study is to balance the entire
system load while trying to minimize the make span of
a given set of jobs, the BACO focuses on the make-
span and system load balance. Compared with the other
job scheduling algorithms, BACO can outperform them
according to the experimental results.
 In apples (Mohan and Baskaran, 2011a), the
Parameter study support, event-driven rescheduling,
Centralized adaptive scheduling with heuristics and
self-scheduled work queues are handled. In EZ-
GRID broker (Mohan and Baskaran, 2011b) job
handling, transparent file transfer, self-information
service with dynamic and historical data, Policy Engine

Framework for provider policies are proposed. In GRID
BUS Grid Service system (Mohan and Baskaran,
2011c; 2011d), Failure management and application
recovery, parameter studies, API support, Economy-
based and data aware scheduling are focused for
solving. The GRUBER (Suguna, 2011) handles SLA-
based resource sharing in multi-VO environment, disk
quota considerations, internal site monitoring feature
and various users’ oriented policies.

Proposed work:
Overview of Ant Colony Optimization (ACO):
Swarm intelligence is a new discipline of study that
contains relatively optimal approach to problem solving
which is the imitations inspired from the social
behaviors of insects and of other animals, for ex: Ant
colony optimization algorithm, artificial honey bee
algorithms. The main idea of ACO is to model the
problem as the search for a minimum cost path in a
graph. Artificial ants walk through from nest to food,
looking for good paths. Each ant has a rather simple
behavior so that it will typically only find rather poor-
quality paths on its own. Better paths are found as the
emergent result of the global cooperation among ants
in the colony. The behavior of artificial ants is
inspired from real ants, they lay pheromone trails on
the graph edges and choose their path with respect to
the probabilities that depend on pheromone trails and
these pheromone trails progressively decrease by
evaporation.
 In addition, artificial ants have some extra features
that do not find their counterpart in real ants. In
particular, they live in a discrete world and their moves
consist of transitions from nodes to nodes. Also, they
are usually associated with data structures that contain
the memory of their previous actions. In most cases,
pheromone trails are updated only after having
constructed a complete path and not during the walk
and the amount of pheromone deposited is usually a
function of the quality of the path. Finally, the
probability for an artificial ant to choose an edge often
depends not only on pheromones, but also to some
problem-specific local heuristics. The detailed survey
on ACO is available in (Dumitrescu and Foster, 2005)
for various engineering optimization problems.
 Casanova et al. (2003) developed a model of the
observed behavior, in which there are four units (A1, A2,
A3 and A4) and two routes (R1 and R2) leading to a food
source (F0), where R1 and R2 such that R1 > R2 and
R1=2*R2. Initially, all units are at the decision point Ne

and they have to select between R1and R2 to reach Fo.

Am. J. Applied Sci., 9 (7): 1101-1106, 2012

1103

Fig. 1: Architecture of task scheduling in ACS

Fig. 2: System design of Ant flow in ACS

Am. J. Applied Sci., 9 (7): 1101-1106, 2012

1104

 At Ne, all units have no knowledge about the
location of food (F0). Hence, they randomly select
from {R1, R2}. Suppose that A1 and A2 choose R1
and A3 and A4 choose R2.
 As A1 and A2 move along R1 and A3 and A4 move
along R2, they leave a certain amount of pheromone
along their paths τR1 and τR2, respectively.
 Since R1 > R2, A3 and A4 reach F0 before A1 and
A2. When A3 and A4 pass R2 to reach F0, τR2 = 2, but A1
and A2 have yet to reach F0 and τR1 = 0. To return to Ne

from F0, A3 and A4 have to choose between R1 and R2.
At F0, A3 and A4 detect that τR2 > τR1, hence they are
more likely to select R2.
 As A3 and A4 pass R2 for the second time to reach
Ne, τR2 is incremented to 4. The increase in τR2 further
consolidates R2 as the shortest path. When A1 and A2

reach F0, τR2 = 4 and τR1 = 2. Hence, A1 and A2 are more
likely to select R2 to return to Ne.
 In this example, any ant at F0 (respectively, Ne)
will be able to determine the optimal path once A3
and A4 reach F0. If an ant is at a choice point when
there is no pheromone (e.g., Initially at Ne), it makes
a random decision with a probability of 0.5 of
choosing R1 or R2. However, when pheromone is
present (e.g., When the ant is at F0), there is a higher
probability that it will choose the path with the
highest concentration of pheromone.

