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Abstract: Problem statement: Grid and Cloud Computing is the fast growing industry, in which the 
grid computing shares the resources in the organization in an effective manner. Resource sharing 
requires more optimized algorithmic structure, otherwise the waiting time and response time are 
increased and the resource utilization is reduced. Approach: In order to avoid such reduction in the 
performances of the grid system, an optimal resource sharing algorithm is required. The traditional 
Min-Min algorithm is a simple algorithm that produces a schedule that minimizes the makespan than 
the other traditional algorithms in the literature. But it fails to produce a load balanced schedule. In our 
earlier study, a Load Balanced Min-Min (LBMM) algorithm is proposed that reduces the makespan 
and increases the resource utilization. This is further improved through Ant Colony Optimization 
(ACO) based optimization methodology. Results: In recent days, ACO plays a vital role in the discrete 
optimization problems. The ACO solves many engineering problems and provides optimal result 
which includes Travelling Salesman Problem, Network Routing and Scheduling. Conclusion: This 
study proposes an ACO based resource sharing algorithm for effective utilization of grid computing.  
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INTRODUCTION 
 
 As the scientific problem grows very complex in 
the modern computing technology, it requires more 
computing power and more storage space. Based on 
these basic requirements, an organization requires 
higher computational resource when dealing with 
current technological methodology. The past 
technologies such as distributed computing, parallel 
computing are not suitable for recent advancement. 
Because, the modern computer industry operating very 
large amounts of data which utilize more processing 
power and high storage volumes of data. Therefore, the 
Grid computing is proposed as effective resource 
management to the organization.  
 In grid computing, the network status and the 
resource status are to be managed effectively. If the 
network status or resource status are not infeasible 
level, then the total computation time will be increased 
dramatically. In grid computing, the user will encounter 
thousands of computers to utilize in effective and 
efficient manner. The Grid architectures serving as a 
middleware technology for various purposes likes 
resource allocation management, job scheduling, data 
management, security and authorization. Programming 
in the grid computing involves more complexities 

which is not only requires a single-machine 
application. Some of the additional aspects of the grid 
computing are (1) Dividing and combining data and 
results, (2) Data security, (3) Application security, (4) 
Testing and (5) Redundancy and capacity planning.  
 The purpose of task scheduling in the grid 
computing is to balance the load of the entire grid system 
in such a way that completing all the assigned workload 
as soon as possible and feasible than other system. It is 
impossible for anyone to manually assign these loads in 
the large computing resources of the grid system. As the 
environmental status of grid architecture is changing 
frequently, the traditional job scheduling algorithm such 
as ‘‘First Come First Serve’’ (FCFS), ‘‘Shortest Job 
First’’ (SJF), may not be suitable for the dynamic 
environment in grids. Therefore, job scheduling in the 
grid environment is a very important issue. This study 
proposes an efficient job scheduling algorithm for 
solving these problems in the grid environment.  
 
Related work: As the Grid is growing in the modern 
era, it attracts researcher. There are a variety of 
research activities is identified in the grid 
environment, in which the task scheduling and load 
balancing are the major research issue even till date. 
There are many scheduling algorithms for grid task is 
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proposed in the recent year; the scheduling is 
classified in a variety of ways. The job scheduling 
method is composed (Berrichi et al., 2010) of the 
following major steps: 
 
• The user submits a new job to the system 
• Based on the predicted finishing time, the 

resource broker selects the “best” computing 
element in its execution and the storage element 
(if the chosen computing element does not 
provide enough disk space for the input files) the 
input files must be replicated to 

• Agents are sent to every source Storage Element 
and one to every destination node 

• The agents will run on the nodes in the 
background as daemons (the environment for 
this will be assured by the agent hosts) and copy 
the files prior to the execution queue reaching 
the job requiring them 

