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Abstract: Problem statement: Switched Reluctance Motors (SRMs) are widely used in various 
applications due to their inherent simplicity and rugged construction In SRM, torque output and torque 
ripple are sensitive to stator and rotor pole arcs and their selection is a vital part of SRM design process. In 
this study Particle Swarm Optimization technique is proposed for determining optimum pole arc of SRM. 
Approach: The problem of determining optimum pole arc is formulated as a multiobjective optimization 
problem with the objective of maximizing average torque and minimizing torque ripple. A comprehensive 
program based on analytical model is developed in Matlab to compute the value of inductance and average 
torque. Results: The optimization procedure is tested on 8/6, four-phase, 5 HP, 1500 rpm SRM. The results 
are compared and investigated with those obtained from Genetic Algorithm (GA) technique and Finite 
Element Analysis(FEA) simulation. Conclusion: The results demonstrate that the proposed method is 
effective and outperforms GA in terms of solution quality, accuracy, constraint handling. 
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INTRODUCTION 
 
 Simple and robust structure, high efficiency 
and fault tolerability of Switched Reluctance Machine 
(SRM) are good reasons for its selection in variable 
speed applications (Lawrenson et al., 1980). The output 
power of an SRM is higher than that of a comparable 
induction motor and the torque-inertia ratio is also 
higher due to the absence of rotor windings (Husain and 
Ehsani, 1994). Each stator pole has a simple winding, 
which is usually concentric. Suitable windings are 
connected together to form the motor phases. This 
simplicity gives the SRM the possibility of operating at 
very high speeds with a high output and a better 
mechanical acceleration (Miller, 1989). The main 
disadvantage of SRM is higher torque ripple which 
contributes to acoustic noise and vibration. The torque 
pulsation in SRM is due to highly non-linear and 
discrete nature of torque production mechanism 
(Husain and Ehsani, 1994).In recent years to achieve 
efficient design of electrical machines, researchers have 
focused on computer-aided electromagnetic design 
approach and evolutionary programming approach. 
Sahin et al., 2000, has discussed  an approach to 
determine optimum geometry of SRM with minimum 
torque ripple. Generalized regression neural network 

based optimization of SRM with the objective of 
maximizing average torque and minimizing torque 
ripple is discussed in (Sahraoui, et al., 
2007).Optimization techniques like Genetic Algorithm 
and Taguchi algorithm have been applied for  switched 
reluctance machine design(Kano et al., 2010;Mirzaeian 
et al., 2002; Nabeta et al., 2008). From the literature it 
is evident that computational intelligence techniques 
like genetic algorithm and artificial neural network 
have been successfully applied for design optimization 
of SRM. In recent years, several heuristic optimization 
techniques such as ant Colony Algorithm (ACO), PSO 
(Roomi et al., 2010, Xiang et al., 2009)are applied to 
solve a variety of complex engineering problems. In 
this work an attempt has been made to apply Particle 
Swarm Optimization (PSO), for design optimization of 
SRM. The focus of this work is pole arc optimization of 
SRM with the objective of maximizing average torque 
and minimizing torque ripple using PSO approach. The 
PSO (Kennedy and Eberhart, 1995; Wang et al., 2008; 
Eberhart and Kennedy, 1995; Eberhart and Shi, 2000; 
Chaturvedi et al., 2009; Clerc and Kennedy, 2002) 
algorithm is one of the modern evolutionary algorithms. 
This algorithm was first proposed by Kennedy and 
Eberhart (1995). PSO is a population-based search 
algorithm characterized as conceptually simple, easy to 
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implement and computationally efficient. Similar to the 
other population-based evolutionary algorithms PSO is 
initialized with a population of random solutions 
(Coelho et al., 2009). Unlike the most of the 
evolutionary algorithms, each potential solution  in PSO 
is also associated with a randomized velocity and the 
potential solutions called particles, are then ‘‘flown’’ 
through the problem space.The performance of PSO 
algorithm is compared with GA based optimization. 
The results show that PSO based approach performs 
better in terms of solution quality, accuracy and 
convergence time.  
 