ACO based task scheduling: Job scheduling
problems have a vital role in recent years due to the
growing consumer demand for variety, reduced
product life cycles, changing markets with global
competition and rapid development of new
technologies. The Job Shop Scheduling Problem
(JSSP) is one of the most popular scheduling models
existing in practice, which is among the hardest
combinatorial optimization problems. The instance
definition of the job scheduling problem is as follows:

• A number of independent (a user / application) jobs

to be scheduled
• A number of heterogeneous machines candidates to

participate in the planning
• The workload of each job (in millions of

instructions)
• The computing capacity of each machine (in mips)
• Ready time indicates when machine m will have

finished the previously assigned jobs
• The Expected Time to Compute (ETC) matrix

(‘nb’ jobs × ‘nb’ machines) in which ETC[i][j] is
the expected execution time of a job ‘i' in machine
‘j

 Many approaches, such as, Simulated Annealing
(SA), Tabu Search (TS), Genetic Algorithm (GA), Ant
Colony Optimization (ACO), Neural Network (NN),
Evolutionary Algorithm (EA) and other heuristic
approach have been successfully applied to JSSP.
(Pasteels et al., 1987) proposed an efficient hybrid
algorithm for resource-constrained project scheduling.
This hybrid algorithm is known as the ACOSS
algorithm which combines Scatter Search (SS) with
ACO. Research on ACO has shown that improved
performance can be obtained by stronger exploitation of
the best solutions found during the search (Komarudin
and Wong, 2010; Kacsuk et al., 2007). Yet, using a
greedier search potentially aggravates the problem of
premature stagnation of the search. Therefore, the key
to obtaining better performance of ACO algorithms is
to combine an improved exploitation of the best
solutions with an effective mechanism for avoiding
early search stagnation. Combining exploitation of the
best solutions to a problem-dependent local search
algorithm, the authors presents the hybrid algorithm.
 In this study, as a first step, all ants in the ACO
search the solution space and generate activity lists to
provide the initial population for the SS. Then, although
the SS improves all the ants’ solutions, only the best
solution (thus far) is used to update the pheromone
trails. Finally, ACO searches the solution space again
using the new pheromone trails. In other words, the SS
uses the previous population constructed by ACO,
which subsequently updates the pheromone trails using
the best solution from the SS and searches again. In
addition, a local search strategy is employed to improve
the quality of solutions generated by ACO and also as
the improved method in the SS. In this scheme, ACO
and SS alternatively and cooperatively search the
solution space until the termination criterion is satisfied.
In each generation, ACO only executes once to
generate the initial population for the SS, which then
executes one or more times to improve the solutions.
The proposed ACO based Task Scheduling (ACOWS)
is explained in the following procedure.

ACO based Task Scheduling (ACOTS) algorithm:
ACO is proposed for task scheduling of the grid
system. The objective of the scheduling algorithm is
to minimize the makespan of task. This can be
calculated using Expected Time to Compute (ETC)
model. The scheduling problem can be defined as
follows:
 Let task set are T = t1, t2, t3, …. , tn be the group
of tasks submitted to the scheduler. Let Resource set are
R = m1, m2, m3, …. , mk be the set of resources
available at the time of task arrival. Makespan produced

Am. J. Applied Sci., 9 (7): 1101-1106, 2012

1105

by any algorithm for a schedule can be calculated in the
following Eq. 1-6:

mimizemakespan (CTij)(T(ti),R(mj)))=∑ (1)

CTij Wj ETij= + (2)

where, CT is the completion time of machines, ETij is the
execution time of a job i on resource j, Wj is waiting time
of resource j after completing the previously assigned jobs.
 The scheduling is defined based on a proactive
design which stored in a table called scheduling table,
this can be constructed based on the state transition rule
and pheromone update policy. In every t unit of times,
the forward ant is generated and forwarded to collect
the information about the grid systems. The forward
ants will collect the information of currently running
processes (traffic) and the expected time of completion.
The information is stored in the scheduling table. The
table contains next optimal resource allocation and also
other feasible allocations. From the table, the optimal
resource is selected or the load is shared into many
feasible resources. The optimal load sharing is
explained in the following mathematical models.

 The following random proportional rule is applied
as State transition rule: For choosing task ti and the
probability of selecting a grid / resources mj is:

prob(D,i, j) Fun(TD,i, j,) if , j R= η − − − − ∈ (3)

where, TD is the pheromone value corresponding to
resource j for the task i and 0 < TD < 1 is the local
heuristic value. Fun (TD, i, j, η) is a function in TD and
η (this function value is high when TD and η are high).
Assuming that at a given moment in time, ‘m1’ ants
have used the first resource and ‘m2’ the second one,
therefore the probability p1 for an ant to choose the first
bridge is:

T(r,s) [(r,s)]
if

T(r,s) [(r,s)]
Fun(TD,r,s)

resource...available

0 otherwise

β

β

 • η → • η =  
 
 → 

∑
…

 (4)

where, T(r, s) is the pheromone deposited in the path
between ‘r and s, η(r, s) is the corresponding heuristic
value. β is a parameter which determines the relative
importance of pheromone versus execution time (β >
0). The pheromone update policy is as follows:

T(r,s) (1) T(r,s) (1) T(r,s)← − α • + − α •∑ (5)

K
K

1
if resource found

CT
T (r,s)

0 otherwise

 → 
 ∆ =  
 
 → 

… …

 (6)

The proposed ACO based Task Scheduling
(ACOTS) Algorithm:

(A) Procedure of (ACOTS)
For all tasks Ti
 For all resources
 (i, j)min imize (CTij(T(ti),R(mj)))∑