 
 Only few of scheduling algorithms for grid task are 
focusing the problems with a variety of QoS parameter. 
(Mohan and Baskaran, 2010) proposed an ACO based 
task scheduling which is termed as Ant Colony System 
(ACS) for Grid computing, in which the authors 
considers the scheduling of tasks in terms of more than 
one Quality of Service (QoS) requirements using ACO, 
which is challenging and also it is significantly 
influences the performance of grids. The proposed 
ACO is enabling the users to specify their QoS 
preferences as well as define the minimum QoS 
thresholds for a certain application and the ACS is 
tested in ten task applications with at most 120 tasks. 
The architecture of ACS task scheduling is shown in 
the Fig. 1 and the system design of ACO is shown in 
the Fig. 2.  This ACO decreases the cost by 10-20% 
compared with the existing deadline based approach. 
 Chang et al. (2009) proposed a Balanced Ant 
Colony Optimization (BACO) algorithm for job 
scheduling in the Grid environment. The main 
contributions of this study is to balance the entire 
system load while trying to minimize the make span of 
a given set of jobs, the BACO focuses on the make-
span and system load balance. Compared with the other 
job scheduling algorithms, BACO can outperform them 
according to the experimental results. 
 In apples (Mohan and Baskaran, 2011a), the 
Parameter study support, event-driven rescheduling, 
Centralized adaptive scheduling with heuristics and 
self-scheduled work queues are handled. In EZ-
GRID broker (Mohan and Baskaran, 2011b) job 
handling, transparent file transfer, self-information 
service with dynamic and historical data, Policy Engine 

Framework for provider policies are proposed. In GRID 
BUS Grid Service system (Mohan and Baskaran, 
2011c; 2011d), Failure management and application 
recovery, parameter studies, API support, Economy-
based and data aware scheduling are focused for 
solving. The GRUBER (Suguna, 2011) handles SLA-
based resource sharing in multi-VO environment, disk 
quota considerations, internal site monitoring feature 
and various users’ oriented policies. 
 
Proposed work: 
Overview of Ant Colony Optimization (ACO): 
Swarm intelligence is a new discipline of study that 
contains relatively optimal approach to problem solving 
which is the imitations inspired from the social 
behaviors of insects and of other animals, for ex: Ant 
colony optimization algorithm, artificial honey bee 
algorithms. The main idea of ACO is to model the 
problem as the search for a minimum cost path in a 
graph. Artificial ants walk through from nest to food, 
looking for good paths. Each ant has a rather simple 
behavior so that it will typically only find rather poor-
quality paths on its own. Better paths are found as the 
emergent result of the global cooperation among ants 
in the colony. The behavior of artificial ants is 
inspired from real ants, they lay pheromone trails on 
the graph edges and choose their path with respect to 
the probabilities that depend on pheromone trails and 
these pheromone trails progressively decrease by 
evaporation.  
 In addition, artificial ants have some extra features 
that do not find their counterpart in real ants. In 
particular, they live in a discrete world and their moves 
consist of transitions from nodes to nodes. Also, they 
are usually associated with data structures that contain 
the memory of their previous actions. In most cases, 
pheromone trails are updated only after having 
constructed a complete path and not during the walk 
and the amount of pheromone deposited is usually a 
function of the quality of the path. Finally, the 
probability for an artificial ant to choose an edge often 
depends not only on pheromones, but also to some 
problem-specific local heuristics. The detailed survey 
on ACO is available in (Dumitrescu and Foster, 2005) 
for various engineering optimization problems.  
 Casanova et al. (2003) developed a model of the 
observed behavior, in which there are four units (A1, A2, 
A3 and A4) and two routes (R1 and R2) leading to a food 
source (F0), where R1 and R2 such that R1 > R2 and 
R1=2*R2. Initially, all units are at the decision point Ne 

and they have to select between R1and R2 to reach Fo. 
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Fig. 1: Architecture of task scheduling in ACS 
 

 
 

Fig. 2: System design of Ant flow in ACS 
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 At Ne, all units have no knowledge about the 
location of food (F0). Hence, they randomly select 
from {R1, R2}. Suppose that A1 and A2 choose R1 
and A3 and A4 choose R2. 
 As A1 and A2 move along R1 and A3 and A4 move 
along R2, they leave a certain amount of pheromone 
along their paths  τR1 and τR2, respectively. 
 Since R1 > R2, A3 and A4 reach F0 before A1 and 
A2. When A3 and A4 pass R2 to reach F0, τR2 = 2, but A1 
and A2 have yet to reach F0 and τR1 = 0. To return to Ne 

from F0, A3 and A4 have to choose between R1 and R2. 
At F0, A3 and A4 detect that τR2 > τR1, hence they are 
more likely to select R2.  
 As A3 and A4 pass R2 for the second time to reach 
Ne, τR2 is incremented to 4. The increase in τR2 further 
consolidates R2 as the shortest path. When A1 and A2 

reach F0, τR2 = 4 and τR1 = 2. Hence, A1 and A2 are more 
likely to select R2 to return to Ne.  
 In this example, any ant at F0 (respectively, Ne) 
will be able to determine the optimal path once A3 
and A4 reach F0. If an ant is at a choice point when 
there is no pheromone (e.g., Initially at Ne), it makes 
a random decision with a probability of 0.5 of 
choosing R1 or R2. However, when pheromone is 
present (e.g., When the ant is at F0), there is a higher 
probability that it will choose the path with the 
highest concentration of pheromone. 
 