Design optimization of SRM- Problem Formulation: 
The optimal design problem can be formulated as the 
following multiobjective nonlinear optimization 
problem: 
 

1 2 kx F
min f (x),f (x),...., f (x)
∈

  (1) 

 
where, n n

ix R f : R R∈  and F is the feasible set of 
problem (1) which is described by the inequalities as 
follows: 
 

{ }n
iF x R : g (x) 0,i 1,2,...,p= ∈ ≤ =   (2)       

      
where, gi(x) is called the constraint function .We denote 

kf (x) R∈ the vector made up of all objective functions, 
that is: 
 

( )1 2 kf (x) f (x),f (x),.....f (x)=   (3) 

 
Pareto optimal solution: An ideal solution of (1) 
would be a point *x F∈  such that: 
 

{ }*
i if (x ) f (x), x F, i 1,2,.....k≤ ∀ ∈ ∀ ∈   (4) 

 
 The point x* seldom exists, therefore(1) turns into 
finding some or all the pareto optimal solutions. A point 
x*Є F is a pareto optimal solution of (1) if there does 
not exist any feasible point x Є F such that:  
 

{ }*
i if (x) f (x ), i 1,2,.....k≤ ∀ ∈   (5) 

 
And: 
 

*
j jf (x) f (x )≤   (6) 

for at least one index jЄ{1,2,.,k} 
 There exists a wide variety of methods that can be 
used to compute Pareto optimal solutions. A widely 
used technique consists of reducing the multiobjective 
problem given by Eq. 1 to a single objective one by 
means of “scalarization” procedure. The “scalarization” 
procedure in this study consists of assigning each 
objective function a cost coefficient and then 
minimizing the function obtained by summing up all 
the objective functions scaled by their cost coefficients 
(Liuzzi et al., 2003), that is: 
 

k i
ix F i 1

min c f (x)
∈ =

∑   (7) 

 
 The global solution of the problem is affected by 
the coefficient ci. The cost coefficient is determined by 
the following equation: 
 

*
i ix F

i
*
i

z min f (x)

1c
z

∈
=

=
  (8) 

 
Design variables: The structure of 8/6 SRM is 
presented in Fig. 1. The torque characteristics of SRM 
depend on number of poles, number of phases, stator- 
rotor pole overlap angle and pole geometry (Husain, 
2002). From the literature (Arumugam et al., 1988; 
Koibucuchi et al., 1997) it is evident that torque output 
and torque ripple are sensitive to stator and rotor pole 
arcs and their choice is a critical part of SRM design 
process. The choice of pole arcs depends on the 
application and there is no distinct value that is suitable 
for all applications. Further optimum pole arcs are a 
compromise between various conflicting requirements 
(Miller, 1989). Hence in this study the two most 
significant parameters on average torque and torque 
ripple are taken as design variables: 
 
X1 Rotor Pole arc (βr) 
X1 Stator pole arc. (βr) 
 
 The remaining design parameters are treated as 
fixed for the optimization process. 

1 2F(x) (A f (x) B f (x))= − ∗ + ∗   (9) 
 
Where: 
f1(x) = Maximization of average torque.  
f2(x = Maximization of inductance ratio 
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Fig. 1: Schematic diagram of 8/6 SRM 
 

 
 
Fig. 2: Plot of Flux Linkage Vs Current  
 

 
 
Fig. 3: Neural Network Structure 
 
Objective function: The multiobjective problem 
formulation is given by: 
  The constants A and B are determined using the 
“scalarization” procedure. In view of the fact that the 
average torque and inductance ratio of the motor is to 
be maximized, minus sign is introduced in the fitness 
function. 

Calculation of average torque: Finite-Element 
Method (FEM) (Arkadan and Kielagas, 1994), 
Magnetic Equivalent Circuit (MEC) method (Moallem 
and Dawson, 1998) and piecewise linear model (Miller 
and Mcglip, 1990) are reported for the analysis of 
SRM. In this study analytical method described is used 
to determine the inductance and average torque of the 
machine. 
 The average torque is given by: 
 

s rWmN NTav
4

δ
=

π
  (10)  

 

1 2 n u p

Wm Wm'aligned Wm'unaligned
1 1i ...... I
2 2

δ = −

⎛ ⎞= Δ λ + λ + λ − λ⎜ ⎟
⎝ ⎠

 (11) 

 

where, pI
i

n
Δ = . 