Do until all tasks are mapped
 For each task find the earliest
completion time and the resource that obtains
it
 find the task Tk with the
minimum earliest completion time
 assign task Tk to the
resource Rl that gives the earliest completion
time
 delete task Tk from the list
 update ready time of
resource Rl
 update Cil for all i
 End for
 // rescheduling to balance the load
using TS-(ACO)
 End-do
 End-for
End-for

(B) Procedure of TS-(ACO)

//Initialization Phase
For every unit of time,
 For each test pair (T, R)

τ (t, m) := τ0

 End-for
 For k: = 1 to m do

 Let (t1, m1) be the initial solution for
an ant k

CT(mk, tk1) := {1, …, n} – CT(tk1)

CT(tk) := CT(tk1)
 End-for

//This is the phase in which ants build
their tours (the tour / node is referred to
finding an optimal resource)
For i: = 1 to n do
 If i < n

Then
For k: = 1 to m do

Am. J. Applied Sci., 9 (7): 1101-1106, 2012

1106

Choose the next resource
mk
CT(mk, tk) := CT (mk, tk) –

CT(mk)

Scheduling_Table (mj): =
min(CT(tk, mk))

End-for
Else

For k: = 1 to m do
CT(mk) := CT(mk1)

Scheduling_Table (mi): =
min(CT(tk , mk))

End-for
End-if

For k: = 1 to m do
Update

CT(m, t) (1) CT(m, t) (1) CT(m, t)← − α • + − α •∑

End-for
End-for
//In this phase global updating occurs and
pheromone is updated
For k := 1 to m do

Compute CTk
End-for
Compute CTbest
For each edge (m, t)

CT(m, t) (1) CT(m, t) (1) CT(m, t)← − α • + − α •∑

End-for

CONCLUSION

 The proposed algorithm is tested using MatLab
based simulation and programming models. The
proposed ACO method provided the optimlaity in grid
environment. The scheduling of the grid is smoothened
using ACO. As a consequence, the load on various
grids are shared among all available grids and it offers
load balancing in the grid environment.

REFERENCES

Berrichi, A., F. Yalaoui, L. Amodeo and M.

Mezghiche, 2010. Bi-Objective Ant Colony
Optimization approach to optimize production and
maintenance scheduling. Comput. Operat. Res., 37:
1584-1596. DOI: 10.1016/j.Cor.2009.11.017

Casanova, H., F. Berman, G. Obertelli and R. Wolski,
2003. The apples parameter sweep template: User-
level middleware for the grid. Proceedings of the
Proceedings of the 2000 ACM/IEEE conference on
Supercomputing, Nov. 04-10, IEEE Computer
Society, Dallas, Texas, pp: 60-60. DOI:
10.1109/SC.2000.10061

Chang, R.S., J.S. Chang and P.S. Lin, 2009. An ant
algorithm for balanced job scheduling in grids.
Future Generat. Comput. Syst., 25: 20-27. DOI:
10.1016/j.future.2008.06.004

Dumitrescu, C.L. and I. Foster, 2005. GRUBER: A Grid
Resource Usage SLA Broker. Proceedings of the 11th
International European Parallel Computing
Conference, (IEPCC’ 05), CiteSeerX, pp: 465-474.

Kacsuk, P., T. Fahringer and Z. Nemeth, 2007.
Distributed and Parallel Systems: From Cluster
to Grid Computing. 1st Edn., Springer, New
York, ISBN-10: 0387698574, pp: 222.

Komarudin and K.Y. Wong, 2010. Applying ant system
for solving unequal area facility layout problems.
Eur. J. Opera. Res., 202: 730-746. DOI:
10.1016/j.ejor.2009.06.016

Mohan, B.C. and R. Baskaran, 2010. Improving
Network Performance using ACO Based
Redundant Link Avoidance Algorithm. Int. J.
Comput. Sci., 7: 27-35.

Mohan, B.C. and R. Baskaran, 2011a. Energy aware
and energy efficient routing protocol for adhoc
network using restructured artificial bee colony
system. High Perform. Architec. Grid Comput.,
169: 473-484. DOI: 10.1007/978-3-642-22577-
2_65

Mohan, B.C. and R. Baskaran, 2011b. Reliable Barrier-
Free Services (RBS) for heterogeneous next
generation network. Adv. Power Elec. Instru. Eng.,
148: 79-82. DOI: 10.1007/978-3-642-20499-9_13

Mohan, B.C. and R. Baskaran, 2011c. Reliable
transmission in network centric military network.
Eur. J. Sci. Res., 50: 564-574.

Mohan, C.B. and R. Baskaran, 2011d. Survey on recent
research and implementation of ant colony
optimization in various engineering applications.
Inter. J. Comput. Intell. Sys., 4: 566-582.

Pasteels, J.M., J.L. Deneubourg and S. Goss, 1987.
Self-organization mechanisms in ant societies (I):
Trail recruitment to newly discovered food sources.
Birkhauser, 54: 155-175.

Suguna, N., 2011. An independent rough set approach
hybrid with artificial bee colony algorithm for
dimensionality reduction. Am. J. Applied Sci., 8:
261-266. DOI: 10.3844/ajassp.2011.261.266