ACO based task scheduling: Job scheduling 
problems have a vital role in recent years due to the 
growing consumer demand for variety, reduced 
product life cycles, changing markets with global 
competition and rapid development of new 
technologies. The Job Shop Scheduling Problem 
(JSSP) is one of the most popular scheduling models 
existing in practice, which is among the hardest 
combinatorial optimization problems. The instance 
definition of the job scheduling problem is as follows: 
 
• A number of independent (a user / application) jobs 

to be scheduled 
• A number of heterogeneous machines candidates to 

participate in the planning 
• The workload of each job (in millions of 

instructions) 
• The computing capacity of each machine (in mips) 
• Ready time indicates when machine m will have 

finished the previously assigned jobs 
• The Expected Time to Compute (ETC) matrix 

(‘nb’ jobs × ‘nb’ machines) in which ETC[i][j] is 
the expected execution time of a job ‘i' in machine 
‘j  

 Many approaches, such as, Simulated Annealing 
(SA), Tabu Search (TS), Genetic Algorithm (GA), Ant 
Colony Optimization (ACO), Neural Network (NN), 
Evolutionary Algorithm (EA) and other heuristic 
approach have been successfully applied to JSSP. 
(Pasteels et al., 1987) proposed an efficient hybrid 
algorithm for resource-constrained project scheduling. 
This hybrid algorithm is known as the ACOSS 
algorithm which combines Scatter Search (SS) with 
ACO. Research on ACO has shown that improved 
performance can be obtained by stronger exploitation of 
the best solutions found during the search (Komarudin 
and Wong, 2010; Kacsuk et al., 2007). Yet, using a 
greedier search potentially aggravates the problem of 
premature stagnation of the search. Therefore, the key 
to obtaining better performance of ACO algorithms is 
to combine an improved exploitation of the best 
solutions with an effective mechanism for avoiding 
early search stagnation. Combining exploitation of the 
best solutions to a problem-dependent local search 
algorithm, the authors presents the hybrid algorithm.  
 In this study, as a first step, all ants in the ACO 
search the solution space and generate activity lists to 
provide the initial population for the SS. Then, although 
the SS improves all the ants’ solutions, only the best 
solution (thus far) is used to update the pheromone 
trails. Finally, ACO searches the solution space again 
using the new pheromone trails. In other words, the SS 
uses the previous population constructed by ACO, 
which subsequently updates the pheromone trails using 
the best solution from the SS and searches again. In 
addition, a local search strategy is employed to improve 
the quality of solutions generated by ACO and also as 
the improved method in the SS. In this scheme, ACO 
and SS alternatively and cooperatively search the 
solution space until the termination criterion is satisfied. 
In each generation, ACO only executes once to 
generate the initial population for the SS, which then 
executes one or more times to improve the solutions. 
The proposed ACO based Task Scheduling (ACOWS) 
is explained in the following procedure. 

 
ACO based Task Scheduling (ACOTS) algorithm: 
ACO is proposed for task scheduling of the grid 
system. The objective of the scheduling algorithm is 
to minimize the makespan of task. This can be 
calculated using Expected Time to Compute (ETC) 
model. The scheduling problem can be defined as 
follows: 
 Let task set are T = t1, t2, t3, …. , tn be the group 
of tasks submitted to the scheduler. Let Resource set are 
R = m1, m2, m3, …. , mk be the set of resources 
available at the time of task arrival. Makespan produced 
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by any algorithm for a schedule can be calculated in the 
following Eq. 1-6: 
 

mimizemakespan (CTij)(T(ti),R(mj)))=∑  (1) 
 
CTij Wj ETij= +   (2) 
 
where, CT is the completion time of machines, ETij is the 
execution time of a job i on resource j, Wj is waiting time 
of resource j after completing the previously assigned jobs. 
 The scheduling is defined based on a proactive 
design which stored in a table called scheduling table, 
this can be constructed based on the state transition rule 
and pheromone update policy. In every t unit of times, 
the forward ant is generated and forwarded to collect 
the information about the grid systems. The forward 
ants will collect the information of currently running 
processes (traffic) and the expected time of completion. 
The information is stored in the scheduling table. The 
table contains next optimal resource allocation and also 
other feasible allocations. From the table, the optimal 
resource is selected or the load is shared into many 
feasible resources. The optimal load sharing is 
explained in the following mathematical models.  
 