 A comprehensive program is written in MATLAB 
to compute the difference of co energies at aligned and 
unaligned position. The aligned coenergy is calculated 
with trapezoidal integration algorithm. Once δwm is 
determined, the average torque is calculated using Eq. 
10. The results obtained are compared and validated 
with FEA model. The design data for validating the 
analytical model is given in appendix1. The flux 
linkage-current characteristics obtained by analytical 
model and FEM model are presented in Fig. 2. Table 1 
presents the torque value computed by two methods. 
The closeness of the results have confirmed and 
validated the analytical model. 
 For optimal design of the SR motor by 
evolutionary algorithms such as PSO, a large number of 
performance evaluations are required and the 
computational time by analytical method would be very 
large. Therefore, in this study, an Artificial Neural 
Network (ANN) based expert system for performance 
prediction of the SR motor has been developed. The 
ANN expert system can be used as a very fast 
performance prediction tool in design optimizing 
programs. A feed forward neural network as shown in 
Fig. 3 is trained with discrete points in the design 
domain considering the rules of feasible triangle 
(Lawrenson et al., 1980). 
 The stator and rotor pole arc form the input to the 
network and the torque obtained by analytical 
computation form the output. Backpropoagation 
algorithm is used to train the neural network. The 
results of the network are satisfactory when tested with  
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Table 1: Computed average torque  by analytical and FEM method 
 Analytical value FEM calculation 
Average Torque 23.14 Nm 23.61 Nm 
 

 
 
Fig. 4: Torque vs rotor position characteristics 
 
data which were not subjected to training. This network 
is incorporated in the optimization routine to compute 
the value of average torque.  
 
Evaluation of torque ripple: The majority of torque 
ripple occurs in the phase overlap region, where the 
torque producing responsibility is commutated from 
one phase to another. The extent of design dependent 
overlap sets the limit on the electronic controller on 
effective torque sharing between two adjacent phases to 
minimize torque ripple. Torque ripple expected from 
SRM is evaluated from the torque dips in T-i-θ 
characteristics. Torque dip is the difference between 
the peak torque of a phase and the torque at an angle 
where two overlapping phases produce equal torque at 
equal levels of current. This is due to the insufficiency 
of the incoming phase in supplying the required torque 
in those rotor positions (Husain, 2002). Figure 4 shows 
the torque dip present in the initial design. The effect of 
pole arc variation on mean torque and torque dip can be 
evaluated from inductance overlap ratio KL given by 
Eq. 18. Inductance overlap ratio gives a direct measure 
of torque overlap of adjacent phases: 
 

L
s r

K 1
min( , )

ε
= −

β β
  (12) 

 
 From Eq. 18 it is evident that by widening the 
stator and rotor poles, torque overlap can be increased. 
The higher the KL , the lower will be the torque dip and 
the higher will be the mean torque as well. Since the 

inductance ratio has to be maximized the fitness 
function is taken as minus of KL. 
 
Design constraints: The following are the constraints 
are imposed on the design optimization problem 
according to the rules of feasible triangle (Lawrenson  
et al., 1980).     
           

1 2x x≥   (13)           
  

1 2
2 x x
Nr
π
−   (14)                               

 
 2x ε   (15) 

   
 To have a practically feasible and acceptable final 
design the following performance constraints are 
imposed: 
 
• Average torque should be greater than 21 N-m 
• Clearance space between the tips of windings 

should be greater than 5 mm 
 
 The constraints are taken into account by 
penalizing the fitness proportionally to the constraint 
violations. 
 
Overview of PSO: PSO originally developed by 
Kennedy and Eberhart (1995) is a population based 
swarm algorithm. Swarm intelligence is an emergent 
research area with populational and evolutionary 
characteristics similar to those of genetic algorithms. In 
PSO, a number of particles form a ‘‘swarm” that evolve 
or fly throughout the feasible hyperspace to search for 
fruitful regions in which optimal solution may exist. 
Each particle has two vectors associated with it, the 
position (Xi) and velocity (Vi) vectors. In N-
dimensional search space, Xi = [xi1, xi2, . . ., xiN] and Vi 
= [vi1, vi2, . . ., viN] are the two vectors associated with 
each particle i. During their search, members of the 
swarm interact with each others in a certain way to 
optimize their search experience. There are different 
variants of particle swarm paradigms but the most 
commonly used one is the gbest model where the whole 
population is considered as a single neighborhood 
throughout the flying experience (Chaturvedi et al., 
2009; Clerc and Kennedy, 2002). In each iteration, 
particle with the best solution shares its position 
coordinates (gbest) information with the rest of the 
swarm. Each particle updates its coordinates based on 
its own best search experience (pbest) and gbest 
according to the following equations: 
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( )

k 1 k k k
i i 1 1 i i

k k
2 2 i i

v wv c rand pbest x

c rand gbest x

+ = + −

+ −
 (16) 

 
k 1 k k 1
i i ix x v+ += +   (17)  

 
where, c1 and c2 are two positive acceleration constants, 
they keep balance between the particle’s individual and 
social behavior when they are set equal; rand1 and rand2 
are two randomly generated numbers with a range of [0, 
1] added in the model to introduce stochastic nature in 
particle’s movement; and w is the inertia weight and it 
keeps a balance between exploration and exploitation. 
In our case, it is a linearly decreasing function of the 
iteration index: 
 

max min
max

max

w ww(k) w iter
iter

⎛ ⎞−
= − ×⎜ ⎟

⎝ ⎠
 (18) 

 
Where: 
 itermax  = The maximum number of iteration  
iter =  The current iteration number 
wmax =  The initial weight 
wmin = The final weight.  
 
 In conclusion, an initial value of w around 1, with a 
gradual decline toward 0 isconsidered as a proper 
choice. The most important factor that governs the PSO 
performance in its search for optimal solution is to 
maintain a balance between exploration and 
exploitation. Exploration is the PSO ability to cover and 
explore different areas in the feasible search space 
while exploitation is the ability to concentrate only on 
promising areas in the search space and to enhance the 
quality of potential solution in the fruitful region. 
Exploration requires bigger step sizes at the beginning 
of the optimization process to determine the most 
promising areas then the step size is reduced to focus 
only on that area. This balanced is usually achieved 
through proper tuning of PSO key parameters. 
Recently, PSO developments and applications have 
been widely explored in engineering and science 
mainly due to its distinct favorable characteristics 
(Chaturvedi et al., 2009). Just like in the case of other 
evolutionary algorithms, PSO has many key features 
that attracted many researchers to employ it in different 
applications in which conventional optimization 
algorithms might fail such as: 
 
• It only requires a fitness function to measure the 

‘‘quality” of a solution instead of complex 
mathematical operations like gradient, Hessian, or 
matrix inversion. This reduces the computational 
complexity and relieves some of the restrictions 
that are usually imposed on the objective function 
like differentiability, continuity, or convexity 

• It is less sensitive to a good initial solution since it 
is a population based method 

• It can be easily incorporated with other 
optimization tools to form hybrid ones 

• It has the ability to escape local minima since it 
follows probabilistic transition rules 

 
 More interesting PSO advantages can be 
emphasized when compared to other members of 
evolutionary algorithms like: 
 
• It can be easily programmed and modified with 

basic mathematical and logic operations. It is 
inexpensive in terms of computation time and 
memory 

• It requires less parameter tuning. 
• It works with direct real valued numbers that 

eliminates the need to do binary conversion of 
classical canonical genetic algorithm 

 
Implementation of PSO for Optimal Design of SRM: 
The algorithm for PSO based SRM design optimization 
can be summarized as follows:  
 
Step1: Initialize PSO parameters such as wmax, wmin, 

c1, c2 and Itermax 
Step2: Generate initial population of N particles with 

random positions and velocities. 
Step3: Evaluate the fitness of each particle using Eq. 9 
Step4: Update personal best: Compare the fitness 

value of each particle with its pbests. If the 
current value is better than pbest, then set pbest 
value to the current value. 