 The following random proportional rule is applied 
as State transition rule: For choosing task ti and the 
probability of selecting a grid / resources mj is: 
 
prob(D,i, j) Fun(TD,i, j, ) if , j R= η − − − − ∈  (3) 
 
where, TD is the pheromone value corresponding to 
resource j for the task i and 0 < TD < 1 is the local 
heuristic value. Fun (TD, i, j, η) is a function in TD and 
η (this function value is high when TD and η are high). 
Assuming that at a given moment in time, ‘m1’ ants 
have used the first resource and ‘m2’ the second one, 
therefore the probability p1 for an ant to choose the first 
bridge is: 
 

T(r,s) [ (r,s)]
if

T(r,s) [ (r,s)]
Fun(TD,r,s)

resource...available

0 otherwise

β

β

 • η → • η =  
 
 → 

∑
…

 (4) 

 
where, T(r, s) is the pheromone deposited in the path 
between ‘r and s, η(r, s) is the corresponding heuristic 
value. β is a parameter which determines the relative 
importance of pheromone versus execution time (β > 
0). The pheromone update policy is as follows: 
 
T(r,s) (1 ) T(r,s) (1 ) T(r,s)← − α • + − α •∑  (5) 

K
K

1
if resource found

CT
T (r,s)

0 otherwise

 → 
 ∆ =  
 
 → 

… …

 (6) 

 
The proposed ACO based Task Scheduling 
(ACOTS) Algorithm: 
 

(A) Procedure of (ACOTS) 
For all tasks Ti 
 For all resources 
  (i, j)min imize (CTij(T(ti),R(mj)))∑  

Do until all tasks are mapped 
   For each task find the earliest 
completion time and the resource that obtains 
it  
    find the task Tk with the 
minimum earliest completion time  
    assign task Tk to the 
resource Rl that gives the earliest completion 
time 
    delete task Tk from the list 
    update ready time of 
resource Rl 
    update Cil for all i 
   End for 
   // rescheduling to balance the load 
using TS-(ACO) 
  End-do 
 End-for 
End-for  
 

(B) Procedure of TS-(ACO ) 

//Initialization Phase 
For every unit of time,  
 For each test pair (T, R)  

τ (t, m) := τ0   

 End-for 
 For k: = 1 to m do 

 Let (t1, m1) be the initial solution for 
an ant k 

CT(mk, tk1) := {1, …, n} – CT(tk1) 

CT(tk) := CT(tk1) 
    End-for 

//This is the phase in which ants build 
their tours (the tour / node is referred to 
finding an optimal resource)  
For i: = 1 to n do 
   If i < n 

Then 
For k: = 1 to m do 
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Choose the next resource 
mk  
CT( mk, tk) := CT (mk, tk) – 

CT(mk) 

Scheduling_Table (mj): = 
min(CT(tk,  mk)) 

End-for 
Else 

For k: = 1 to m do 
CT(mk ) := CT(mk1) 

Scheduling_Table (mi): = 
min(CT(tk , mk )) 

End-for 
End-if 

For k: = 1 to m do 
Update 

CT(m, t) (1 ) CT(m, t) (1 ) CT(m, t)← − α • + − α •∑  

End-for 
End-for 
//In this phase global updating occurs and 
pheromone is updated  
For k := 1 to m do 

Compute CTk   
End-for  
Compute CTbest 
For each edge (m, t) 

CT(m, t) (1 ) CT(m, t) (1 ) CT(m, t)← − α • + − α •∑  

End-for 
 

CONCLUSION 
 
 The proposed algorithm is tested using MatLab 
based simulation and programming models. The 
proposed ACO method provided the optimlaity in grid 
environment. The scheduling of the grid is smoothened 
using ACO. As a consequence, the load on various 
grids are shared among all available grids and it offers 
load balancing in the grid environment. 
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