Step5: Update global best: Compare the fitness value 
of each particle with gbest. If the current value 
is better than gbest, set gbest to the current 
particle’s value. 

Step6: Update weight: Calculate weight Wk+1 using 
Eq. 18 

Step7: Update velocities: Calculate velocities Vk+1 
using Eq. 16 

Step8: Update positions: Calculate positions Xk+1 
using Eq. 17 

Step9: Return to step (4) until the current iteration 
reaches the maximum iteration number 

Step10: Output the optimal design variables.  
 

RESULTS 
 
 The proposed PSO technique for multi-objective 
design optimization of SRM is tested on a 5HP motor. 
The specifications of the sample motors are given in 
Appendix 1.Acomparative study with GA was done to 
verify the Performance of the proposed algorithm. 
PSO and GA Parameters used for the simulation are  
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Table 2: Simulation parameters 
GA PSO 
Population size:30 Number of Particles:30 
Generations:50 Iterations:50 
Crossover rate:0.8 C1= C2=2 
Mutation rate:0.1 Wmax=0.9 
Wmin= 0.4 

 
summarized in Table 2. For the implementation of 
PSO, several parameters are required to be specified, 
such as acceleration factors (C1 and C2), Weighting 
factor (W)  and  swarm  size  and  termination criteria. 
 These parameters should be selected carefully for 
efficient performance of PSO. According to past 
experience the acceleration constants are set to be2.0 
Suitable choice of Weighting factor (W) provides a 
balance between the global and the local explorations, 
thus requiring less iteration on average to find as 
sufficiently optimal solution. In this study W decreases 
linearly from about 0.9- 0.4 as discussed in (Kennedy 
and Eberhart, 1995). The swarm size and maximum 
number of generations are fixed by trial and error 
method. The optimization procedure is terminated when 
50generations are reached. 
 

DISCUSSION 
 
Comparative studies:  
Solution quality: The results obtained from PSO and 
GA based design methods are given in Table 3. The 
convergence characteristics of GA and PSO methods 
for the sample motor are shown in Fig. 5. From the 
results it is seen that the PSO converges quickly and 
explore higher quality solution than the GA. 
 
Robustness: To test the robustness of GA and PSO, 20 
independent trials were carried out. The obtained results 
by each method are given in Fig. 6. From the Figure, it 
is clear that the minimum, average and standard 
deviations obtained by PSO are better than GA. 
 
Characterization using FEA: The optimized geometry 
was exposed to finite-element calculation. The flux 
lines at aligned position is shown in Fig. 7. The static 
torque characteristics of the optimal machine at rated 
current of 13 A is shown in Fig. 8. The optimal 
machine produced an average torque of 29.19Nm with 
a torque dip of 5.7 Nm. The results of finite-element 
calculation confirm the application of optimization 
procedure for SRM design. 

Table 3: Results of optimal design 
  Optimal design 
  ----------------------------------- 
 Initial design PSO GA 
Stator Pole arc 18.0000 deg 21.910 deg 21.740deg 
Rotor Pole arc  22.0000 deg 22.910 deg 22.770deg 
Average Torque  22.9800 Nm 29.670 Nm 29.400 Nm 
Inductance ratio 0.1667 0.315 0.310 
Torque dip 8.8400 Nm 5.770 Nm 5.800 Nm 
 

 
 
Fig. 5: Comparison of convergence characteristics of 

GA and PSO based methods 
 

 
 
Fig.6: Comparison of PSO and GA methods 
 

 
 
Fig. 7: Flux Lines at aligned position 
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Fig. 8: Static torque characteristics 
 

CONCLUSION 
 
 This study describes the design optimization 
procedure of SRM using PSO with the objective of 
maximizing average torque and minimizing torque 
ripple. ANN based expert system is developed for faster 
performance prediction during the optimization process. 
The results obtained by this approach show 
improvement in average torque and reduction in torque 
dip. The optimized geometry was exposed to finite-
element calculation using MagNet software. The results 
of finite-element calculation validate the application of 
PSO based optimization procedure for SRM design.. 
The PSO based method is a promising tool for solving 
design optimization problems of Switched Reluctance 
Motor. 
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